Skip to main content
Top
Published in: BMC Medical Imaging 1/2015

Open Access 01-12-2015 | Research Article

Local sparsity enhanced compressed sensing magnetic resonance imaging in uniform discrete curvelet domain

Authors: Bingxin Yang, Min Yuan, Yide Ma, Jiuwen Zhang, Kun Zhan

Published in: BMC Medical Imaging | Issue 1/2015

Login to get access

Abstract

Background

Compressed sensing(CS) has been well applied to speed up imaging by exploring image sparsity over predefined basis functions or learnt dictionary. Firstly, the sparse representation is generally obtained in a single transform domain by using wavelet-like methods, which cannot produce optimal sparsity considering sparsity, data adaptivity and computational complexity. Secondly, most state-of-the-art reconstruction models seldom consider composite regularization upon the various structural features of images and transform coefficients sub-bands. Therefore, these two points lead to high sampling rates for reconstructing high-quality images.

Methods

In this paper, an efficient composite sparsity structure is proposed. It learns adaptive dictionary from lowpass uniform discrete curvelet transform sub-band coefficients patches. Consistent with the sparsity structure, a novel composite regularization reconstruction model is developed to improve reconstruction results from highly undersampled k-space data. It is established via minimizing spatial image and lowpass sub-band coefficients total variation regularization, transform sub-bands coefficients l 1 sparse regularization and constraining k-space measurements fidelity. A new augmented Lagrangian method is then introduced to optimize the reconstruction model. It updates representation coefficients of lowpass sub-band coefficients over dictionary, transform sub-bands coefficients and k-space measurements upon the ideas of constrained split augmented Lagrangian shrinkage algorithm.

Results

Experimental results on in vivo data show that the proposed method obtains high-quality reconstructed images. The reconstructed images exhibit the least aliasing artifacts and reconstruction error among current CS MRI methods.

Conclusions

The proposed sparsity structure can fit and provide hierarchical sparsity for magnetic resonance images simultaneously, bridging the gap between predefined sparse representation methods and explicit dictionary. The new augmented Lagrangian method provides solutions fully complying to the composite regularization reconstruction model with fast convergence speed.
Literature
2.
go back to reference Candès EJ, Romberg J, Tao T. Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information. Inform Theory IEEE Trans. 2006; 52(2):489–509.CrossRef Candès EJ, Romberg J, Tao T. Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information. Inform Theory IEEE Trans. 2006; 52(2):489–509.CrossRef
3.
go back to reference Baraniuk R. Compressive sensing. IEEE Signal Process Mag. 2007; 24(4):118–21.CrossRef Baraniuk R. Compressive sensing. IEEE Signal Process Mag. 2007; 24(4):118–21.CrossRef
4.
go back to reference Lustig M, Donoho D, Pauly JM. Sparse mri: The application of compressed sensing for rapid mr imaging. Magn Reson Med. 2007; 58(6):1182–95.PubMedCrossRef Lustig M, Donoho D, Pauly JM. Sparse mri: The application of compressed sensing for rapid mr imaging. Magn Reson Med. 2007; 58(6):1182–95.PubMedCrossRef
6.
go back to reference Chen Y, Ye X, Huang F. A novel method and fast algorithm for mr image reconstruction with significantly under-sampled data. Inverse Probl Imaging. 2010; 4(2):223–40.CrossRef Chen Y, Ye X, Huang F. A novel method and fast algorithm for mr image reconstruction with significantly under-sampled data. Inverse Probl Imaging. 2010; 4(2):223–40.CrossRef
7.
go back to reference Santos JM, Cunningham CH, Lustig M, Hargreaves BA, Hu BS, Nishimura DG, Pauly JM. Single breath-hold whole-heart mra using variable-density spirals at 3t. Magn Reson Med. 2006; 55(2):371–9.PubMedCrossRef Santos JM, Cunningham CH, Lustig M, Hargreaves BA, Hu BS, Nishimura DG, Pauly JM. Single breath-hold whole-heart mra using variable-density spirals at 3t. Magn Reson Med. 2006; 55(2):371–9.PubMedCrossRef
8.
go back to reference Haldar JP, Hernando D, Liang ZP. Compressed-sensing mri with random encoding. Med Imaging IEEE Trans. 2011; 30(4):893–903.CrossRef Haldar JP, Hernando D, Liang ZP. Compressed-sensing mri with random encoding. Med Imaging IEEE Trans. 2011; 30(4):893–903.CrossRef
9.
go back to reference Huang J, Yang F. Compressed magnetic resonance imaging based on wavelet sparsity and nonlocal total variation. In: Biomedical Imaging (ISBI), 2012 9th IEEE International Symposium On. Barcelona: IEEE: 2012. p. 968–71. Huang J, Yang F. Compressed magnetic resonance imaging based on wavelet sparsity and nonlocal total variation. In: Biomedical Imaging (ISBI), 2012 9th IEEE International Symposium On. Barcelona: IEEE: 2012. p. 968–71.
10.
go back to reference Lu Y, Do MN. A new contourlet transform with sharp frequency localization. In: Image Processing, 2006 IEEE International Conference On. Atlanta, GA: IEEE: 2006. p. 1629–1632. Lu Y, Do MN. A new contourlet transform with sharp frequency localization. In: Image Processing, 2006 IEEE International Conference On. Atlanta, GA: IEEE: 2006. p. 1629–1632.
11.
go back to reference Qu X, Zhang W, Guo D, Cai C, Cai S, Chen Z. Iterative thresholding compressed sensing mri based on contourlet transform. Inverse Probl Sci Eng. 2010; 18(6):737–58.CrossRef Qu X, Zhang W, Guo D, Cai C, Cai S, Chen Z. Iterative thresholding compressed sensing mri based on contourlet transform. Inverse Probl Sci Eng. 2010; 18(6):737–58.CrossRef
12.
go back to reference Candes E, Demanet L, Donoho D, Ying L. Fast discrete curvelet transforms. Multiscale Model Simul. 2006; 5(3):861–99.CrossRef Candes E, Demanet L, Donoho D, Ying L. Fast discrete curvelet transforms. Multiscale Model Simul. 2006; 5(3):861–99.CrossRef
13.
go back to reference Ma J. Compressed sensing by inverse scale space and curvelet thresholding. Appl Math Comput. 2008; 206(2):980–8. Ma J. Compressed sensing by inverse scale space and curvelet thresholding. Appl Math Comput. 2008; 206(2):980–8.
14.
go back to reference Plonka G, Ma J. Curvelet-wavelet regularized split bregman iteration for compressed sensing. Int J Wavelets, Multiresolution Inform Process. 2011; 9(01):79–110.CrossRef Plonka G, Ma J. Curvelet-wavelet regularized split bregman iteration for compressed sensing. Int J Wavelets, Multiresolution Inform Process. 2011; 9(01):79–110.CrossRef
15.
go back to reference Lim WQ. The discrete shearlet transform: A new directional transform and compactly supported shearlet frames. Image Process IEEE Trans. 2010; 19(5):1166–1180.CrossRef Lim WQ. The discrete shearlet transform: A new directional transform and compactly supported shearlet frames. Image Process IEEE Trans. 2010; 19(5):1166–1180.CrossRef
16.
go back to reference Qin J, Guo W. An efficient compressive sensing mr image reconstruction scheme. In: Biomedical Imaging (ISBI), 2013 IEEE 10th International Symposium On. San Francisco, CA: IEEE: 2013. p. 306–9. Qin J, Guo W. An efficient compressive sensing mr image reconstruction scheme. In: Biomedical Imaging (ISBI), 2013 IEEE 10th International Symposium On. San Francisco, CA: IEEE: 2013. p. 306–9.
17.
go back to reference Jung H, Sung K, Nayak KS, Kim EY, Ye JC. k-t focuss: A general compressed sensing framework for high resolution dynamic mri. Magn Reson Med. 2009; 61(1):103–16.PubMedCrossRef Jung H, Sung K, Nayak KS, Kim EY, Ye JC. k-t focuss: A general compressed sensing framework for high resolution dynamic mri. Magn Reson Med. 2009; 61(1):103–16.PubMedCrossRef
18.
go back to reference Otazo R, Kim D, Axel L, Sodickson DK. Combination of compressed sensing and parallel imaging for highly accelerated first-pass cardiac perfusion mri. Magn Reson Med. 2010; 64(3):767–76.PubMedPubMedCentralCrossRef Otazo R, Kim D, Axel L, Sodickson DK. Combination of compressed sensing and parallel imaging for highly accelerated first-pass cardiac perfusion mri. Magn Reson Med. 2010; 64(3):767–76.PubMedPubMedCentralCrossRef
19.
go back to reference Bilen C, Wang Y, Selesnick IW. High-speed compressed sensing reconstruction in dynamic parallel mri using augmented lagrangian and parallel processing. Emerg Select Topics Circuits Syst IEEE J. 2012; 2(3):370–9.CrossRef Bilen C, Wang Y, Selesnick IW. High-speed compressed sensing reconstruction in dynamic parallel mri using augmented lagrangian and parallel processing. Emerg Select Topics Circuits Syst IEEE J. 2012; 2(3):370–9.CrossRef
20.
go back to reference Qu X, Cao X, Guo D, Hu C, Chen Z. Combined sparsifying transforms for compressed sensing mri. Electron Lett. 2010; 46(2):121–3.CrossRef Qu X, Cao X, Guo D, Hu C, Chen Z. Combined sparsifying transforms for compressed sensing mri. Electron Lett. 2010; 46(2):121–3.CrossRef
21.
go back to reference Huang J, Zhang S, Metaxas D. Efficient mr image reconstruction for compressed mr imaging. Med Image Anal. 2011; 15(5):670–9.PubMedCrossRef Huang J, Zhang S, Metaxas D. Efficient mr image reconstruction for compressed mr imaging. Med Image Anal. 2011; 15(5):670–9.PubMedCrossRef
22.
go back to reference Lewicki MS, Sejnowski TJ. Learning overcomplete representations. Neural Comput. 2000; 12(2):337–65.PubMedCrossRef Lewicki MS, Sejnowski TJ. Learning overcomplete representations. Neural Comput. 2000; 12(2):337–65.PubMedCrossRef
24.
go back to reference Mairal J, Sapiro G, Elad M. Multiscale sparse image representationwith learned dictionaries. In: Image Processing, 2007. ICIP 2007. IEEE International Conference On. San Antonio, TX: IEEE: 2007. p. 105. Mairal J, Sapiro G, Elad M. Multiscale sparse image representationwith learned dictionaries. In: Image Processing, 2007. ICIP 2007. IEEE International Conference On. San Antonio, TX: IEEE: 2007. p. 105.
25.
go back to reference Rubinstein R, Zibulevsky M, Elad M. Double sparsity: Learning sparse dictionaries for sparse signal approximation. Signal Process IEEE Trans. 2010; 58(3):1553–64.CrossRef Rubinstein R, Zibulevsky M, Elad M. Double sparsity: Learning sparse dictionaries for sparse signal approximation. Signal Process IEEE Trans. 2010; 58(3):1553–64.CrossRef
26.
go back to reference Dabov K, Foi A, Katkovnik V, Egiazarian K. Image denoising by sparse 3-d transform-domain collaborative filtering. Image Process IEEE Trans. 2007; 16(8):2080–95.CrossRef Dabov K, Foi A, Katkovnik V, Egiazarian K. Image denoising by sparse 3-d transform-domain collaborative filtering. Image Process IEEE Trans. 2007; 16(8):2080–95.CrossRef
27.
go back to reference Adluru G, Tasdizen T, Schabel MC, DiBella EV. Reconstruction of 3d dynamic contrast-enhanced magnetic resonance imaging using nonlocal means. J Magn Reson Imaging. 2010; 32(5):1217–27.PubMedCrossRef Adluru G, Tasdizen T, Schabel MC, DiBella EV. Reconstruction of 3d dynamic contrast-enhanced magnetic resonance imaging using nonlocal means. J Magn Reson Imaging. 2010; 32(5):1217–27.PubMedCrossRef
28.
go back to reference Fang S, Ying K, Zhao L, Cheng J. Coherence regularization for sense reconstruction with a nonlocal operator (cornol). Magn Reson Med. 2010; 64(5):1413–25.PubMedCrossRef Fang S, Ying K, Zhao L, Cheng J. Coherence regularization for sense reconstruction with a nonlocal operator (cornol). Magn Reson Med. 2010; 64(5):1413–25.PubMedCrossRef
29.
go back to reference Liang D, Wang H, Chang Y, Ying L. Sensitivity encoding reconstruction with nonlocal total variation regularization. Magn Reson Med. 2011; 65(5):1384–92.PubMedCrossRef Liang D, Wang H, Chang Y, Ying L. Sensitivity encoding reconstruction with nonlocal total variation regularization. Magn Reson Med. 2011; 65(5):1384–92.PubMedCrossRef
30.
go back to reference Wong A, Mishra A, Fieguth P, Clausi DA. Sparse reconstruction of breast mri using homotopic minimization in a regional sparsified domain. Biomed Eng IEEE Trans. 2013; 60(3):743–52.CrossRef Wong A, Mishra A, Fieguth P, Clausi DA. Sparse reconstruction of breast mri using homotopic minimization in a regional sparsified domain. Biomed Eng IEEE Trans. 2013; 60(3):743–52.CrossRef
31.
go back to reference Akçakaya M, Basha TA, Goddu B, Goepfert LA, Kissinger KV, Tarokh V, Manning WJ, Nezafat R. Low-dimensional-structure self-learning and thresholding: Regularization beyond compressed sensing for mri reconstruction. Magn Reson Med. 2011; 66(3):756–67.PubMedPubMedCentralCrossRef Akçakaya M, Basha TA, Goddu B, Goepfert LA, Kissinger KV, Tarokh V, Manning WJ, Nezafat R. Low-dimensional-structure self-learning and thresholding: Regularization beyond compressed sensing for mri reconstruction. Magn Reson Med. 2011; 66(3):756–67.PubMedPubMedCentralCrossRef
32.
go back to reference Qu X, Hou Y, Lam F, Guo D, Zhong J, Chen Z. Magnetic resonance image reconstruction from undersampled measurements using a patch-based nonlocal operator. Med Image Anal. 2014; 18(6):843–56.PubMedCrossRef Qu X, Hou Y, Lam F, Guo D, Zhong J, Chen Z. Magnetic resonance image reconstruction from undersampled measurements using a patch-based nonlocal operator. Med Image Anal. 2014; 18(6):843–56.PubMedCrossRef
33.
go back to reference Ma S, Yin W, Zhang Y, Chakraborty A. An efficient algorithm for compressed mr imaging using total variation and wavelets. In: Computer Vision and Pattern Recognition, 2008. CVPR 2008. IEEE Conference On. Anchorage, AK: IEEE: 2008. p. 1–8. Ma S, Yin W, Zhang Y, Chakraborty A. An efficient algorithm for compressed mr imaging using total variation and wavelets. In: Computer Vision and Pattern Recognition, 2008. CVPR 2008. IEEE Conference On. Anchorage, AK: IEEE: 2008. p. 1–8.
34.
go back to reference Chen C, Huang J. Compressive sensing mri with wavelet tree sparsity. In: Advances in Neural Information Processing Systems. Beijing: IEEE: 2012. p. 1115–1123. Chen C, Huang J. Compressive sensing mri with wavelet tree sparsity. In: Advances in Neural Information Processing Systems. Beijing: IEEE: 2012. p. 1115–1123.
36.
go back to reference Qu X, Guo D, Ning B, Hou Y, Lin Y, Cai S, Chen Z. Undersampled mri reconstruction with patch-based directional wavelets. Magn Reson Imaging. 2012; 30(7):964–77.PubMedCrossRef Qu X, Guo D, Ning B, Hou Y, Lin Y, Cai S, Chen Z. Undersampled mri reconstruction with patch-based directional wavelets. Magn Reson Imaging. 2012; 30(7):964–77.PubMedCrossRef
37.
go back to reference Ning B, Qu X, Guo D, Hu C, Chen Z. Magnetic resonance image reconstruction using trained geometric directions in 2d redundant wavelets domain and non-convex optimization. Magn Reson Imaging. 2013; 31(9):1611–22.PubMedCrossRef Ning B, Qu X, Guo D, Hu C, Chen Z. Magnetic resonance image reconstruction using trained geometric directions in 2d redundant wavelets domain and non-convex optimization. Magn Reson Imaging. 2013; 31(9):1611–22.PubMedCrossRef
38.
go back to reference Yang J, Zhang Y, Yin W. A fast alternating direction method for tvl1-l2 signal reconstruction from partial fourier data. Selected Topics Signal Process IEEE J. 2010; 4(2):288–97.CrossRef Yang J, Zhang Y, Yin W. A fast alternating direction method for tvl1-l2 signal reconstruction from partial fourier data. Selected Topics Signal Process IEEE J. 2010; 4(2):288–97.CrossRef
39.
go back to reference Haldar J. Low-rank modeling of local k-space neighborhoods (loraks) for constrained mri. Med Imaging IEEE Trans. 2014; 33(3):668–81.CrossRef Haldar J. Low-rank modeling of local k-space neighborhoods (loraks) for constrained mri. Med Imaging IEEE Trans. 2014; 33(3):668–81.CrossRef
40.
go back to reference Zhao F, Noll DC, Nielsen JF, Fessler JA. Separate magnitude and phase regularization via compressed sensing. Med Imaging IEEE Trans. 2012; 31(9):1713–23.CrossRef Zhao F, Noll DC, Nielsen JF, Fessler JA. Separate magnitude and phase regularization via compressed sensing. Med Imaging IEEE Trans. 2012; 31(9):1713–23.CrossRef
41.
go back to reference Shin PJ, Larson PE, Ohliger MA, Elad M, Pauly JM, Vigneron DB, Lustig M. Calibrationless parallel imaging reconstruction based on structured low-rank matrix completion. Magn Reson Med. 2013; 72(4):959–70.PubMedPubMedCentralCrossRef Shin PJ, Larson PE, Ohliger MA, Elad M, Pauly JM, Vigneron DB, Lustig M. Calibrationless parallel imaging reconstruction based on structured low-rank matrix completion. Magn Reson Med. 2013; 72(4):959–70.PubMedPubMedCentralCrossRef
42.
go back to reference Lam F, Zhao B, Liu Y, Liang ZP, Weiner M, Schuff N. Accelerated fmri using low-rank model and sparsity constraints. In: Proc. Int. Soc. Magn. Reson. Med. Salt Lake City. p. 2013. Lam F, Zhao B, Liu Y, Liang ZP, Weiner M, Schuff N. Accelerated fmri using low-rank model and sparsity constraints. In: Proc. Int. Soc. Magn. Reson. Med. Salt Lake City. p. 2013.
43.
go back to reference Haldar J. Calibrationless partial fourier reconstruction of mr images with slowly-varying phase: A rank-deficient matrix recovery approach. In: Proc. ISMRM Workshop on Data Sampling & Image Reconstruction. Sedona. p. 2013. Haldar J. Calibrationless partial fourier reconstruction of mr images with slowly-varying phase: A rank-deficient matrix recovery approach. In: Proc. ISMRM Workshop on Data Sampling & Image Reconstruction. Sedona. p. 2013.
44.
go back to reference Jain P, Netrapalli P, Sanghavi S. Low-rank matrix completion using alternating minimization. In: Proceedings of the Forty-fifth Annual ACM Symposium on Theory of Computing. ACM. p. 2013. arXiv:1212.0467v1. Jain P, Netrapalli P, Sanghavi S. Low-rank matrix completion using alternating minimization. In: Proceedings of the Forty-fifth Annual ACM Symposium on Theory of Computing. ACM. p. 2013. arXiv:1212.0467v1.
45.
go back to reference Otazo R, Candès E, Sodickson DK. Low-rank plus sparse matrix decomposition for accelerated dynamic mri with separation of background and dynamic components. Magn Reson Med. 2015; 73(3):1125–36. doi:10.1002/mrm.25240.PubMedCrossRef Otazo R, Candès E, Sodickson DK. Low-rank plus sparse matrix decomposition for accelerated dynamic mri with separation of background and dynamic components. Magn Reson Med. 2015; 73(3):1125–36. doi:10.​1002/​mrm.​25240.PubMedCrossRef
47.
go back to reference Afonso MV, Bioucas-Dias JM, Figueiredo MAT. An augmented lagrangian approach to the constrained optimization formulation of imaging inverse problems. Image Process IEEE Trans. 2011; 20(3):681–95. doi:10.1109/TIP.2010.2076294.CrossRef Afonso MV, Bioucas-Dias JM, Figueiredo MAT. An augmented lagrangian approach to the constrained optimization formulation of imaging inverse problems. Image Process IEEE Trans. 2011; 20(3):681–95. doi:10.​1109/​TIP.​2010.​2076294.CrossRef
48.
go back to reference Yang J, Zhang Y. Alternating direction algorithms for l 1-problems in compressive sensing. SIAM J Sci Comput. 2011; 33(1):250–78.CrossRef Yang J, Zhang Y. Alternating direction algorithms for l 1-problems in compressive sensing. SIAM J Sci Comput. 2011; 33(1):250–78.CrossRef
49.
go back to reference Esser E. Applications of lagrangian-based alternating direction methods and connections to split bregman. CAM Report. 2009; 9:31. Esser E. Applications of lagrangian-based alternating direction methods and connections to split bregman. CAM Report. 2009; 9:31.
50.
go back to reference Afonso MV, Bioucas-Dias JM, Figueiredo MA. Fast image recovery using variable splitting and constrained optimization. Image Process IEEE Trans. 2010; 19(9):2345–56.CrossRef Afonso MV, Bioucas-Dias JM, Figueiredo MA. Fast image recovery using variable splitting and constrained optimization. Image Process IEEE Trans. 2010; 19(9):2345–56.CrossRef
51.
go back to reference Natarajan BK. Sparse approximate solutions to linear systems. SIAM J Comput. 1995; 24(2):227–34.CrossRef Natarajan BK. Sparse approximate solutions to linear systems. SIAM J Comput. 1995; 24(2):227–34.CrossRef
55.
go back to reference Candes EJ, Donoho DL. Curvelets: A surprisingly effective nonadaptive representation for objects with edges. Technical report, DTIC Document Stanford, Calif: Stanford University; 2000. Candes EJ, Donoho DL. Curvelets: A surprisingly effective nonadaptive representation for objects with edges. Technical report, DTIC Document Stanford, Calif: Stanford University; 2000.
56.
go back to reference Do MN, Vetterli M. The contourlet transform: an efficient directional multiresolution image representation. Image Process IEEE Trans. 2005; 14(12):2091–106.CrossRef Do MN, Vetterli M. The contourlet transform: an efficient directional multiresolution image representation. Image Process IEEE Trans. 2005; 14(12):2091–106.CrossRef
57.
go back to reference Da Cunha AL, Zhou J, Do MN. The nonsubsampled contourlet transform: theory, design, and applications. Image Process IEEE Trans. 2006; 15(10):3089–101.CrossRef Da Cunha AL, Zhou J, Do MN. The nonsubsampled contourlet transform: theory, design, and applications. Image Process IEEE Trans. 2006; 15(10):3089–101.CrossRef
58.
go back to reference Candes EJ, Donoho DL. New tight frames of curvelets and optimal representations of objects with piecewise c2 singularities. Commun Pure Appl Math. 2004; 57(2):219–66.CrossRef Candes EJ, Donoho DL. New tight frames of curvelets and optimal representations of objects with piecewise c2 singularities. Commun Pure Appl Math. 2004; 57(2):219–66.CrossRef
59.
go back to reference Eckstein J, Bertsekas DP. On the Douglas–Rachford splitting method and the proximal point algorithm for maximal monotone operators. Math Program. 1992; 55(1–3):293–318.CrossRef Eckstein J, Bertsekas DP. On the Douglas–Rachford splitting method and the proximal point algorithm for maximal monotone operators. Math Program. 1992; 55(1–3):293–318.CrossRef
60.
go back to reference Chambolle A. An algorithm for total variation minimization and applications. J Math Imaging Vis. 2004; 20(1–2):89–97. Chambolle A. An algorithm for total variation minimization and applications. J Math Imaging Vis. 2004; 20(1–2):89–97.
61.
go back to reference Qu G, Zhang D, Yan P. Information measure for performance of image fusion. Electron Lett. 2002; 38(7):313–5.CrossRef Qu G, Zhang D, Yan P. Information measure for performance of image fusion. Electron Lett. 2002; 38(7):313–5.CrossRef
62.
go back to reference Liang D, Liu B, Wang J, Ying L. Accelerating sense using compressed sensing. Magn Reson Med. 2009; 62(6):1574–1584.PubMedCrossRef Liang D, Liu B, Wang J, Ying L. Accelerating sense using compressed sensing. Magn Reson Med. 2009; 62(6):1574–1584.PubMedCrossRef
Metadata
Title
Local sparsity enhanced compressed sensing magnetic resonance imaging in uniform discrete curvelet domain
Authors
Bingxin Yang
Min Yuan
Yide Ma
Jiuwen Zhang
Kun Zhan
Publication date
01-12-2015
Publisher
BioMed Central
Published in
BMC Medical Imaging / Issue 1/2015
Electronic ISSN: 1471-2342
DOI
https://doi.org/10.1186/s12880-015-0065-0

Other articles of this Issue 1/2015

BMC Medical Imaging 1/2015 Go to the issue