Skip to main content
Top
Published in: Journal of Digital Imaging 2/2013

01-04-2013

UMMPerfusion: an Open Source Software Tool Towards Quantitative MRI Perfusion Analysis in Clinical Routine

Authors: Frank G. Zöllner, Gerald Weisser, Marcel Reich, Sven Kaiser, Stefan O. Schoenberg, Steven P. Sourbron, Lothar R. Schad

Published in: Journal of Imaging Informatics in Medicine | Issue 2/2013

Login to get access

Abstract

To develop a generic Open Source MRI perfusion analysis tool for quantitative parameter mapping to be used in a clinical workflow and methods for quality management of perfusion data. We implemented a classic, pixel-by-pixel deconvolution approach to quantify T1-weighted contrast-enhanced dynamic MR imaging (DCE-MRI) perfusion data as an OsiriX plug-in. It features parallel computing capabilities and an automated reporting scheme for quality management. Furthermore, by our implementation design, it could be easily extendable to other perfusion algorithms. Obtained results are saved as DICOM objects and directly added to the patient study. The plug-in was evaluated on ten MR perfusion data sets of the prostate and a calibration data set by comparing obtained parametric maps (plasma flow, volume of distribution, and mean transit time) to a widely used reference implementation in IDL. For all data, parametric maps could be calculated and the plug-in worked correctly and stable. On average, a deviation of 0.032 ± 0.02 ml/100 ml/min for the plasma flow, 0.004 ± 0.0007 ml/100 ml for the volume of distribution, and 0.037 ± 0.03 s for the mean transit time between our implementation and a reference implementation was observed. By using computer hardware with eight CPU cores, calculation time could be reduced by a factor of 2.5. We developed successfully an Open Source OsiriX plug-in for T1-DCE-MRI perfusion analysis in a routine quality managed clinical environment. Using model-free deconvolution, it allows for perfusion analysis in various clinical applications. By our plug-in, information about measured physiological processes can be obtained and transferred into clinical practice.
Appendix
Available only for authorised users
Literature
1.
go back to reference Thng CH, Koh TS, Collins DJ, Koh DM: Perfusion magnetic resonance imaging of the liver. World J Gastroenterol 16:1598–1609, 2010PubMedCrossRef Thng CH, Koh TS, Collins DJ, Koh DM: Perfusion magnetic resonance imaging of the liver. World J Gastroenterol 16:1598–1609, 2010PubMedCrossRef
2.
go back to reference Scherr MK, Seitz M, Muller-Lisse UG, Ingrisch M, Reiser MF, Muller-Lisse UL: MR-perfusion (MRP) and diffusion-weighted imaging (DWI) in prostate cancer: quantitative and model-based gadobenate dimeglumine MRP parameters in detection of prostate cancer. Eur J Radiol 76:359–366, 2010PubMedCrossRef Scherr MK, Seitz M, Muller-Lisse UG, Ingrisch M, Reiser MF, Muller-Lisse UL: MR-perfusion (MRP) and diffusion-weighted imaging (DWI) in prostate cancer: quantitative and model-based gadobenate dimeglumine MRP parameters in detection of prostate cancer. Eur J Radiol 76:359–366, 2010PubMedCrossRef
3.
go back to reference Attenberger UI, et al: Comprehensive MR evaluation of renal disease: added clinical value of quantified renal perfusion values over single MR angiography. J Magn Reson Imaging 31:125–133, 2010PubMedCrossRef Attenberger UI, et al: Comprehensive MR evaluation of renal disease: added clinical value of quantified renal perfusion values over single MR angiography. J Magn Reson Imaging 31:125–133, 2010PubMedCrossRef
4.
go back to reference Bokacheva L, Rusinek H, Zhang JL, Lee VS: Assessment of renal function with dynamic contrast-enhanced MR imaging. Magn Reson Imaging Clin N Am 16:597–611, 2008. viiiPubMedCrossRef Bokacheva L, Rusinek H, Zhang JL, Lee VS: Assessment of renal function with dynamic contrast-enhanced MR imaging. Magn Reson Imaging Clin N Am 16:597–611, 2008. viiiPubMedCrossRef
5.
go back to reference Sourbron S: Compartmental modelling for magnetic resonance renography. Z Med Phys 20:101–114, 2010PubMedCrossRef Sourbron S: Compartmental modelling for magnetic resonance renography. Z Med Phys 20:101–114, 2010PubMedCrossRef
6.
go back to reference Sourbron SP, Buckley DL: Tracer kinetic modelling in MRI: estimating perfusion and capillary permeability. Phys Med Biol 57:R1–R33, 2012PubMedCrossRef Sourbron SP, Buckley DL: Tracer kinetic modelling in MRI: estimating perfusion and capillary permeability. Phys Med Biol 57:R1–R33, 2012PubMedCrossRef
7.
go back to reference Thompson G, Mills SJ, Stivaros SM, Jackson A: Imaging of brain tumors: perfusion/permeability. Neuroimaging Clin N Am 20:337–353, 2010PubMedCrossRef Thompson G, Mills SJ, Stivaros SM, Jackson A: Imaging of brain tumors: perfusion/permeability. Neuroimaging Clin N Am 20:337–353, 2010PubMedCrossRef
8.
go back to reference Tofts PS, et al: Estimating kinetic parameters from dynamic contrast-enhanced T(1)-weighted MRI of a diffusable tracer: standardized quantities and symbols. J Magn Reson Imaging 10:223–232, 1999PubMedCrossRef Tofts PS, et al: Estimating kinetic parameters from dynamic contrast-enhanced T(1)-weighted MRI of a diffusable tracer: standardized quantities and symbols. J Magn Reson Imaging 10:223–232, 1999PubMedCrossRef
9.
go back to reference Ostergaard L: Principles of cerebral perfusion imaging by bolus tracking. J Magn Reson Imaging 22:710–717, 2005PubMedCrossRef Ostergaard L: Principles of cerebral perfusion imaging by bolus tracking. J Magn Reson Imaging 22:710–717, 2005PubMedCrossRef
10.
go back to reference Buckley DL, Shurrab AAE, Cheung CM, Jones AP, Mamtora H, Kalra PA: Measurement of single kidney function using dynamic contrast-enhanced MRI: comparison of two models in human subjects. J Magn Reson Imaging 24:1117–1123, 2006PubMedCrossRef Buckley DL, Shurrab AAE, Cheung CM, Jones AP, Mamtora H, Kalra PA: Measurement of single kidney function using dynamic contrast-enhanced MRI: comparison of two models in human subjects. J Magn Reson Imaging 24:1117–1123, 2006PubMedCrossRef
11.
go back to reference Attenberger U, et al.: Clinical Value of MR-Based Quantification of Renal Perfusion Parameters with a Separable Two-Compartment Model. Proceedings 16th Scientific Meeting, International Society for Magnetic Resonance in Medicine, Toronto:3680, 2008 Attenberger U, et al.: Clinical Value of MR-Based Quantification of Renal Perfusion Parameters with a Separable Two-Compartment Model. Proceedings 16th Scientific Meeting, International Society for Magnetic Resonance in Medicine, Toronto:3680, 2008
12.
go back to reference Miller WL, Hodge DO, Tointon SK, Rodeheffer RJ, Nelson SM, Gibbons RJ: Relationship of myocardial perfusion imaging findings to outcome of patients with heart failure and suspected ischemic heart disease. Am Heart J 147:714–720, 2004PubMedCrossRef Miller WL, Hodge DO, Tointon SK, Rodeheffer RJ, Nelson SM, Gibbons RJ: Relationship of myocardial perfusion imaging findings to outcome of patients with heart failure and suspected ischemic heart disease. Am Heart J 147:714–720, 2004PubMedCrossRef
13.
go back to reference Futterer JJ, et al: Prostate cancer: local staging at 3-T endorectal MR imaging–early experience. Radiology 238:184–191, 2006PubMedCrossRef Futterer JJ, et al: Prostate cancer: local staging at 3-T endorectal MR imaging–early experience. Radiology 238:184–191, 2006PubMedCrossRef
14.
go back to reference Futterer JJ, et al: Prostate cancer localization with dynamic contrast-enhanced MR imaging and proton MR spectroscopic imaging. Radiology 241:449–458, 2006PubMedCrossRef Futterer JJ, et al: Prostate cancer localization with dynamic contrast-enhanced MR imaging and proton MR spectroscopic imaging. Radiology 241:449–458, 2006PubMedCrossRef
15.
go back to reference Litjens GJS, Vos PC, Barentsz JO, Karssemeijer N, Huisman HJ: Automatic computer aided detection of abnormalities in multi-parametric prostate MRI. SPIE, Orlando, 2011 Litjens GJS, Vos PC, Barentsz JO, Karssemeijer N, Huisman HJ: Automatic computer aided detection of abnormalities in multi-parametric prostate MRI. SPIE, Orlando, 2011
16.
go back to reference Weidner AM, et al: Value of multiparametric prostate MRI of the peripheral zone. Z Med Phys 21:198–205, 2011PubMedCrossRef Weidner AM, et al: Value of multiparametric prostate MRI of the peripheral zone. Z Med Phys 21:198–205, 2011PubMedCrossRef
18.
go back to reference Grenier N, et al: Measurement of glomerular filtration rate with magnetic resonance imaging: principles, limitations, and expectations. Semin Nucl Med 38:47–55, 2008PubMedCrossRef Grenier N, et al: Measurement of glomerular filtration rate with magnetic resonance imaging: principles, limitations, and expectations. Semin Nucl Med 38:47–55, 2008PubMedCrossRef
20.
go back to reference Cutajar M, Mendichovszky IA, Tofts PS, Gordon I: The importance of AIF ROI selection in DCE-MRI renography: reproducibility and variability of renal perfusion and filtration. Eur J Radiol 74:e154–e160, 2010PubMedCrossRef Cutajar M, Mendichovszky IA, Tofts PS, Gordon I: The importance of AIF ROI selection in DCE-MRI renography: reproducibility and variability of renal perfusion and filtration. Eur J Radiol 74:e154–e160, 2010PubMedCrossRef
21.
go back to reference Zöllner FG, et al: Assessment of 3D DCE-MRI of the kidneys using non-rigid image registration and segmentation of voxel time courses. Comput Med Imaging Graph 33:171–181, 2009PubMedCrossRef Zöllner FG, et al: Assessment of 3D DCE-MRI of the kidneys using non-rigid image registration and segmentation of voxel time courses. Comput Med Imaging Graph 33:171–181, 2009PubMedCrossRef
22.
go back to reference Lietzmann F, Zöllner FG, Michaely HJ, Schad LR: Untersuchung von selbstnavigierenden MR-Sequenzen für die Perfusionsbildgebung der Nieren. Z Med Phys 20:124–133, 2010PubMedCrossRef Lietzmann F, Zöllner FG, Michaely HJ, Schad LR: Untersuchung von selbstnavigierenden MR-Sequenzen für die Perfusionsbildgebung der Nieren. Z Med Phys 20:124–133, 2010PubMedCrossRef
23.
go back to reference Kosior JC, Frayne R: PerfTool: a software platform for investigating bolus-tracking perfusion imaging quantification strategies. J Magn Reson Imaging 25:653–659, 2007PubMedCrossRef Kosior JC, Frayne R: PerfTool: a software platform for investigating bolus-tracking perfusion imaging quantification strategies. J Magn Reson Imaging 25:653–659, 2007PubMedCrossRef
24.
go back to reference Sourbron S, Biffar A, Ingrisch M, Fierens Y, Luypaert R: PMI: platform for research in medical imaging. Magn Reson Mater Phy 22:539, 2009 Sourbron S, Biffar A, Ingrisch M, Fierens Y, Luypaert R: PMI: platform for research in medical imaging. Magn Reson Mater Phy 22:539, 2009
25.
go back to reference Wittsack HJ, Ritzl A, Modder U: User friendly analysis of MR investigations of the cerebral perfusion: Windows(R)-based image processing. Rofo 174:742–746, 2002PubMedCrossRef Wittsack HJ, Ritzl A, Modder U: User friendly analysis of MR investigations of the cerebral perfusion: Windows(R)-based image processing. Rofo 174:742–746, 2002PubMedCrossRef
26.
go back to reference Ferl GZ: DATforDCEMRI: an R package for deconvolution analysis and visualization of DCE-MRI data. J Stat Softw 44:1–18, 2011 Ferl GZ: DATforDCEMRI: an R package for deconvolution analysis and visualization of DCE-MRI data. J Stat Softw 44:1–18, 2011
27.
go back to reference Whitcher B, Schmid VJ: Quantitative analysis of dynamic contrast-enhanced and diffusion-weighted magnetic resonance imaging for oncology in R. J Stat Softw 44:1–29, 2011 Whitcher B, Schmid VJ: Quantitative analysis of dynamic contrast-enhanced and diffusion-weighted magnetic resonance imaging for oncology in R. J Stat Softw 44:1–29, 2011
28.
go back to reference Puech P, Betrouni N, Makni N, Dewalle AS, Villers A, Lemaitre L: Computer-assisted diagnosis of prostate cancer using DCE-MRI data: design, implementation and preliminary results. Int J Comput Assist Radiol Surg 4:1–10, 2009PubMedCrossRef Puech P, Betrouni N, Makni N, Dewalle AS, Villers A, Lemaitre L: Computer-assisted diagnosis of prostate cancer using DCE-MRI data: design, implementation and preliminary results. Int J Comput Assist Radiol Surg 4:1–10, 2009PubMedCrossRef
29.
go back to reference Caban JJ, Joshi A, Nagy P: Rapid development of medical imaging tools with open-source libraries. J Digit Imaging 20(Suppl 1):83–93, 2007PubMedCrossRef Caban JJ, Joshi A, Nagy P: Rapid development of medical imaging tools with open-source libraries. J Digit Imaging 20(Suppl 1):83–93, 2007PubMedCrossRef
30.
go back to reference Sourbron S, Dujardin M, Makkat S, Luypaert R: Pixel-by-pixel deconvolution of bolus-tracking data: optimization and implementation. Phys Med Biol 52:429–447, 2007PubMedCrossRef Sourbron S, Dujardin M, Makkat S, Luypaert R: Pixel-by-pixel deconvolution of bolus-tracking data: optimization and implementation. Phys Med Biol 52:429–447, 2007PubMedCrossRef
31.
go back to reference Østergaard L, Weisskoff RM, Chesler DA, Gyldensted C, Rosen BR: High resolution measurement of cerebral blood flow using intravascular tracer bolus passages. Part I: mathematical approach and statistical analysis. Magn Reson Med 36:715–725, 1996PubMedCrossRef Østergaard L, Weisskoff RM, Chesler DA, Gyldensted C, Rosen BR: High resolution measurement of cerebral blood flow using intravascular tracer bolus passages. Part I: mathematical approach and statistical analysis. Magn Reson Med 36:715–725, 1996PubMedCrossRef
32.
go back to reference Sourbron S, Luypaert R, Morhard D, Seelos K, Reiser M, Peller M: Deconvolution of bolus-tracking data: a comparison of discretization methods. Phys Med Biol 52:6761–6778, 2007PubMedCrossRef Sourbron S, Luypaert R, Morhard D, Seelos K, Reiser M, Peller M: Deconvolution of bolus-tracking data: a comparison of discretization methods. Phys Med Biol 52:6761–6778, 2007PubMedCrossRef
33.
go back to reference Rosset A, Spadola L, Ratib O: OsiriX: an open-source software for navigating in multidimensional DICOM images. J Digit Imaging 17:205–216, 2004PubMedCrossRef Rosset A, Spadola L, Ratib O: OsiriX: an open-source software for navigating in multidimensional DICOM images. J Digit Imaging 17:205–216, 2004PubMedCrossRef
34.
go back to reference Jalbert F, Paoli JR: Osirix: free and open-source software for medical imagery. Rev Stomatol Chir 109:53–55, 2008CrossRef Jalbert F, Paoli JR: Osirix: free and open-source software for medical imagery. Rev Stomatol Chir 109:53–55, 2008CrossRef
35.
go back to reference Rosset A, Spadola L, Pysher L, Ratib O: Informatics in radiology (infoRAD)—navigating the fifth dimension: innovative interface for multidimensional multimodality image navigation. Radiographics 26:299–308, 2006PubMedCrossRef Rosset A, Spadola L, Pysher L, Ratib O: Informatics in radiology (infoRAD)—navigating the fifth dimension: innovative interface for multidimensional multimodality image navigation. Radiographics 26:299–308, 2006PubMedCrossRef
37.
go back to reference Ratib O, Rosset A, Heuberger J: Open Source software and social networks: disruptive alternatives for medical imaging. Eur J Radiol 78:259–265, 2011PubMedCrossRef Ratib O, Rosset A, Heuberger J: Open Source software and social networks: disruptive alternatives for medical imaging. Eur J Radiol 78:259–265, 2011PubMedCrossRef
38.
go back to reference Vetter S: Optimising an OsiriX Plug-in for Perfusion Analysis of MR Images Applied University Mannheim, Faculty of Computer Science, Bachelor of Science, Bachelor’s Thesis (24.9.2010 2010) Vetter S: Optimising an OsiriX Plug-in for Perfusion Analysis of MR Images Applied University Mannheim, Faculty of Computer Science, Bachelor of Science, Bachelor’s Thesis (24.9.2010 2010)
40.
go back to reference Weidenhagen R, Meirnarakis G, Jauch KW, Becker CR, Kopp R: OsiriX. An open-source solution for planning aorta stent grafts. Gefässchirurgie 13:278–290, 2008CrossRef Weidenhagen R, Meirnarakis G, Jauch KW, Becker CR, Kopp R: OsiriX. An open-source solution for planning aorta stent grafts. Gefässchirurgie 13:278–290, 2008CrossRef
41.
go back to reference Yamauchi T, et al: Efficacy and reliability of highly functional open source DICOM software (OsiriX) in spine surgery. J Clin Neurosci 17:756–759, 2010PubMedCrossRef Yamauchi T, et al: Efficacy and reliability of highly functional open source DICOM software (OsiriX) in spine surgery. J Clin Neurosci 17:756–759, 2010PubMedCrossRef
42.
go back to reference Calamante F, Gadian DG, Connelly A: Quantification of perfusion using bolus tracking magnetic resonance imaging in stroke: assumptions, limitations, and potential implications for clinical use. Stroke 33:1146–1151, 2002PubMedCrossRef Calamante F, Gadian DG, Connelly A: Quantification of perfusion using bolus tracking magnetic resonance imaging in stroke: assumptions, limitations, and potential implications for clinical use. Stroke 33:1146–1151, 2002PubMedCrossRef
43.
go back to reference Jerosch-Herold M, Seethamraju RT, Swingen CM, Wilke NM, Stillman AE: Analysis of myocardial perfusion MRI. J Magn Reson Imaging 19:758–770, 2004PubMedCrossRef Jerosch-Herold M, Seethamraju RT, Swingen CM, Wilke NM, Stillman AE: Analysis of myocardial perfusion MRI. J Magn Reson Imaging 19:758–770, 2004PubMedCrossRef
44.
go back to reference Ali B, Hsiao E, Di Carli MF: Combined anatomic and perfusion imaging of the heart. Curr Cardiol Rep 12:90–97, 2010PubMedCrossRef Ali B, Hsiao E, Di Carli MF: Combined anatomic and perfusion imaging of the heart. Curr Cardiol Rep 12:90–97, 2010PubMedCrossRef
45.
go back to reference Ohno Y, et al: Primary pulmonary hypertension: 3D dynamic perfusion MRI for quantitative analysis of regional pulmonary perfusion. AJR Am J Roentgenol 188:48–56, 2007PubMedCrossRef Ohno Y, et al: Primary pulmonary hypertension: 3D dynamic perfusion MRI for quantitative analysis of regional pulmonary perfusion. AJR Am J Roentgenol 188:48–56, 2007PubMedCrossRef
46.
go back to reference Zöllner FG, Zahn K, Schaible T, Schoenberg SO, Schad LR, Neff KW: Quantitative pulmonary perfusion imaging at 3.0 T of 2-year-old children after congenital diaphragmatic hernia repair: initial results. Eur Radiol, 2012. doi:10.1007/s00330-012-2528-9 Zöllner FG, Zahn K, Schaible T, Schoenberg SO, Schad LR, Neff KW: Quantitative pulmonary perfusion imaging at 3.0 T of 2-year-old children after congenital diaphragmatic hernia repair: initial results. Eur Radiol, 2012. doi:10.​1007/​s00330-012-2528-9
47.
go back to reference Makkat S, Luypaert R, Sourbron S, Stadnik T, De Mey J: Quantification of perfusion and permeability in breast tumors with a deconvolution-based analysis of second-bolus T1-DCE data. J Magn Reson Imaging 25:1159–1167, 2007PubMedCrossRef Makkat S, Luypaert R, Sourbron S, Stadnik T, De Mey J: Quantification of perfusion and permeability in breast tumors with a deconvolution-based analysis of second-bolus T1-DCE data. J Magn Reson Imaging 25:1159–1167, 2007PubMedCrossRef
48.
go back to reference Aumann S, et al: Quantification of renal perfusion using an intravascular contrast agent (part 1): results in a canine model. Magn Reson Med 49:276–287, 2003PubMedCrossRef Aumann S, et al: Quantification of renal perfusion using an intravascular contrast agent (part 1): results in a canine model. Magn Reson Med 49:276–287, 2003PubMedCrossRef
49.
go back to reference Eastwood JD, et al: CT perfusion scanning with deconvolution analysis: pilot study in patients with acute middle cerebral artery stroke. Radiology 222:227–236, 2002PubMedCrossRef Eastwood JD, et al: CT perfusion scanning with deconvolution analysis: pilot study in patients with acute middle cerebral artery stroke. Radiology 222:227–236, 2002PubMedCrossRef
50.
go back to reference Bisdas S, et al: A comparison of tumour perfusion assessed by deconvolution-based analysis of dynamic contrast-enhanced CT and MR imaging in patients with squamous cell carcinoma of the upper aerodigestive tract. Eur Radiol 18:843–850, 2008PubMedCrossRef Bisdas S, et al: A comparison of tumour perfusion assessed by deconvolution-based analysis of dynamic contrast-enhanced CT and MR imaging in patients with squamous cell carcinoma of the upper aerodigestive tract. Eur Radiol 18:843–850, 2008PubMedCrossRef
51.
go back to reference Sourbron S, Ingrisch M, Siefert A, Reiser M, Herrmann K: Quantification of cerebral blood flow, cerebral blood volume, and blood–brain-barrier leakage with DCE-MRI. Magn Reson Med 62:205–217, 2009PubMedCrossRef Sourbron S, Ingrisch M, Siefert A, Reiser M, Herrmann K: Quantification of cerebral blood flow, cerebral blood volume, and blood–brain-barrier leakage with DCE-MRI. Magn Reson Med 62:205–217, 2009PubMedCrossRef
52.
go back to reference Padhani AR: Dynamic contrast-enhanced MRI in clinical oncology: current status and future directions. J Magn Reson Imaging 16:407–422, 2002PubMedCrossRef Padhani AR: Dynamic contrast-enhanced MRI in clinical oncology: current status and future directions. J Magn Reson Imaging 16:407–422, 2002PubMedCrossRef
53.
go back to reference Lietzmann F, Zöllner FG, Attenberger UI, Haneder S, Michaely HJ, Schad LR: DCE-MRI of the human kidney using BLADE: a feasibility study in healthy volunteers. J Magn Reson Imaging 35:868–874, 2011PubMedCrossRef Lietzmann F, Zöllner FG, Attenberger UI, Haneder S, Michaely HJ, Schad LR: DCE-MRI of the human kidney using BLADE: a feasibility study in healthy volunteers. J Magn Reson Imaging 35:868–874, 2011PubMedCrossRef
54.
go back to reference Hansen PC: Rank-Deficient and Discrete Ill-Posed Problems: Numerical Aspects of Linear Inversion. SIAM, Philadelphia, 1998CrossRef Hansen PC: Rank-Deficient and Discrete Ill-Posed Problems: Numerical Aspects of Linear Inversion. SIAM, Philadelphia, 1998CrossRef
Metadata
Title
UMMPerfusion: an Open Source Software Tool Towards Quantitative MRI Perfusion Analysis in Clinical Routine
Authors
Frank G. Zöllner
Gerald Weisser
Marcel Reich
Sven Kaiser
Stefan O. Schoenberg
Steven P. Sourbron
Lothar R. Schad
Publication date
01-04-2013
Publisher
Springer-Verlag
Published in
Journal of Imaging Informatics in Medicine / Issue 2/2013
Print ISSN: 2948-2925
Electronic ISSN: 2948-2933
DOI
https://doi.org/10.1007/s10278-012-9510-6

Other articles of this Issue 2/2013

Journal of Digital Imaging 2/2013 Go to the issue