Skip to main content
Top
Published in: BMC Infectious Diseases 1/2021

Open Access 01-12-2021 | Fosfomycin | Research article

Optimal empiric treatment for KPC-2-producing Klebsiella pneumoniae infections in critically ill patients with normal or decreased renal function using Monte Carlo simulation

Authors: Guoan Wang, Wei Yu, Yushan Cui, Qingyi Shi, Chen Huang, Yonghong Xiao

Published in: BMC Infectious Diseases | Issue 1/2021

Login to get access

Abstract

Background

Limited clinical studies describe the pharmacodynamics of fosfomycin (FOS), tigecycline (TGC) and colistin methanesulfonate (CMS) in combination against KPC-producing Klebsiella pneumoniae (KPC-Kp). Population pharmacokinetic models were used in our study. Monte Carlo simulation was conducted to calculate probability of target attainment (PTA) and cumulative fraction of response (CFR) of each agent alone and in combination against KPC-Kp in patients with normal or decreased renal function.

Results

The simulated regimen of FOS 6 g q8h reached ≥90% PTA against a MIC of 64 mg/L in patients with normal renal function. For patients with renal impairment, FOS 4 g q8h could provide sufficient antimicrobial coverage against a MIC of 128 mg/L. And increasing the daily dose could result to the cut-off value to 256 mg/L in decreased renal function. For TGC, conventional dosing regimens failed to reach 90% PTA against a MIC of 2 mg/L. Higher loading and daily doses (TGC 200/400 mg loading doses followed by 100 mg q12h/200 mg q24h) were needed. For CMS, none achieved 90% PTA against a MIC of 2 mg/L in normal renal function. Against KPC-Kp, the regimens of 200/400 mg loading dose followed by 100 q12h /200 mg q24h achieved > 80% CFRs regardless of renal function, followed by CMS 9 million IU loading dose followed by 4.5/3 million IU q12h in combination with FOS 8 g q8h (CFR 75–91%).

Conclusions

The use of a loading dose and high daily dose of TGC and CMS in combination with FOS can provide sufficient antimicrobial coverage against critically ill patients infected with KPC-Kp.
Appendix
Available only for authorised users
Literature
1.
go back to reference Gajdacs M, Albericio F. Antibiotic resistance: from the bench to patients. Antibiotics. 2019;8 (3):129. Gajdacs M, Albericio F. Antibiotic resistance: from the bench to patients. Antibiotics. 2019;8 (3):129.
2.
go back to reference Shaowei Z, Ping LI, Zhang Z, Zhengliang PH. CHINET surveilance of carbapenem-resistant gram-negative bacteria in China from 2005 to 2017. J Clin Emerg (China). 2019;20(01):45–9. Shaowei Z, Ping LI, Zhang Z, Zhengliang PH. CHINET surveilance of carbapenem-resistant gram-negative bacteria in China from 2005 to 2017. J Clin Emerg (China). 2019;20(01):45–9.
3.
go back to reference Hu F, Guo Y, Zhu D, Wang F, Jiang X, Fu Y, et al. CHINET surveillance of bacterial resistance in China: 2018 report. Chin J Infect Chemother. 2020;20(1):1–10. Hu F, Guo Y, Zhu D, Wang F, Jiang X, Fu Y, et al. CHINET surveillance of bacterial resistance in China: 2018 report. Chin J Infect Chemother. 2020;20(1):1–10.
5.
go back to reference Gajdacs M, Batori Z, Abrok M, Lazar A, Burian K. Characterization of resistance in gram-negative urinary isolates using existing and novel indicators of clinical relevance: a 10-year data analysis. Life. 2020;10(2):16. Gajdacs M, Batori Z, Abrok M, Lazar A, Burian K. Characterization of resistance in gram-negative urinary isolates using existing and novel indicators of clinical relevance: a 10-year data analysis. Life. 2020;10(2):16.
8.
go back to reference Gajdacs M. The concept of an ideal antibiotic: implications for drug design. Molecules. 2019;24(5):892. Gajdacs M. The concept of an ideal antibiotic: implications for drug design. Molecules. 2019;24(5):892.
10.
go back to reference Wang Q, Wang X, Wang J, Ouyang P, Jin C, Wang R, et al. Phenotypic and Genotypic Characterization of Carbapenem-resistant Enterobacteriaceae: Data From a Longitudinal Large-scale CRE Study in China (2012–2016). Clin Infect Dis. 2018;67(suppl_2):S196–205.CrossRef Wang Q, Wang X, Wang J, Ouyang P, Jin C, Wang R, et al. Phenotypic and Genotypic Characterization of Carbapenem-resistant Enterobacteriaceae: Data From a Longitudinal Large-scale CRE Study in China (2012–2016). Clin Infect Dis. 2018;67(suppl_2):S196–205.CrossRef
16.
go back to reference Tumbarello M, Viale P, Viscoli C, Trecarichi EM, Tumietto F, Marchese A, et al. Predictors of mortality in bloodstream infections caused by Klebsiella pneumoniae carbapenemase-producing K. pneumoniae: importance of combination therapy. Clin Infect Dis. 2012;55(7):943–50. https://doi.org/10.1093/cid/cis588.CrossRefPubMed Tumbarello M, Viale P, Viscoli C, Trecarichi EM, Tumietto F, Marchese A, et al. Predictors of mortality in bloodstream infections caused by Klebsiella pneumoniae carbapenemase-producing K. pneumoniae: importance of combination therapy. Clin Infect Dis. 2012;55(7):943–50. https://​doi.​org/​10.​1093/​cid/​cis588.CrossRefPubMed
17.
go back to reference Tsuji BT, Pogue JM, Zavascki AP, Paul M, Daikos GL, Forrest A, et al. International Consensus Guidelines for the Optimal Use of the Polymyxins: Endorsed by the American College of Clinical Pharmacy (ACCP), European Society of Clinical Microbiology and Infectious Diseases (ESCMID), Infectious Diseases Society of America (IDSA), International Society for Anti-infective Pharmacology (ISAP), Society of Critical Care Medicine (SCCM), and Society of Infectious Diseases Pharmacists (SIDP). Pharmacotherapy. 2019;39(1):10–39.CrossRef Tsuji BT, Pogue JM, Zavascki AP, Paul M, Daikos GL, Forrest A, et al. International Consensus Guidelines for the Optimal Use of the Polymyxins: Endorsed by the American College of Clinical Pharmacy (ACCP), European Society of Clinical Microbiology and Infectious Diseases (ESCMID), Infectious Diseases Society of America (IDSA), International Society for Anti-infective Pharmacology (ISAP), Society of Critical Care Medicine (SCCM), and Society of Infectious Diseases Pharmacists (SIDP). Pharmacotherapy. 2019;39(1):10–39.CrossRef
21.
go back to reference Clinical and Laboratory Standards Institute. Performance standards for antimicrobial susceptibility testing. 26th informational supplement. 2016 Available from: http://www.clsiorg/ Accessed Jan 2016. Clinical and Laboratory Standards Institute. Performance standards for antimicrobial susceptibility testing. 26th informational supplement. 2016 Available from: http://​www.​clsiorg/​ Accessed Jan 2016.
22.
go back to reference Hong-li W, Yan-bai H, Tao C, Yi-ming H. A body shape index constructed and its association with blood pressure among Chinese adults. Chin J Public Health. 2020;36(04):588–91. Hong-li W, Yan-bai H, Tao C, Yi-ming H. A body shape index constructed and its association with blood pressure among Chinese adults. Chin J Public Health. 2020;36(04):588–91.
32.
go back to reference Lepak AJ, Zhao M, VanScoy B, Taylor DS, Ellis-Grosse E, Ambrose PG, et al. In vivo pharmacokinetics and pharmacodynamics of ZTI-01 (Fosfomycin for Injection) in the neutropenic murine thigh infection model against Escherichia coli, Klebsiella pneumoniae, and Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2017;61(6):e00476-17. Lepak AJ, Zhao M, VanScoy B, Taylor DS, Ellis-Grosse E, Ambrose PG, et al. In vivo pharmacokinetics and pharmacodynamics of ZTI-01 (Fosfomycin for Injection) in the neutropenic murine thigh infection model against Escherichia coli, Klebsiella pneumoniae, and Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2017;61(6):e00476-17.
34.
go back to reference Mazzei T, Cassetta MI, Fallani S, Arrigucci S, Novelli A. Pharmacokinetic and pharmacodynamic aspects of antimicrobial agents for the treatment of uncomplicated urinary tract infections. Int J Antimicrob Agents. 2006;28(Suppl 1):S35–41.CrossRef Mazzei T, Cassetta MI, Fallani S, Arrigucci S, Novelli A. Pharmacokinetic and pharmacodynamic aspects of antimicrobial agents for the treatment of uncomplicated urinary tract infections. Int J Antimicrob Agents. 2006;28(Suppl 1):S35–41.CrossRef
35.
go back to reference DeRyke CA, Kuti JL, Nicolau DP. Pharmacodynamic target attainment of six beta-lactams and two fluoroquinolones against Pseudomonas aeruginosa, Acinetobacter baumannii, Escherichia coli, and Klebsiella species collected from United States intensive care units in 2004. Pharmacotherapy. 2007;27(3):333–42. https://doi.org/10.1592/phco.27.3.333.CrossRefPubMed DeRyke CA, Kuti JL, Nicolau DP. Pharmacodynamic target attainment of six beta-lactams and two fluoroquinolones against Pseudomonas aeruginosa, Acinetobacter baumannii, Escherichia coli, and Klebsiella species collected from United States intensive care units in 2004. Pharmacotherapy. 2007;27(3):333–42. https://​doi.​org/​10.​1592/​phco.​27.​3.​333.CrossRefPubMed
39.
go back to reference Gajdacs M, Urban E. Resistance trends and epidemiology of citrobacter-enterobacter-serratia in urinary tract infections of inpatients and outpatients (RECESUTI): a 10-year survey. Medicina (Kaunas). 2019;55(6):285. Gajdacs M, Urban E. Resistance trends and epidemiology of citrobacter-enterobacter-serratia in urinary tract infections of inpatients and outpatients (RECESUTI): a 10-year survey. Medicina (Kaunas). 2019;55(6):285.
41.
go back to reference Ambrose PG, Bhavnani SM, Ellis-Grosse EJ, Drusano GL. Pharmacokinetic-pharmacodynamic considerations in the design of hospital-acquired or ventilator-associated bacterial pneumonia studies: look before you leap! Clin Infect Dis. 2010;51(Suppl 1):S103–10. https://doi.org/10.1086/653057.CrossRefPubMed Ambrose PG, Bhavnani SM, Ellis-Grosse EJ, Drusano GL. Pharmacokinetic-pharmacodynamic considerations in the design of hospital-acquired or ventilator-associated bacterial pneumonia studies: look before you leap! Clin Infect Dis. 2010;51(Suppl 1):S103–10. https://​doi.​org/​10.​1086/​653057.CrossRefPubMed
46.
go back to reference Wang C, Hao W, Jin Y, Shen C, Wang B. Pharmacokinetic/pharmacodynamic modeling of seven antimicrobials for empiric treatment of adult bloodstream infections with gram-negative bacteria in China. Microb Drug Resist. 2019;26(12):1559-67. Wang C, Hao W, Jin Y, Shen C, Wang B. Pharmacokinetic/pharmacodynamic modeling of seven antimicrobials for empiric treatment of adult bloodstream infections with gram-negative bacteria in China. Microb Drug Resist. 2019;26(12):1559-67.
47.
go back to reference FDA Drug Safety Communication: FDA warns of increased risk of death with IV antibacterial Tygacil (tigecycline) and approves new Boxed Warning. 2013. https://www.fdagov/Drugs. Accessed 27 Sept 2013. FDA Drug Safety Communication: FDA warns of increased risk of death with IV antibacterial Tygacil (tigecycline) and approves new Boxed Warning. 2013. https://​www.​fdagov/​Drugs. Accessed 27 Sept 2013.
48.
go back to reference Chen Z, Wu J, Zhang Y, Wei J, Leng X, Bi J, et al. Efficacy and safety of tigecycline monotherapy vs imipenem/cilastatin in Chinese patients with complicated intra-abdominal infections: a randomized controlled trial. BMC Infect Dis. 2010;10:217.CrossRef Chen Z, Wu J, Zhang Y, Wei J, Leng X, Bi J, et al. Efficacy and safety of tigecycline monotherapy vs imipenem/cilastatin in Chinese patients with complicated intra-abdominal infections: a randomized controlled trial. BMC Infect Dis. 2010;10:217.CrossRef
55.
go back to reference Garnacho-Montero J, Ortiz-Leyba C, Jimenez-Jimenez FJ, Barrero-Almodovar AE, Garcia-Garmendia JL, Bernabeu-Wittel IM, et al. Treatment of multidrug-resistant Acinetobacter baumannii ventilator-associated pneumonia (VAP) with intravenous colistin: a comparison with imipenem-susceptible VAP. Clin Infect Dis. 2003;36(9):1111–8. https://doi.org/10.1086/374337.CrossRefPubMed Garnacho-Montero J, Ortiz-Leyba C, Jimenez-Jimenez FJ, Barrero-Almodovar AE, Garcia-Garmendia JL, Bernabeu-Wittel IM, et al. Treatment of multidrug-resistant Acinetobacter baumannii ventilator-associated pneumonia (VAP) with intravenous colistin: a comparison with imipenem-susceptible VAP. Clin Infect Dis. 2003;36(9):1111–8. https://​doi.​org/​10.​1086/​374337.CrossRefPubMed
Metadata
Title
Optimal empiric treatment for KPC-2-producing Klebsiella pneumoniae infections in critically ill patients with normal or decreased renal function using Monte Carlo simulation
Authors
Guoan Wang
Wei Yu
Yushan Cui
Qingyi Shi
Chen Huang
Yonghong Xiao
Publication date
01-12-2021
Publisher
BioMed Central
Published in
BMC Infectious Diseases / Issue 1/2021
Electronic ISSN: 1471-2334
DOI
https://doi.org/10.1186/s12879-021-06000-2

Other articles of this Issue 1/2021

BMC Infectious Diseases 1/2021 Go to the issue