Skip to main content
Top
Published in: BMC Infectious Diseases 1/2021

Open Access 01-12-2021 | Research article

Close contact infection dynamics over time: insights from a second large-scale social contact survey in Flanders, Belgium, in 2010-2011

Authors: Thang Van Hoang, Pietro Coletti, Yimer Wasihun Kifle, Kim Van Kerckhove, Sarah Vercruysse, Lander Willem, Philippe Beutels, Niel Hens

Published in: BMC Infectious Diseases | Issue 1/2021

Login to get access

Abstract

Background

In 2010-2011, we conducted a social contact survey in Flanders, Belgium, aimed at improving and extending the design of the first social contact survey conducted in Belgium in 2006. This second social contact survey aimed to enable, for the first time, the estimation of social mixing patterns for an age range of 0 to 99 years and the investigation of whether contact rates remain stable over this 5-year time period.

Methods

Different data mining techniques are used to explore the data, and the age-specific number of social contacts and the age-specific contact rates are modelled using a generalized additive models for location, scale and shape (GAMLSS) model. We compare different matrices using assortativeness measures. The relative change in the basic reproduction number (R0) and the ratio of relative incidences with 95% bootstrap confidence intervals (BCI) are employed to investigate and quantify the impact on epidemic spread due to differences in sex, day of the week, holiday vs. regular periods and changes in mixing patterns over the 5-year time gap between the 2006 and 2010-2011 surveys. Finally, we compare the fit of the contact matrices in 2006 and 2010-2011 to Varicella serological data.

Results

All estimated contact patterns featured strong homophily in age and sex, especially for small children and adolescents. A 30% (95% BCI [17%; 37%]) and 29% (95% BCI [14%; 40%]) reduction in R0 was observed for weekend versus weekdays and for holiday versus regular periods, respectively. Significantly more interactions between people aged 60+ years and their grandchildren were observed on holiday and weekend days than on regular weekdays. Comparing contact patterns using different methods did not show any substantial differences over the 5-year time period under study.

Conclusions

The second social contact survey in Flanders, Belgium, endorses the findings of its 2006 predecessor and adds important information on the social mixing patterns of people older than 60 years of age. Based on this analysis, the mixing patterns of people older than 60 years exhibit considerable heterogeneity, and overall, the comparison of the two surveys shows that social contact rates can be assumed stable in Flanders over a time span of 5 years.
Appendix
Available only for authorised users
Literature
1.
go back to reference Anderson RM, May RM. Infectious Diseases of Humans: Dynamics and Control. Great Clarendon: Oxford University Press; 1992. Anderson RM, May RM. Infectious Diseases of Humans: Dynamics and Control. Great Clarendon: Oxford University Press; 1992.
2.
go back to reference Wallinga J, Teunis P, Kretzschmar M. Using data on social contacts to estimate age-specific transmission parameters for respiratory-spread infectious agents. Am J Epidemiol. 2006; 164(10):936–44.PubMedCrossRef Wallinga J, Teunis P, Kretzschmar M. Using data on social contacts to estimate age-specific transmission parameters for respiratory-spread infectious agents. Am J Epidemiol. 2006; 164(10):936–44.PubMedCrossRef
3.
go back to reference Kretzschmar M, Mikolajczyk RT. Contact profiles in eight European countries and implications for modelling the spread of airborne infectious diseases. PLoS ONE. 2009; 4(6):5931.CrossRef Kretzschmar M, Mikolajczyk RT. Contact profiles in eight European countries and implications for modelling the spread of airborne infectious diseases. PLoS ONE. 2009; 4(6):5931.CrossRef
4.
go back to reference Goeyvaerts N, Hens N, Ogunjimi B, Aerts M, Shkedy Z, Damme PV, Beutels P. Estimating infectious disease parameters from data on social contacts and serological status. J R Stat Soc: Ser C: Appl Stat. 2010; 59(2):255–77.CrossRef Goeyvaerts N, Hens N, Ogunjimi B, Aerts M, Shkedy Z, Damme PV, Beutels P. Estimating infectious disease parameters from data on social contacts and serological status. J R Stat Soc: Ser C: Appl Stat. 2010; 59(2):255–77.CrossRef
5.
go back to reference Willem L, Van Kerckhove K, Chao DL, Hens N, Beutels P. A nice day for an infection? Weather conditions and social contact patterns relevant to influenza transmission. PLoS ONE. 2012; 7(11):48695.CrossRef Willem L, Van Kerckhove K, Chao DL, Hens N, Beutels P. A nice day for an infection? Weather conditions and social contact patterns relevant to influenza transmission. PLoS ONE. 2012; 7(11):48695.CrossRef
6.
go back to reference Van Kerckhove K, Hens N, Edmunds WJ, Eames KT. The impact of illness on social networks: implications for transmission and control of influenza. Am J Epidemiol. 2013; 178(11):1655–62.PubMedPubMedCentralCrossRef Van Kerckhove K, Hens N, Edmunds WJ, Eames KT. The impact of illness on social networks: implications for transmission and control of influenza. Am J Epidemiol. 2013; 178(11):1655–62.PubMedPubMedCentralCrossRef
7.
go back to reference Ewing A, Lee EC, Viboud C, Bansal S. Contact, travel, and transmission: The impact of winter holidays on Influenza dynamics in the United States. J Infect Dis. 2017; 215(5):732–9.PubMed Ewing A, Lee EC, Viboud C, Bansal S. Contact, travel, and transmission: The impact of winter holidays on Influenza dynamics in the United States. J Infect Dis. 2017; 215(5):732–9.PubMed
8.
go back to reference De Luca G, Van Kerckhove K, Coletti P, Poletto C, Bossuyt N, Hens N, Colizza V. The impact of regular school closure on seasonal influenza epidemics: a data-driven spatial transmission model for Belgium. BMC Infect Dis. 2018; 18(1):29.CrossRef De Luca G, Van Kerckhove K, Coletti P, Poletto C, Bossuyt N, Hens N, Colizza V. The impact of regular school closure on seasonal influenza epidemics: a data-driven spatial transmission model for Belgium. BMC Infect Dis. 2018; 18(1):29.CrossRef
9.
go back to reference Mossong J, Hens N, Jit M, Beutels P, Auranen K, Mikolajczyk R, Massari M, Salmaso S, Tomba GS, Wallinga J, et al. Social contacts and mixing patterns relevant to the spread of infectious diseases. PLoS Med. 2008; 5(3):74.CrossRef Mossong J, Hens N, Jit M, Beutels P, Auranen K, Mikolajczyk R, Massari M, Salmaso S, Tomba GS, Wallinga J, et al. Social contacts and mixing patterns relevant to the spread of infectious diseases. PLoS Med. 2008; 5(3):74.CrossRef
10.
go back to reference Hoang T, Coletti P, Melegaro A, Wallinga J, Grijalva CG, Edmunds JW, Beutels P, Hens N. A systematic review of social contact surveys to inform transmission models of close-contact infections. Epidemiology (Cambridge, Mass.) 2019; 30(5):723–36.CrossRef Hoang T, Coletti P, Melegaro A, Wallinga J, Grijalva CG, Edmunds JW, Beutels P, Hens N. A systematic review of social contact surveys to inform transmission models of close-contact infections. Epidemiology (Cambridge, Mass.) 2019; 30(5):723–36.CrossRef
11.
go back to reference Horton KC, Hoey AL, Béraud G, Corbett EL, White RG. Systematic review and meta-analysis of sex differences in social contact patterns and implications for tuberculosis transmission and control. Emerg Infect Dis. 2020; 26(5):910.PubMedPubMedCentralCrossRef Horton KC, Hoey AL, Béraud G, Corbett EL, White RG. Systematic review and meta-analysis of sex differences in social contact patterns and implications for tuberculosis transmission and control. Emerg Infect Dis. 2020; 26(5):910.PubMedPubMedCentralCrossRef
12.
go back to reference Ogunjimi B, Hens N, Goeyvaerts N, Aerts M, Van Damme P, Beutels P. Using empirical social contact data to model person to person infectious disease transmission: an illustration for varicella. Math Biosci. 2009; 218(2):80–7.PubMedCrossRef Ogunjimi B, Hens N, Goeyvaerts N, Aerts M, Van Damme P, Beutels P. Using empirical social contact data to model person to person infectious disease transmission: an illustration for varicella. Math Biosci. 2009; 218(2):80–7.PubMedCrossRef
13.
go back to reference Held L, Hens N, D O’Neill P, Wallinga J. Handbook of Infectious Disease Data Analysis. US: CRC Press; 2019.CrossRef Held L, Hens N, D O’Neill P, Wallinga J. Handbook of Infectious Disease Data Analysis. US: CRC Press; 2019.CrossRef
15.
go back to reference DeStefano F, Haber M, Currivan D, Farris T, Burrus B, Stone-Wiggins B, McCalla A, Guled H, Shih H, Edelson P, et al. Factors associated with social contacts in four communities during the 2007–2008 influenza season. Epidemiol Infect. 2011; 139(8):1181–90.PubMedCrossRef DeStefano F, Haber M, Currivan D, Farris T, Burrus B, Stone-Wiggins B, McCalla A, Guled H, Shih H, Edelson P, et al. Factors associated with social contacts in four communities during the 2007–2008 influenza season. Epidemiol Infect. 2011; 139(8):1181–90.PubMedCrossRef
16.
go back to reference Chen S-C, You S-H, Ling M-P, Chio C-P, Liao C-M. Use of seasonal influenza virus titer and respiratory symptom score to estimate effective human contact rates. J Epidemiol. 2012; 22(4):353–63.PubMedPubMedCentralCrossRef Chen S-C, You S-H, Ling M-P, Chio C-P, Liao C-M. Use of seasonal influenza virus titer and respiratory symptom score to estimate effective human contact rates. J Epidemiol. 2012; 22(4):353–63.PubMedPubMedCentralCrossRef
17.
go back to reference Stein ML, van der Heijden PG, Buskens V, van Steenbergen JE, Bengtsson L, Koppeschaar CE, Thorson A, Kretzschmar ME. Tracking social contact networks with online respondent-driven detection: who recruits whom?BMC Infect Dis. 2015; 15(1):522.PubMedPubMedCentralCrossRef Stein ML, van der Heijden PG, Buskens V, van Steenbergen JE, Bengtsson L, Koppeschaar CE, Thorson A, Kretzschmar ME. Tracking social contact networks with online respondent-driven detection: who recruits whom?BMC Infect Dis. 2015; 15(1):522.PubMedPubMedCentralCrossRef
18.
go back to reference Mikolajczyk R, Akmatov M, Rastin S, Kretzschmar M. Social contacts of school children and the transmission of respiratory-spread pathogens. Epidemiol Infect. 2008; 136(6):813–22.PubMedCrossRef Mikolajczyk R, Akmatov M, Rastin S, Kretzschmar M. Social contacts of school children and the transmission of respiratory-spread pathogens. Epidemiol Infect. 2008; 136(6):813–22.PubMedCrossRef
19.
go back to reference Hens N, Ayele GM, Goeyvaerts N, Aerts M, Mossong J, Edmunds JW, Beutels P. Estimating the impact of school closure on social mixing behaviour and the transmission of close contact infections in eight European countries. BMC Infect Dis. 2009; 9(1):1–12.CrossRef Hens N, Ayele GM, Goeyvaerts N, Aerts M, Mossong J, Edmunds JW, Beutels P. Estimating the impact of school closure on social mixing behaviour and the transmission of close contact infections in eight European countries. BMC Infect Dis. 2009; 9(1):1–12.CrossRef
20.
go back to reference Horby P, Thai PQ, Hens N, Yen NTT, Thoang DD, Linh NM, Huong NT, Alexander N, Edmunds WJ, Duong TN, et al. Social contact patterns in Vietnam and implications for the control of infectious diseases. PloS ONE. 2011; 6(2):16965.CrossRef Horby P, Thai PQ, Hens N, Yen NTT, Thoang DD, Linh NM, Huong NT, Alexander N, Edmunds WJ, Duong TN, et al. Social contact patterns in Vietnam and implications for the control of infectious diseases. PloS ONE. 2011; 6(2):16965.CrossRef
21.
go back to reference Johnstone-Robertson SP, Mark D, Morrow C, Middelkoop K, Chiswell M, Aquino LD, Bekker L-G, Wood R. Social mixing patterns within a South African township community: implications for respiratory disease transmission and control. Am J Epidemiol. 2011; 174(11):1246–55.PubMedPubMedCentralCrossRef Johnstone-Robertson SP, Mark D, Morrow C, Middelkoop K, Chiswell M, Aquino LD, Bekker L-G, Wood R. Social mixing patterns within a South African township community: implications for respiratory disease transmission and control. Am J Epidemiol. 2011; 174(11):1246–55.PubMedPubMedCentralCrossRef
22.
go back to reference Béraud G, Kazmercziak S, Beutels P, Levy-Bruhl D, Lenne X, Mielcarek N, Yazdanpanah Y, Boëlle P-Y, Hens N, Dervaux B. The French connection: The first large population-based contact survey in France relevant for the spread of infectious diseases. PLoS ONE. 2015; 10(7):0133203.CrossRef Béraud G, Kazmercziak S, Beutels P, Levy-Bruhl D, Lenne X, Mielcarek N, Yazdanpanah Y, Boëlle P-Y, Hens N, Dervaux B. The French connection: The first large population-based contact survey in France relevant for the spread of infectious diseases. PLoS ONE. 2015; 10(7):0133203.CrossRef
23.
go back to reference Dodd PJ, Looker C, Plumb ID, Bond V, Schaap A, Shanaube K, Muyoyeta M, Vynnycky E, Godfrey-Faussett P, Corbett EL, et al. Age-and sex-specific social contact patterns and incidence of mycobacterium tuberculosis infection. Am J Epidemiol. 2015; 183(2):156–66.PubMedPubMedCentral Dodd PJ, Looker C, Plumb ID, Bond V, Schaap A, Shanaube K, Muyoyeta M, Vynnycky E, Godfrey-Faussett P, Corbett EL, et al. Age-and sex-specific social contact patterns and incidence of mycobacterium tuberculosis infection. Am J Epidemiol. 2015; 183(2):156–66.PubMedPubMedCentral
24.
go back to reference Santermans E, Van Kerckhove K, Azmon A, Edmunds WJ, Beutels P, Faes C, Hens N. Structural differences in mixing behavior informing the role of asymptomatic infection and testing symptom heritability. Math Biosci. 2017; 285:43–54.PubMedCrossRef Santermans E, Van Kerckhove K, Azmon A, Edmunds WJ, Beutels P, Faes C, Hens N. Structural differences in mixing behavior informing the role of asymptomatic infection and testing symptom heritability. Math Biosci. 2017; 285:43–54.PubMedCrossRef
25.
go back to reference Prem K, Cook AR, Jit M. Projecting social contact matrices in 152 countries using contact surveys and demographic data. PLoS Comput Biol. 2017; 13(9):1–21.CrossRef Prem K, Cook AR, Jit M. Projecting social contact matrices in 152 countries using contact surveys and demographic data. PLoS Comput Biol. 2017; 13(9):1–21.CrossRef
26.
go back to reference Arregui S, Iglesias MJ, Samper S, Marinova D, Martin C, Sanz J, Moreno Y. Data-driven model for the assessment of mycobacterium tuberculosis transmission in evolving demographic structures. Proc Natl Acad Sci. 2018; 115(14):3238–45.CrossRef Arregui S, Iglesias MJ, Samper S, Marinova D, Martin C, Sanz J, Moreno Y. Data-driven model for the assessment of mycobacterium tuberculosis transmission in evolving demographic structures. Proc Natl Acad Sci. 2018; 115(14):3238–45.CrossRef
27.
go back to reference Arregui S, Aleta A, Sanz J, Moreno Y. Projecting social contact matrices to different demographic structures. PLoS Comput Biol. 2018; 14(12):1006638.CrossRef Arregui S, Aleta A, Sanz J, Moreno Y. Projecting social contact matrices to different demographic structures. PLoS Comput Biol. 2018; 14(12):1006638.CrossRef
28.
go back to reference Hens N, Goeyvaerts N, Aerts M, Shkedy Z, Van Damme P, Beutels P. Mining social mixing patterns for infectious disease models based on a two-day population survey in Belgium. BMC Infect Dis. 2009; 9(1):1–8.CrossRef Hens N, Goeyvaerts N, Aerts M, Shkedy Z, Van Damme P, Beutels P. Mining social mixing patterns for infectious disease models based on a two-day population survey in Belgium. BMC Infect Dis. 2009; 9(1):1–8.CrossRef
29.
go back to reference Kifle YW, Goeyvaerts N, Van Kerckhove K, Willem L, Kucharski A, Faes C, Leirs H, Hens N, Beutels P. Animal ownership and touching enrich the context of social contacts relevant to the spread of human infectious diseases. PloS ONE. 2016; 11(2):e0148718.PubMedPubMedCentralCrossRef Kifle YW, Goeyvaerts N, Van Kerckhove K, Willem L, Kucharski A, Faes C, Leirs H, Hens N, Beutels P. Animal ownership and touching enrich the context of social contacts relevant to the spread of human infectious diseases. PloS ONE. 2016; 11(2):e0148718.PubMedPubMedCentralCrossRef
33.
go back to reference Maaten LVD, Hinton G. Visualizing data using t-SNE. J Mach Learn Res. 2008; 9:2579–605. Maaten LVD, Hinton G. Visualizing data using t-SNE. J Mach Learn Res. 2008; 9:2579–605.
34.
go back to reference Rigby RA, Stasinopoulos DM. Generalized additive models for location, scale and shape, (with discussion). Applied Statistics. 2005; 54(3):507–54. Rigby RA, Stasinopoulos DM. Generalized additive models for location, scale and shape, (with discussion). Applied Statistics. 2005; 54(3):507–54.
35.
go back to reference Hens N, Wallinga J. Design and analysis of social contact surveys relevant for the spread of infectious diseases. Wiley StatsRef: Statistics Reference Online. 2019;:39–57. Hens N, Wallinga J. Design and analysis of social contact surveys relevant for the spread of infectious diseases. Wiley StatsRef: Statistics Reference Online. 2019;:39–57.
36.
go back to reference Efron B, Tibshirani RJ. An Introduction to the Bootstrap. US: CRC press; 1994.CrossRef Efron B, Tibshirani RJ. An Introduction to the Bootstrap. US: CRC press; 1994.CrossRef
37.
go back to reference Gupta S, Anderson RM, May RM. Networks of sexual contacts: implications for the pattern of spread of HIV. AIDS (London, England). 1989; 3(12):807–17.CrossRef Gupta S, Anderson RM, May RM. Networks of sexual contacts: implications for the pattern of spread of HIV. AIDS (London, England). 1989; 3(12):807–17.CrossRef
38.
go back to reference Farrington C, Whitaker H, Wallinga J, Manfredi P. Measures of disassortativeness and their application to directly transmitted infections. Biom J: J Math Meth Biosci. 2009; 51(3):387–407.CrossRef Farrington C, Whitaker H, Wallinga J, Manfredi P. Measures of disassortativeness and their application to directly transmitted infections. Biom J: J Math Meth Biosci. 2009; 51(3):387–407.CrossRef
39.
go back to reference Diekmann O, Heesterbeek JAP, Metz JA. On the definition and the computation of the basic reproduction ratio R0 in models for infectious diseases in heterogeneous populations. J Math Biol. 1990; 28(4):365–82.PubMedCrossRef Diekmann O, Heesterbeek JAP, Metz JA. On the definition and the computation of the basic reproduction ratio R0 in models for infectious diseases in heterogeneous populations. J Math Biol. 1990; 28(4):365–82.PubMedCrossRef
40.
go back to reference Chen S-C, You Z-S. Social contact patterns of school-age children in taiwan: comparison of the term time and holiday periods. Epidemiol Infect. 2015; 143(6):1139–47.PubMedCrossRef Chen S-C, You Z-S. Social contact patterns of school-age children in taiwan: comparison of the term time and holiday periods. Epidemiol Infect. 2015; 143(6):1139–47.PubMedCrossRef
41.
go back to reference van de Kassteele J, van Eijkeren J, Wallinga J. Efficient estimation of age-specific social contact rates between men and women. Ann Appl Stat. 2017; 11(1):320–39.CrossRef van de Kassteele J, van Eijkeren J, Wallinga J. Efficient estimation of age-specific social contact rates between men and women. Ann Appl Stat. 2017; 11(1):320–39.CrossRef
42.
go back to reference Jackson C, Mangtani P, Vynnycky E, Fielding K, Kitching A, Mohamed H, Roche A, Maguire H. School closures and student contact patterns. Emerg Infect Dis. 2011; 17(2):245.PubMedPubMedCentralCrossRef Jackson C, Mangtani P, Vynnycky E, Fielding K, Kitching A, Mohamed H, Roche A, Maguire H. School closures and student contact patterns. Emerg Infect Dis. 2011; 17(2):245.PubMedPubMedCentralCrossRef
43.
go back to reference Modchang C, Iamsirithaworn S, Auewarakul P, Triampo W. A modeling study of school closure to reduce influenza transmission: A case study of an influenza A (H1N1) outbreak in a private thai school. Math Comput Model. 2012; 55(3-4):1021–33.CrossRef Modchang C, Iamsirithaworn S, Auewarakul P, Triampo W. A modeling study of school closure to reduce influenza transmission: A case study of an influenza A (H1N1) outbreak in a private thai school. Math Comput Model. 2012; 55(3-4):1021–33.CrossRef
44.
go back to reference Goeyvaerts N, Santermans E, Potter G, Torneri A, Van Kerckhove K, Willem L, Aerts M, Beutels P, Hens N. Household members do not contact each other at random: implications for infectious disease modelling. Proc R Soc B. 2018; 285(1893):20182201.PubMedCrossRef Goeyvaerts N, Santermans E, Potter G, Torneri A, Van Kerckhove K, Willem L, Aerts M, Beutels P, Hens N. Household members do not contact each other at random: implications for infectious disease modelling. Proc R Soc B. 2018; 285(1893):20182201.PubMedCrossRef
Metadata
Title
Close contact infection dynamics over time: insights from a second large-scale social contact survey in Flanders, Belgium, in 2010-2011
Authors
Thang Van Hoang
Pietro Coletti
Yimer Wasihun Kifle
Kim Van Kerckhove
Sarah Vercruysse
Lander Willem
Philippe Beutels
Niel Hens
Publication date
01-12-2021
Publisher
BioMed Central
Published in
BMC Infectious Diseases / Issue 1/2021
Electronic ISSN: 1471-2334
DOI
https://doi.org/10.1186/s12879-021-05949-4

Other articles of this Issue 1/2021

BMC Infectious Diseases 1/2021 Go to the issue