Skip to main content
Top
Published in: BMC Infectious Diseases 1/2009

Open Access 01-12-2009 | Research article

Mining social mixing patterns for infectious disease models based on a two-day population survey in Belgium

Authors: Niel Hens, Nele Goeyvaerts, Marc Aerts, Ziv Shkedy, Pierre Van Damme, Philippe Beutels

Published in: BMC Infectious Diseases | Issue 1/2009

Login to get access

Abstract

Background

Until recently, mathematical models of person to person infectious diseases transmission had to make assumptions on transmissions enabled by personal contacts by estimating the so-called WAIFW-matrix. In order to better inform such estimates, a population based contact survey has been carried out in Belgium over the period March-May 2006. In contrast to other European surveys conducted simultaneously, each respondent recorded contacts over two days. Special attention was given to holiday periods, and respondents with large numbers of professional contacts.

Methods

Participants kept a paper diary with information on their contacts over two different days. A contact was defined as a two-way conversation of at least three words in each others proximity. The contact information included the age of the contact, gender, location, duration, frequency, and whether or not touching was involved.
For data analysis, we used association rules and classification trees. Weighted generalized estimating equations were used to analyze contact frequency while accounting for the correlation between contacts reported on the two different days.
A contact surface, expressing the average number of contacts between persons of different ages was obtained by a bivariate smoothing approach and the relation to the so-called next-generation matrix was established.

Results

People mostly mixed with people of similar age, or with their offspring, their parents and their grandparents. By imputing professional contacts, the average number of daily contacts increased from 11.84 to 15.70. The number of reported contacts depended heavily on the household size, class size for children and number of professional contacts for adults. Adults living with children had on average 2 daily contacts more than adults living without children. In the holiday period, the daily contact frequency for children and adolescents decreased with about 19% while a similar observation is made for adults in the weekend. These findings can be used to estimate the impact of school closure.

Conclusion

We conducted a diary based contact survey in Belgium to gain insights in social interactions relevant to the spread of infectious diseases. The resulting contact patterns are useful to improve estimating crucial parameters for infectious disease transmission models.
Appendix
Available only for authorised users
Literature
1.
go back to reference Anderson R, May R: Infectious Diseases of Humans: Dynamics and Control. 1991, Oxford University Press Anderson R, May R: Infectious Diseases of Humans: Dynamics and Control. 1991, Oxford University Press
2.
go back to reference Greenhalgh D, Dietz K: Some bounds on estimation for reproductive ratios derived from the age-specific force of infection. Mathematical Biosciences. 1994, 124: 9-57. 10.1016/0025-5564(94)90023-X.CrossRefPubMed Greenhalgh D, Dietz K: Some bounds on estimation for reproductive ratios derived from the age-specific force of infection. Mathematical Biosciences. 1994, 124: 9-57. 10.1016/0025-5564(94)90023-X.CrossRefPubMed
3.
go back to reference Farrington C, Whitaker H: Contact surface models for infectious diseases: estimation from serologic survey data. Journal of the American Statistical Association. 2005, 100: 370-379. 10.1198/016214504000001754.CrossRef Farrington C, Whitaker H: Contact surface models for infectious diseases: estimation from serologic survey data. Journal of the American Statistical Association. 2005, 100: 370-379. 10.1198/016214504000001754.CrossRef
4.
go back to reference Van Effelterre T, Shkedy Z, Aerts M, Molenberghs G, Van Damme P, Beutels P: Contact patterns and their implied basic reproductive numbers: an illustration for varicella-zoster virus. Epidemiol Infect. 2008, 137 (1): 48-57. 10.1017/S0950268808000563.CrossRefPubMed Van Effelterre T, Shkedy Z, Aerts M, Molenberghs G, Van Damme P, Beutels P: Contact patterns and their implied basic reproductive numbers: an illustration for varicella-zoster virus. Epidemiol Infect. 2008, 137 (1): 48-57. 10.1017/S0950268808000563.CrossRefPubMed
5.
go back to reference Wallinga J, Teunis P, Kretzschmar M: Using data on social contacts to estimate age-specific transmission parameters for respiratory-spread infectious agents. American Journal of Epidemiology. 2006, 164: 936-944. 10.1093/aje/kwj317.CrossRefPubMed Wallinga J, Teunis P, Kretzschmar M: Using data on social contacts to estimate age-specific transmission parameters for respiratory-spread infectious agents. American Journal of Epidemiology. 2006, 164: 936-944. 10.1093/aje/kwj317.CrossRefPubMed
6.
go back to reference Beutels P, Shkedy Z, Aerts M, Van Damme P: Social mixing patterns for transmission models of close contact infections: exploring self-evaluation and diary-based data collection through a web-based interface. Epidemiology and Infection. 2006, 134: 1158-1166. 10.1017/S0950268806006418.CrossRefPubMedPubMedCentral Beutels P, Shkedy Z, Aerts M, Van Damme P: Social mixing patterns for transmission models of close contact infections: exploring self-evaluation and diary-based data collection through a web-based interface. Epidemiology and Infection. 2006, 134: 1158-1166. 10.1017/S0950268806006418.CrossRefPubMedPubMedCentral
7.
go back to reference Edmunds W, O'Callaghan C, Nokes D: Who mixes with whom? A method to determine the contact patterns of adults that may lead to the spread of airborne infections. Proceedings of the Royal Society B: Biological Sciences. 1997, 264: 949-957. 10.1098/rspb.1997.0131.CrossRefPubMedPubMedCentral Edmunds W, O'Callaghan C, Nokes D: Who mixes with whom? A method to determine the contact patterns of adults that may lead to the spread of airborne infections. Proceedings of the Royal Society B: Biological Sciences. 1997, 264: 949-957. 10.1098/rspb.1997.0131.CrossRefPubMedPubMedCentral
8.
go back to reference Edmunds W, Kafatos G, Wallinga J, Mossong J: Mixing patterns and the spread of close-contact infectious diseases. Emerging Themes in Epidemiology. 2006, 3: 10-10.1186/1742-7622-3-10.CrossRefPubMedPubMedCentral Edmunds W, Kafatos G, Wallinga J, Mossong J: Mixing patterns and the spread of close-contact infectious diseases. Emerging Themes in Epidemiology. 2006, 3: 10-10.1186/1742-7622-3-10.CrossRefPubMedPubMedCentral
9.
go back to reference Mikolajczyk RT, Akmatov MK, Rastin S, Kretzschmar M: Social contacts of school children and the transmission of respiratory-spread pathogens. Epidemiol Infect. 2007, 136 (6): 813-822.PubMedPubMedCentral Mikolajczyk RT, Akmatov MK, Rastin S, Kretzschmar M: Social contacts of school children and the transmission of respiratory-spread pathogens. Epidemiol Infect. 2007, 136 (6): 813-822.PubMedPubMedCentral
10.
go back to reference Dell Valle SY, Hyman JM, Hethcote HW, Eubank SG: Mixing patterns between age groups in social networks. Social Networks. 2007, 29: 539-554. Dell Valle SY, Hyman JM, Hethcote HW, Eubank SG: Mixing patterns between age groups in social networks. Social Networks. 2007, 29: 539-554.
11.
go back to reference Mossong J, Hens N, Jit M, Beutels P, Auranen K, Mikolajczyk R, Massari M, Salmaso S, Scalia Tomba G, Wallinga J, Heijne J, Sadkowska-Todys M, Rosinska M, Edmunds J: Social Contacts and Mixing Patterns Relevant to the Spread of Infectious Diseases. PLoS Medicine. 2008, 5: 381-391. 10.1371/journal.pmed.0050074.CrossRef Mossong J, Hens N, Jit M, Beutels P, Auranen K, Mikolajczyk R, Massari M, Salmaso S, Scalia Tomba G, Wallinga J, Heijne J, Sadkowska-Todys M, Rosinska M, Edmunds J: Social Contacts and Mixing Patterns Relevant to the Spread of Infectious Diseases. PLoS Medicine. 2008, 5: 381-391. 10.1371/journal.pmed.0050074.CrossRef
12.
go back to reference Little R, Rubin D: Statistical Analysis with Missing Data. Wiley. 1987 Little R, Rubin D: Statistical Analysis with Missing Data. Wiley. 1987
13.
go back to reference Hahsler M, Grün B, Hornik KU: Mining association rules and frequent itemsets. R package version 0.4-3. ed. 2006 Hahsler M, Grün B, Hornik KU: Mining association rules and frequent itemsets. R package version 0.4-3. ed. 2006
14.
go back to reference Hastie T, Tibshirani R, Friedman J: The Elements of Statistical Learning. 2001, SpringerCrossRef Hastie T, Tibshirani R, Friedman J: The Elements of Statistical Learning. 2001, SpringerCrossRef
15.
go back to reference Breiman L, Friedman JH, Olshen RA, Stone C: Classification and Regression Trees. Wadsworth International Group. 1984 Breiman L, Friedman JH, Olshen RA, Stone C: Classification and Regression Trees. Wadsworth International Group. 1984
16.
go back to reference De'ath G: Multivariate Regression Trees: A New Technique for Constrained Classification Analysis. Ecology. 2002, 83 (4): 1103-1117. De'ath G: Multivariate Regression Trees: A New Technique for Constrained Classification Analysis. Ecology. 2002, 83 (4): 1103-1117.
17.
go back to reference Liang K, Zeger S: Longitudinal dat analysis using generalized linear models. Biometrika. 1986, 73: 13-22. 10.1093/biomet/73.1.13.CrossRef Liang K, Zeger S: Longitudinal dat analysis using generalized linear models. Biometrika. 1986, 73: 13-22. 10.1093/biomet/73.1.13.CrossRef
18.
go back to reference Breiman L: Random Forests. Machine Learning. 2001, 45: 5-32. 10.1023/A:1010933404324.CrossRef Breiman L: Random Forests. Machine Learning. 2001, 45: 5-32. 10.1023/A:1010933404324.CrossRef
19.
go back to reference Burnham K, Anderson D: Model Selection and Multi-Model Inference: A Practical Information-Theoretic Approach. 2002, Springer-Verlag New York Inc Burnham K, Anderson D: Model Selection and Multi-Model Inference: A Practical Information-Theoretic Approach. 2002, Springer-Verlag New York Inc
20.
go back to reference Wood S: Generalized Additive Models: an Introduction with R. 2006, Chapman and Hall/CRC Press Wood S: Generalized Additive Models: an Introduction with R. 2006, Chapman and Hall/CRC Press
21.
go back to reference Mammen E, Marron J, Turlach B, Wand M: General Projection Framework for Constrained Smoothing. Statistical Science. 2001, 16: 232-248. 10.1214/ss/1009213727.CrossRef Mammen E, Marron J, Turlach B, Wand M: General Projection Framework for Constrained Smoothing. Statistical Science. 2001, 16: 232-248. 10.1214/ss/1009213727.CrossRef
23.
go back to reference Mills CE, Robins JM, Lipsitch M: Transmissibility of 1918 pandemic influenza. Nature. 2004, 432 (7019): 904-6. 10.1038/nature03063.CrossRefPubMed Mills CE, Robins JM, Lipsitch M: Transmissibility of 1918 pandemic influenza. Nature. 2004, 432 (7019): 904-6. 10.1038/nature03063.CrossRefPubMed
24.
go back to reference Halloran E, Ferguson N, Eubank S, Longini I, Cummings D, Lewis B, Xu S, Fraser C, Vullikanti A, Germann T, Wagener D, Beckman R, Kadau K, Barrett C, Macken C, Burke D, Cooley P: Modeling targeted layered containment of an influenza pandemic in the united states. PNAS. 2008, 105 (12): 4629-4644. 10.1073/pnas.0706849105.CrossRef Halloran E, Ferguson N, Eubank S, Longini I, Cummings D, Lewis B, Xu S, Fraser C, Vullikanti A, Germann T, Wagener D, Beckman R, Kadau K, Barrett C, Macken C, Burke D, Cooley P: Modeling targeted layered containment of an influenza pandemic in the united states. PNAS. 2008, 105 (12): 4629-4644. 10.1073/pnas.0706849105.CrossRef
25.
go back to reference Diekmann O, Heesterbeek J, Metz J: On the definition and the computation of the basic reproduction ratio R 0 in models for infectious diseases in heterogeneous populations. Journal of Mathematical Biology. 1990, 28: 65-382. 10.1007/BF00178324.CrossRef Diekmann O, Heesterbeek J, Metz J: On the definition and the computation of the basic reproduction ratio R 0 in models for infectious diseases in heterogeneous populations. Journal of Mathematical Biology. 1990, 28: 65-382. 10.1007/BF00178324.CrossRef
26.
go back to reference Brisson M, Gay N, Edmunds W, Andrews N: Exposure to varicella boosts immunity to herpes-zoster: implications for mass vaccination against chickenpox. Vaccine. 2002, 20: 2500-2507. 10.1016/S0264-410X(02)00180-9.CrossRefPubMed Brisson M, Gay N, Edmunds W, Andrews N: Exposure to varicella boosts immunity to herpes-zoster: implications for mass vaccination against chickenpox. Vaccine. 2002, 20: 2500-2507. 10.1016/S0264-410X(02)00180-9.CrossRefPubMed
28.
go back to reference Goeyvaerts N, Hens N, Ogunjimi B, Aerts M, Shkedy Z, Van Damme P, Beutels P: Estimating infectious disease parameters from data on social contacts and serological status. Revision for the Journal of the Royal Statistical Society, series C. 2009 Goeyvaerts N, Hens N, Ogunjimi B, Aerts M, Shkedy Z, Van Damme P, Beutels P: Estimating infectious disease parameters from data on social contacts and serological status. Revision for the Journal of the Royal Statistical Society, series C. 2009
29.
go back to reference Ogunjimi B, Hens N, Goeyvaerts N, Aerts M, Beutels P: Using empirical social contact data to model person to person infectious disease transmission: an illustration for varicella. Mathematical Biosciences. 2009, Ogunjimi B, Hens N, Goeyvaerts N, Aerts M, Beutels P: Using empirical social contact data to model person to person infectious disease transmission: an illustration for varicella. Mathematical Biosciences. 2009,
Metadata
Title
Mining social mixing patterns for infectious disease models based on a two-day population survey in Belgium
Authors
Niel Hens
Nele Goeyvaerts
Marc Aerts
Ziv Shkedy
Pierre Van Damme
Philippe Beutels
Publication date
01-12-2009
Publisher
BioMed Central
Published in
BMC Infectious Diseases / Issue 1/2009
Electronic ISSN: 1471-2334
DOI
https://doi.org/10.1186/1471-2334-9-5

Other articles of this Issue 1/2009

BMC Infectious Diseases 1/2009 Go to the issue
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discuss last year's major advances in heart failure and cardiomyopathies.