Skip to main content
Top
Published in: BMC Infectious Diseases 1/2021

Open Access 01-12-2021 | Tuberculosis | Research article

PCR-reverse blot hybridization assay in respiratory specimens for rapid detection and differentiation of mycobacteria in HIV-negative population

Authors: Qing Zhang, Heping Xiao, Liping Yan

Published in: BMC Infectious Diseases | Issue 1/2021

Login to get access

Abstract

Background

Rapid identification of pathogenic Mycobacterium species is critical for a successful treatment. However, traditional method is time-consuming and cannot discriminate isolated non-tuberculosis mycobacteria (NTM) at species level. In the retrospective study, we evaluated the clinical applicability of PCR-reverse blot hybridization assay (PCR-REBA Myco-ID) with clinical specimens for rapid detection and differentiation of mycobacterial species.

Methods

A total of 334 sputum and 362 bronchial alveolar lavage fluids (BALF) from 696 patients with mycobacterium pulmonary disease (MPD) and 210 patients with non-mycobacterium pulmonary disease used as controls were analyzed. Sputum or BALF were obtained for MGIT 960-TBc ID test and PCR-REBA Myco-ID assay. High resolution melt analysis (HRM) was used to resolve inconsistent results of MGIT 960-TBc ID test and PCR-REBA Myco-ID assay.

Results

A total of 334 sputum and 362 BALF specimens from 696 MPD patients (292 MTB and 404 NTM) were eventually analyzed. In total, 292 MTBC and 436 NTM isolates (mixed infection of two species in 32 specimens) across 10 Mycobacterium species were identified. The most frequently isolated NTM species were M. intracellulare (n = 236, 54.1%), followed by M. abscessus (n = 106, 24.3%), M. kansasii (n = 46, 10.6%), M. avium (n = 36, 8.3%). Twenty-two cases had M. intracellulare and M. abscessus mixed infection and ten cases had M. avium and M. abscessus mixed infection. A high level of agreement (n = 696; 94.5%) was found between MGIT 960-TBc ID and PCR-REBA Myco-ID (k = 0.845, P = 0.000). PCR-REBA Myco-ID assay had higher AUC for both MTBC and NTM than MGIT 960-TBc ID test.

Conclusion

PCR-REBA Myco-ID has the advantages of rapid, comparatively easy to perform, relatively low cost and superior accuracy in mycobacterial species identification compared with MGIT 960-TBc ID. We recommend it into workflow of mycobacterial laboratories especially in source-limited countries.
Literature
2.
go back to reference Yu X, Liu P, Liu G, Zhao L, Hu Y, Wei G, Luo J, Huang H. The prevalence of non-tuberculous mycobacterial infections in mainland China: systematic review and meta-analysis. J Infect. 2016;73:558.CrossRef Yu X, Liu P, Liu G, Zhao L, Hu Y, Wei G, Luo J, Huang H. The prevalence of non-tuberculous mycobacterial infections in mainland China: systematic review and meta-analysis. J Infect. 2016;73:558.CrossRef
3.
go back to reference Steinbrook R. Tuberculosis and HIV in India. N Engl J Med. 2007;356:1198–9.CrossRef Steinbrook R. Tuberculosis and HIV in India. N Engl J Med. 2007;356:1198–9.CrossRef
4.
go back to reference Donohue MJ, Wymer L. Increasing prevalence rate of nontuberculous mycobacteria infections in five states, 2008-2013. Ann Am Thorac Soc. 2016;13:Annals ATS.201605-353OC.CrossRef Donohue MJ, Wymer L. Increasing prevalence rate of nontuberculous mycobacteria infections in five states, 2008-2013. Ann Am Thorac Soc. 2016;13:Annals ATS.201605-353OC.CrossRef
5.
go back to reference Donohue MJ. Increasing nontuberculous mycobacteria reporting rates and species diversity identified in clinical laboratory reports. BMC Infect Dis. 2018;18:163.CrossRef Donohue MJ. Increasing nontuberculous mycobacteria reporting rates and species diversity identified in clinical laboratory reports. BMC Infect Dis. 2018;18:163.CrossRef
6.
go back to reference Hoefsloot W, van Ingen J, Andrejak C, et al. The geo- graphic diversity of nontuberculous mycobacteria isolated from pulmonary samples: an NTM-NET collaborative study. Eur Respir J. 2013;42:1604–13.CrossRef Hoefsloot W, van Ingen J, Andrejak C, et al. The geo- graphic diversity of nontuberculous mycobacteria isolated from pulmonary samples: an NTM-NET collaborative study. Eur Respir J. 2013;42:1604–13.CrossRef
7.
go back to reference Namkoong H, Kurashima A, Morimoto K, et al. Epidemiology of pulmonary nontuberculous mycobacterial disease, Japan1. Emerg Infect Dis. 2016;22:1116–7.CrossRef Namkoong H, Kurashima A, Morimoto K, et al. Epidemiology of pulmonary nontuberculous mycobacterial disease, Japan1. Emerg Infect Dis. 2016;22:1116–7.CrossRef
8.
go back to reference González SM, Cortés AC, Yoldi LAS, García JMG, Álvarez LMA, Gutiérrez JJP, en representación de la Red de Laboratorios de Microbiología del SESPA. Non-tuberculous mycobacteria. An emerging threat? Arch Bronconeumol. 2017;53(10):554–60. González SM, Cortés AC, Yoldi LAS, García JMG, Álvarez LMA, Gutiérrez JJP, en representación de la Red de Laboratorios de Microbiología del SESPA. Non-tuberculous mycobacteria. An emerging threat? Arch Bronconeumol. 2017;53(10):554–60.
9.
go back to reference Prevots DR, Shaw PA, Strickland D, et al. Nontuberculous mycobacterial lung di sease prevalence at four integrated health care delivery systems. Am J Respir Crit Care Med. 2010;182:970–6.CrossRef Prevots DR, Shaw PA, Strickland D, et al. Nontuberculous mycobacterial lung di sease prevalence at four integrated health care delivery systems. Am J Respir Crit Care Med. 2010;182:970–6.CrossRef
11.
go back to reference Falkinham JO. Epidemiology of infection by nontuberculous mycobacteria. Clin Microbiol Rev. 1996;9:177–215.CrossRef Falkinham JO. Epidemiology of infection by nontuberculous mycobacteria. Clin Microbiol Rev. 1996;9:177–215.CrossRef
12.
go back to reference Frieden TR, Sterling TR, Munsiff SS, Watt CJ, Dye C. Tuberculosis. Lancet. 2003;362:887–99.CrossRef Frieden TR, Sterling TR, Munsiff SS, Watt CJ, Dye C. Tuberculosis. Lancet. 2003;362:887–99.CrossRef
13.
go back to reference Stout JE, Koh WJ, Yew WW. Update on pulmonary disease due to non-tuberculous mycobacteria. Int J Infect Dis. 2016;45:123–34.CrossRef Stout JE, Koh WJ, Yew WW. Update on pulmonary disease due to non-tuberculous mycobacteria. Int J Infect Dis. 2016;45:123–34.CrossRef
14.
go back to reference Wang HX, Yue J, Han M, Yang JH, Gao RL, Jing LJ, Yang SS, Zhao YL. Nontuberculous mycobacteria: susceptibility pattern and prevalence rate in Shanghai from 2005 to 2008. Chin Med J. 2010;123:184–7.PubMed Wang HX, Yue J, Han M, Yang JH, Gao RL, Jing LJ, Yang SS, Zhao YL. Nontuberculous mycobacteria: susceptibility pattern and prevalence rate in Shanghai from 2005 to 2008. Chin Med J. 2010;123:184–7.PubMed
15.
go back to reference Thanachartwet V, Desakorn V, Duangrithi D, Chunpongthong P, Phojanamongkolkij K, et al. Comparison of clinical and laboratory findings between those with pulmonary tuberculosis and those with nontuberculous mycobacterial lung disease. Southeast Asian J Trop Med Public Health. 2014;45:85–94.PubMed Thanachartwet V, Desakorn V, Duangrithi D, Chunpongthong P, Phojanamongkolkij K, et al. Comparison of clinical and laboratory findings between those with pulmonary tuberculosis and those with nontuberculous mycobacterial lung disease. Southeast Asian J Trop Med Public Health. 2014;45:85–94.PubMed
16.
go back to reference Springer B, Stockman L, Teschner K, Roberts GD, Bottger EC. Two-laboratory collaborative study on identification of mycobacteria: molecular versus phenotypic methods. J Clin Microbiol. 1996;34:296–303.CrossRef Springer B, Stockman L, Teschner K, Roberts GD, Bottger EC. Two-laboratory collaborative study on identification of mycobacteria: molecular versus phenotypic methods. J Clin Microbiol. 1996;34:296–303.CrossRef
18.
go back to reference Ewer K, Deeks J, Alvarez L, et al. Comparison of T-cell-based assay with tuberculin skin test for diagnosis of Mycobacterium tuberculosis infection in a school tuberculosis outbreak. Lancet. 2003;361:1168–73.CrossRef Ewer K, Deeks J, Alvarez L, et al. Comparison of T-cell-based assay with tuberculin skin test for diagnosis of Mycobacterium tuberculosis infection in a school tuberculosis outbreak. Lancet. 2003;361:1168–73.CrossRef
19.
go back to reference Dai Y, Feng Y, Xu R, Xu W, Lu W, Wang J. Evaluation of interferon-gamma release assays for the diagnosis of tuberculosis: an updated meta-analysis. Eur J Clin Microbiol Infect Dis. 2012;31:3127–37.CrossRef Dai Y, Feng Y, Xu R, Xu W, Lu W, Wang J. Evaluation of interferon-gamma release assays for the diagnosis of tuberculosis: an updated meta-analysis. Eur J Clin Microbiol Infect Dis. 2012;31:3127–37.CrossRef
20.
go back to reference Chae H, Han SJ, Kim SY, Ki CS, Huh HJ, Yong D, Koh WJ, Shin SJ. Development of a one-step multiplex PCR assay for differential detection of major Mycobacterium species. J Clin Microbiol. 2017;55:2736.CrossRef Chae H, Han SJ, Kim SY, Ki CS, Huh HJ, Yong D, Koh WJ, Shin SJ. Development of a one-step multiplex PCR assay for differential detection of major Mycobacterium species. J Clin Microbiol. 2017;55:2736.CrossRef
21.
go back to reference Lim JH, Kim CK, Bae MH. Evaluation of the performance of two real-time PCR assays for detecting Mycobacterium species. J Clin Lab Anal. 2019;33:e22645.CrossRef Lim JH, Kim CK, Bae MH. Evaluation of the performance of two real-time PCR assays for detecting Mycobacterium species. J Clin Lab Anal. 2019;33:e22645.CrossRef
23.
go back to reference Parsons M, Somoskövi Á. Laboratory diagnosis of tuberculosis in resource-poor countries. Clin Microbiol Rev. 2011;24:314–50.CrossRef Parsons M, Somoskövi Á. Laboratory diagnosis of tuberculosis in resource-poor countries. Clin Microbiol Rev. 2011;24:314–50.CrossRef
24.
go back to reference Springer B, Bottger EC, Kirschner P, Wallace RJ Jr. Phylogeny of the Mycobacterium chelonae-like organism based on partial sequencing of the 16S rRNA gene and proposal of Mycobacterium mucogenicum sp. nov. Int J Syst Bacteriol. 1995;45:262–7 https://doi.org/10.1099/00207713-45-2-262. Springer B, Bottger EC, Kirschner P, Wallace RJ Jr. Phylogeny of the Mycobacterium chelonae-like organism based on partial sequencing of the 16S rRNA gene and proposal of Mycobacterium mucogenicum sp. nov. Int J Syst Bacteriol. 1995;45:262–7 https://​doi.​org/​10.​1099/​00207713-45-2-262.
25.
go back to reference Yan L, Zhang Q, Xiao H. Clinical diagnostic value of simultaneous amplification and testing for the diagnosis of sputum-scarce pulmonary tuberculosis. BMC Infect Dis. 2017;17:545.CrossRef Yan L, Zhang Q, Xiao H. Clinical diagnostic value of simultaneous amplification and testing for the diagnosis of sputum-scarce pulmonary tuberculosis. BMC Infect Dis. 2017;17:545.CrossRef
26.
go back to reference Pfyffer GE, Brown-Elliot BA, Wallace RJ. General characteristics, isolation, and staining procedures. In: Murray PR, Baron EJ, Jorgensen JH, Pfaller MA, Yolken RH, editors. Manual of clinical microbiology. 8th ed. Washington, DC: ASM Press; 2003. p. 532–59. Pfyffer GE, Brown-Elliot BA, Wallace RJ. General characteristics, isolation, and staining procedures. In: Murray PR, Baron EJ, Jorgensen JH, Pfaller MA, Yolken RH, editors. Manual of clinical microbiology. 8th ed. Washington, DC: ASM Press; 2003. p. 532–59.
27.
go back to reference Bactec MGIT. 960 system user’s manual. Sparks (Maryland): Becton, Dickenson, and Company. Bactec MGIT. 960 system user’s manual. Sparks (Maryland): Becton, Dickenson, and Company.
28.
go back to reference Wang H-Y, Kim H, Kim S, Bang H, Kim D-K, Lee H. Evaluation of PCR-reverse blot hybridization assay for the differentiation and identification of Mycobacterium species in liquid cultures. J Appl Microbiol. 2014;118:142–51.CrossRef Wang H-Y, Kim H, Kim S, Bang H, Kim D-K, Lee H. Evaluation of PCR-reverse blot hybridization assay for the differentiation and identification of Mycobacterium species in liquid cultures. J Appl Microbiol. 2014;118:142–51.CrossRef
29.
go back to reference Chihota VN, Grant AD, Fielding K, Ndibongo B, van Zyl A, Muirhead D, Churchyard GJ. Liquid vs. solid culture for tuberculosis: performance and cost in a resource-constrained setting. Int J Tuberc Lung Dis. 2010;14:1024–31.PubMed Chihota VN, Grant AD, Fielding K, Ndibongo B, van Zyl A, Muirhead D, Churchyard GJ. Liquid vs. solid culture for tuberculosis: performance and cost in a resource-constrained setting. Int J Tuberc Lung Dis. 2010;14:1024–31.PubMed
31.
go back to reference Boyle DP, Zembower TR, Reddy S, et al. Comparison of clinical features, virulence, and relapse among mycobacterium avium complex species. Am J Respir Crit Care Med. 2015;191:1310–7.CrossRef Boyle DP, Zembower TR, Reddy S, et al. Comparison of clinical features, virulence, and relapse among mycobacterium avium complex species. Am J Respir Crit Care Med. 2015;191:1310–7.CrossRef
32.
go back to reference Haworth CS, Banks J, Capstick T, et al. British Thoracic Society guidelines for the management of non-tuberculous mycobacterial pulmonary disease (NTM-PD). Thorax. 2017;72:ii1–ii64.CrossRef Haworth CS, Banks J, Capstick T, et al. British Thoracic Society guidelines for the management of non-tuberculous mycobacterial pulmonary disease (NTM-PD). Thorax. 2017;72:ii1–ii64.CrossRef
33.
go back to reference Votintseva AA, Bradley P, Pankhurst L, et al. Same-day diagnostic and surveillance data for tuberculosis via whole-genome sequencing of direct respiratory samples. J Clin Microbiol. 2017;55:1285–98.CrossRef Votintseva AA, Bradley P, Pankhurst L, et al. Same-day diagnostic and surveillance data for tuberculosis via whole-genome sequencing of direct respiratory samples. J Clin Microbiol. 2017;55:1285–98.CrossRef
34.
go back to reference Zolfo M, Tett A, Jousson O, et al. MetaMLST: multi- locus strain-level bacterial typing from metagenomic samples. Nucleic Acids Res. 2016;1:1–10. Zolfo M, Tett A, Jousson O, et al. MetaMLST: multi- locus strain-level bacterial typing from metagenomic samples. Nucleic Acids Res. 2016;1:1–10.
35.
go back to reference Lecorche E, Haenn S, Mougari F, et al. Comparison of methods available for identification of Mycobacterium chimaera. Clin Microbiol Infect. 2018;24:409–13.CrossRef Lecorche E, Haenn S, Mougari F, et al. Comparison of methods available for identification of Mycobacterium chimaera. Clin Microbiol Infect. 2018;24:409–13.CrossRef
36.
go back to reference Loiseau C, Brites D, Moser I, Coll F, Pourcel C, Robbe-Austerman S, Köser CU. Revised interpretation of the Hain Lifescience GenoType MTBC to differentiate Mycobacterium canettii and members of the Mycobacterium tuberculosis complex. Antimicrob Agents Chemother. 2019;63:e00159–19.CrossRef Loiseau C, Brites D, Moser I, Coll F, Pourcel C, Robbe-Austerman S, Köser CU. Revised interpretation of the Hain Lifescience GenoType MTBC to differentiate Mycobacterium canettii and members of the Mycobacterium tuberculosis complex. Antimicrob Agents Chemother. 2019;63:e00159–19.CrossRef
37.
go back to reference Lebrun L, Weill FX, Lafendi L, Houriez F, Casanova F, Gutierrez MC, Ingrand D, Lagrange P, et al. Use of the INNO-LiPA-MYCOBACTERIA assay (version 2) for identification of Mycobacterium avium- Mycobacterium intracellulare-Mycobacterium scrofulaceum complex isolates. J Clin Microbiol. 2005;43:2567–74.CrossRef Lebrun L, Weill FX, Lafendi L, Houriez F, Casanova F, Gutierrez MC, Ingrand D, Lagrange P, et al. Use of the INNO-LiPA-MYCOBACTERIA assay (version 2) for identification of Mycobacterium avium- Mycobacterium intracellulare-Mycobacterium scrofulaceum complex isolates. J Clin Microbiol. 2005;43:2567–74.CrossRef
Metadata
Title
PCR-reverse blot hybridization assay in respiratory specimens for rapid detection and differentiation of mycobacteria in HIV-negative population
Authors
Qing Zhang
Heping Xiao
Liping Yan
Publication date
01-12-2021
Publisher
BioMed Central
Published in
BMC Infectious Diseases / Issue 1/2021
Electronic ISSN: 1471-2334
DOI
https://doi.org/10.1186/s12879-021-05934-x

Other articles of this Issue 1/2021

BMC Infectious Diseases 1/2021 Go to the issue