Skip to main content
Top
Published in: BMC Infectious Diseases 1/2021

Open Access 01-12-2021 | Urinary Tract Infection | Research article

Accuracy of urine flow cytometry and urine test strip in predicting relevant bacteriuria in different patient populations

Authors: Christian Gehringer, Axel Regeniter, Katharina Rentsch, Sarah Tschudin-Sutter, Stefano Bassetti, Adrian Egli

Published in: BMC Infectious Diseases | Issue 1/2021

Login to get access

Abstract

Background

Urinary tract infection (UTI) is diagnosed combining urinary symptoms with demonstration of urine culture growth above a given threshold. Our aim was to compare the diagnostic accuracy of Urine Flow Cytometry (UFC) with urine test strip in predicting bacterial growth and in identifying contaminated urine samples, and to derive an algorithm to identify relevant bacterial growth for clinical use.

Methods

Species identification and colony-forming unit (CFU/ml) quantification from bacterial cultures were matched to corresponding cellular (leucocytes/epithelial cells) and bacteria counts per μl. Results comprise samples analysed between 2013 and 2015 for which urine culture (reference standard) and UFC and urine test strip data (index tests, Sysmex UX-2000) were available.

Results

47,572 urine samples of 26,256 patients were analysed. Bacteria counts used to predict bacterial growth of ≥105 CFU/ml showed an accuracy with an area under the receiver operating characteristic curve of > 93% compared to 82% using leukocyte counts. The relevant bacteriuria rule-out cut-off of 50 bacteria/μl reached a negative predictive value of 98, 91 and 89% and the rule-in cut-off of 250 bacteria/μl identified relevant bacteriuria with an overall positive predictive value of 67, 72 and 73% for microbiologically defined bacteriuria thresholds of 105, 104 or 103 CFU/ml, respectively. Measured epithelial cell counts by UFC could not identify contaminated urine.

Conclusions

Prediction of a relevant bacterial growth by bacteria counts was most accurate and was a better predictor than leucocyte counts independently of the source of the urine and the medical specialty ordering the test (medical, surgical or others).
Appendix
Available only for authorised users
Literature
2.
go back to reference Tandogdu Z, Wagenlehner FM. Global epidemiology of urinary tract infections. Curr Opin Infect Dis. 2016;29(1):73–9.CrossRef Tandogdu Z, Wagenlehner FM. Global epidemiology of urinary tract infections. Curr Opin Infect Dis. 2016;29(1):73–9.CrossRef
3.
go back to reference Green MS, Rubinstein E, Amit P. Estimating the effects of nosocomial infections on the length of hospitalization. J Infect Dis. 1982;145(5):667–72.CrossRef Green MS, Rubinstein E, Amit P. Estimating the effects of nosocomial infections on the length of hospitalization. J Infect Dis. 1982;145(5):667–72.CrossRef
4.
go back to reference Wilke T, Bottger B, Berg B, Groth A, Botteman M, Yu S, et al. Healthcare burden and costs associated with urinary tract infections in type 2 diabetes mellitus patients: an analysis based on a large sample of 456,586 German patients. Nephron. 2016;132(3):215–26.CrossRef Wilke T, Bottger B, Berg B, Groth A, Botteman M, Yu S, et al. Healthcare burden and costs associated with urinary tract infections in type 2 diabetes mellitus patients: an analysis based on a large sample of 456,586 German patients. Nephron. 2016;132(3):215–26.CrossRef
5.
go back to reference Cek M, Tandogdu Z, Wagenlehner F, Tenke P, Naber K, Bjerklund-Johansen TE. Healthcare-associated urinary tract infections in hospitalized urological patients--a global perspective: results from the GPIU studies 2003-2010. World J Urol. 2014;32(6):1587–94.CrossRef Cek M, Tandogdu Z, Wagenlehner F, Tenke P, Naber K, Bjerklund-Johansen TE. Healthcare-associated urinary tract infections in hospitalized urological patients--a global perspective: results from the GPIU studies 2003-2010. World J Urol. 2014;32(6):1587–94.CrossRef
6.
go back to reference Li F, Song M, Xu L, Deng B, Zhu S, Li X. Risk factors for catheter-associated urinary tract infection among hospitalized patients: a systematic review and meta-analysis of observational studies. J Adv Nurs. 2018. Li F, Song M, Xu L, Deng B, Zhu S, Li X. Risk factors for catheter-associated urinary tract infection among hospitalized patients: a systematic review and meta-analysis of observational studies. J Adv Nurs. 2018.
8.
go back to reference Miller JM, Binnicker MJ, Campbell S, Carroll KC, Chapin KC, Gilligan PH, et al. A guide to utilization of the microbiology Laboratory for Diagnosis of infectious diseases: 2018 update by the Infectious Diseases Society of America and the American Society for Microbiology. Clin Infect Dis. 2018;67(6):e1–e94.CrossRef Miller JM, Binnicker MJ, Campbell S, Carroll KC, Chapin KC, Gilligan PH, et al. A guide to utilization of the microbiology Laboratory for Diagnosis of infectious diseases: 2018 update by the Infectious Diseases Society of America and the American Society for Microbiology. Clin Infect Dis. 2018;67(6):e1–e94.CrossRef
9.
go back to reference Deville WL, Yzermans JC, van Duijn NP, Bezemer PD, van der Windt DA, Bouter LM. The urine dipstick test useful to rule out infections. A meta-analysis of the accuracy BMC Urol. 2004;4:4.CrossRef Deville WL, Yzermans JC, van Duijn NP, Bezemer PD, van der Windt DA, Bouter LM. The urine dipstick test useful to rule out infections. A meta-analysis of the accuracy BMC Urol. 2004;4:4.CrossRef
10.
go back to reference Mejuto P, Luengo M, Diaz-Gigante J. Automated flow Cytometry: an alternative to urine culture in a routine clinical microbiology laboratory? Int J Microbiol. 2017;2017:8532736.CrossRef Mejuto P, Luengo M, Diaz-Gigante J. Automated flow Cytometry: an alternative to urine culture in a routine clinical microbiology laboratory? Int J Microbiol. 2017;2017:8532736.CrossRef
12.
go back to reference Robin X, Turck N, Hainard A, Tiberti N, Lisacek F, Sanchez J-C, et al. pROC: an open-source package for R and S+ to analyze and compare ROC curves. BMC Bioinformatics. 2011;12:77.CrossRef Robin X, Turck N, Hainard A, Tiberti N, Lisacek F, Sanchez J-C, et al. pROC: an open-source package for R and S+ to analyze and compare ROC curves. BMC Bioinformatics. 2011;12:77.CrossRef
14.
go back to reference Shang YJ, Wang QQ, Zhang JR, Xu YL, Zhang WW, Chen Y, et al. Systematic review and meta-analysis of flow cytometry in urinary tract infection screening. Clin Chim Acta. 2013;424:90–5.CrossRef Shang YJ, Wang QQ, Zhang JR, Xu YL, Zhang WW, Chen Y, et al. Systematic review and meta-analysis of flow cytometry in urinary tract infection screening. Clin Chim Acta. 2013;424:90–5.CrossRef
15.
go back to reference McIsaac WJ, Hunchak CL. Overestimation error and unnecessary antibiotic prescriptions for acute cystitis in adult women. Med Decis Mak. 2011;31(3):405–11.CrossRef McIsaac WJ, Hunchak CL. Overestimation error and unnecessary antibiotic prescriptions for acute cystitis in adult women. Med Decis Mak. 2011;31(3):405–11.CrossRef
16.
go back to reference Jolkkonen S, Paattiniemi EL, Karpanoja P, Sarkkinen H. Screening of urine samples by flow cytometry reduces the need for culture. J Clin Microbiol. 2010;48(9):3117–21.CrossRef Jolkkonen S, Paattiniemi EL, Karpanoja P, Sarkkinen H. Screening of urine samples by flow cytometry reduces the need for culture. J Clin Microbiol. 2010;48(9):3117–21.CrossRef
17.
go back to reference Boonen KJ, Koldewijn EL, Arents NL, Raaymakers PA, Scharnhorst V. Urine flow cytometry as a primary screening method to exclude urinary tract infections. World J Urol. 2013;31(3):547–51.CrossRef Boonen KJ, Koldewijn EL, Arents NL, Raaymakers PA, Scharnhorst V. Urine flow cytometry as a primary screening method to exclude urinary tract infections. World J Urol. 2013;31(3):547–51.CrossRef
18.
go back to reference Schuh SK, Seidenberg R, Arampatzis S, Leichtle AB, Hautz WE, Exadaktylos AK, et al. Diagnosis of urinary tract infections by urine flow Cytometry: adjusted cut-off values in different clinical presentations. Dis Markers. 2019;2019:5853486.CrossRef Schuh SK, Seidenberg R, Arampatzis S, Leichtle AB, Hautz WE, Exadaktylos AK, et al. Diagnosis of urinary tract infections by urine flow Cytometry: adjusted cut-off values in different clinical presentations. Dis Markers. 2019;2019:5853486.CrossRef
19.
go back to reference Marshall RJ. The predictive value of simple rules for combining two diagnostic tests. Biometrics. 1989;45(4):1213–22.CrossRef Marshall RJ. The predictive value of simple rules for combining two diagnostic tests. Biometrics. 1989;45(4):1213–22.CrossRef
20.
go back to reference Geerts N, Jansz AR, Boonen KJ, Wijn RP, Koldewijn EL, Boer AK, et al. Urine flow cytometry can rule out urinary tract infection, but cannot identify bacterial morphologies correctly. Clin Chim Acta. 2015;448:86–90.CrossRef Geerts N, Jansz AR, Boonen KJ, Wijn RP, Koldewijn EL, Boer AK, et al. Urine flow cytometry can rule out urinary tract infection, but cannot identify bacterial morphologies correctly. Clin Chim Acta. 2015;448:86–90.CrossRef
21.
go back to reference Mohr NM, Harland KK, Crabb V, Mutnick R, Baumgartner D, Spinosi S, et al. Urinary squamous epithelial cells do not accurately predict urine culture contamination, but may predict urinalysis performance in predicting Bacteriuria. Acad Emerg Med. 2016;23(3):323–30.CrossRef Mohr NM, Harland KK, Crabb V, Mutnick R, Baumgartner D, Spinosi S, et al. Urinary squamous epithelial cells do not accurately predict urine culture contamination, but may predict urinalysis performance in predicting Bacteriuria. Acad Emerg Med. 2016;23(3):323–30.CrossRef
22.
go back to reference Sysmex (Kobe Japan). UX-2000 user manual. Updated March 2014. Sysmex (Kobe Japan). UX-2000 user manual. Updated March 2014.
Metadata
Title
Accuracy of urine flow cytometry and urine test strip in predicting relevant bacteriuria in different patient populations
Authors
Christian Gehringer
Axel Regeniter
Katharina Rentsch
Sarah Tschudin-Sutter
Stefano Bassetti
Adrian Egli
Publication date
01-12-2021
Publisher
BioMed Central
Published in
BMC Infectious Diseases / Issue 1/2021
Electronic ISSN: 1471-2334
DOI
https://doi.org/10.1186/s12879-021-05893-3

Other articles of this Issue 1/2021

BMC Infectious Diseases 1/2021 Go to the issue