Skip to main content
Top
Published in: BMC Infectious Diseases 1/2021

Open Access 01-12-2021 | Tuberculosis | Study protocol

Refining MDR-TB treatment regimens for ultra short therapy (TB-TRUST): study protocol for a randomized controlled trial

Authors: Taoping Weng, Feng Sun, Yang Li, Jiazhen Chen, Xinchang Chen, Rong Li, Shijia Ge, Yanlin Zhao, Wenhong Zhang

Published in: BMC Infectious Diseases | Issue 1/2021

Login to get access

Abstract

Background

Multidrug-resistant tuberculosis (MDR-TB) are unsatisfied to treat, pressing more effective and innovative treatment regimens. New efficient regimens for MDR-TB have obtained high treatment success rates. However, those regimens without drug susceptibility testing (DST) are also likely to contribute to the emergence of resistance. Precision treatments guided by DST might optimize the patients’ treatment outcome individually and minimize resistance amplification.

Methods

TB-TRUST is a phase III, multicenter, open-label, randomized controlled clinical trial of non-inferiority comparing the treatment success rate between the World Health Organization (WHO) shorter regimen and the refined ultra-short regimen for fluoroquinolones and second-line injectable drugs susceptible rifampicin-resistant TB. The control arm uses the WHO injectable-containing shorter regimen for 36–44 weeks depending on time of sputum smear conversion. The investigational arm uses a refined ultra-short regimen guided by molecular DST to pyrazinamide via whole-genome sequencing (WGS) to optimize the treatment of pyrazinamide-susceptible patients with levofloxacin, linezolid, cycloserine and pyrazinamide for 24–32 weeks and pyrazinamide-resistant with levofloxacin, linezolid, cycloserine and clofazimine for 36–44 weeks. The primary outcome is the treatment success rate without relapse at 84 weeks after treatment initiation. Secondary outcomes include the time of sputum culture conversion and occurrence of adverse events. Assuming α = 0.025 level of significance (one-sided test), a power of 80%, a < 10% difference in treatment success rate between control arm and investigational (80% vs. 82%), and a 5% lost follow-up rate, the number of participants per arm to show non-inferiority was calculated as 177(354 in total).

Discussion

Rapid molecular testing distinguishes patients who are eligible for shorter regimen with fluoroquinolone and the WGS-guided results shorten the treatment to 6 months for pyrazinamide susceptible patients. It’s foreseeable that not only novel developed medicines, but also traditional powerful medicines with the susceptibility confirmed by DST are the key factors to ensure the effect of anti-MDR-TB drugs. As a DST-guided precision treatment, TB-TRUST are expected to optimize therapy outcome in more patients who cannot afford the expensive new medicines and minimize and even avoid resistance amplification with the rational use of anti-TB drugs.

Trail registration

ClinicalTrial.gov, NCT03867136. Registered on March 7, 2019.
Appendix
Available only for authorised users
Literature
2.
go back to reference Cox H, Hughes J, Black J, Nicol MP. Precision medicine for drug-resistant tuberculosis in high-burden countries: is individualised treatment desirable and feasible? Lancet Infect Dis. 2018;18(9):e282–7.CrossRef Cox H, Hughes J, Black J, Nicol MP. Precision medicine for drug-resistant tuberculosis in high-burden countries: is individualised treatment desirable and feasible? Lancet Infect Dis. 2018;18(9):e282–7.CrossRef
3.
go back to reference Van Deun A, Maug AKJ, Salim MAH, Das PK, Sarker MR, Daru P, et al. Short, highly effective, and inexpensive standardized treatment of multidrug-resistant tuberculosis. Am J Respir Crit Care Med. 2010;182(5):684–92.CrossRef Van Deun A, Maug AKJ, Salim MAH, Das PK, Sarker MR, Daru P, et al. Short, highly effective, and inexpensive standardized treatment of multidrug-resistant tuberculosis. Am J Respir Crit Care Med. 2010;182(5):684–92.CrossRef
4.
go back to reference Kuaban C, Noeske J, Rieder HL, Aït-Khaled N, Abena Foe JL, Trébucq A. High effectiveness of a 12-month regimen for MDR-TB patients in Cameroon. Int J Tuberc Lung Dis Off J Int Union Tuberc Lung Dis. 2015;19(5):517–24.CrossRef Kuaban C, Noeske J, Rieder HL, Aït-Khaled N, Abena Foe JL, Trébucq A. High effectiveness of a 12-month regimen for MDR-TB patients in Cameroon. Int J Tuberc Lung Dis Off J Int Union Tuberc Lung Dis. 2015;19(5):517–24.CrossRef
5.
go back to reference Piubello A, Harouna SH, Souleymane MB, Boukary I, Morou S, Daouda M, et al. High cure rate with standardised short-course multidrug-resistant tuberculosis treatment in Niger: no relapses. Int J Tuberc Lung Dis Off J Int Union Tuberc Lung Dis. 2014;18(10):1188–94.CrossRef Piubello A, Harouna SH, Souleymane MB, Boukary I, Morou S, Daouda M, et al. High cure rate with standardised short-course multidrug-resistant tuberculosis treatment in Niger: no relapses. Int J Tuberc Lung Dis Off J Int Union Tuberc Lung Dis. 2014;18(10):1188–94.CrossRef
6.
go back to reference Nunn AJ, Phillips PPJ, Meredith SK, Chiang C-Y, Conradie F, Dalai D, et al. A trial of a shorter regimen for rifampin-resistant tuberculosis. N Engl J Med. 2019;380(13):1201–13.CrossRef Nunn AJ, Phillips PPJ, Meredith SK, Chiang C-Y, Conradie F, Dalai D, et al. A trial of a shorter regimen for rifampin-resistant tuberculosis. N Engl J Med. 2019;380(13):1201–13.CrossRef
8.
go back to reference Conradie F, Diacon AH, Ngubane N, Howell P, Everitt D, Crook AM, et al. Treatment of Highly Drug-Resistant Pulmonary Tuberculosis. N Engl J Med. 2020;382(10):893–902.CrossRef Conradie F, Diacon AH, Ngubane N, Howell P, Everitt D, Crook AM, et al. Treatment of Highly Drug-Resistant Pulmonary Tuberculosis. N Engl J Med. 2020;382(10):893–902.CrossRef
9.
go back to reference Sun F, Li Y, Chen Y, Guan W, Jiang X, Wang X, et al. Introducing molecular testing of pyrazinamide susceptibility improves multidrug-resistant tuberculosis treatment outcomes: a prospective cohort study. Eur Respir J. 2019;53(3):1801770.CrossRef Sun F, Li Y, Chen Y, Guan W, Jiang X, Wang X, et al. Introducing molecular testing of pyrazinamide susceptibility improves multidrug-resistant tuberculosis treatment outcomes: a prospective cohort study. Eur Respir J. 2019;53(3):1801770.CrossRef
11.
go back to reference Yadon AN, Maharaj K, Adamson JH, Lai Y-P, Sacchettini JC, Ioerger TR, et al. A comprehensive characterization of PncA polymorphisms that confer resistance to pyrazinamide. Nat Commun. 2017;8(1):588.CrossRef Yadon AN, Maharaj K, Adamson JH, Lai Y-P, Sacchettini JC, Ioerger TR, et al. A comprehensive characterization of PncA polymorphisms that confer resistance to pyrazinamide. Nat Commun. 2017;8(1):588.CrossRef
12.
go back to reference Liu W, Chen J, Shen Y, Jin J, Wu J, Sun F, et al. Phenotypic and genotypic characterization of pyrazinamide resistance among multidrug-resistant Mycobacterium tuberculosis clinical isolates in Hangzhou, China. Clin Microbiol Infect. 2018;24(9):1016.e1–5.CrossRef Liu W, Chen J, Shen Y, Jin J, Wu J, Sun F, et al. Phenotypic and genotypic characterization of pyrazinamide resistance among multidrug-resistant Mycobacterium tuberculosis clinical isolates in Hangzhou, China. Clin Microbiol Infect. 2018;24(9):1016.e1–5.CrossRef
13.
go back to reference Chen X, He G, Wang S, Lin S, Chen J, Zhang W. Evaluation of whole-genome sequence method to diagnose resistance of 13 anti-tuberculosis drugs and characterize resistance genes in clinical multi-drug resistance mycobacterium tuberculosis isolates from China. Front Microbiol. 2019;10:1741.CrossRef Chen X, He G, Wang S, Lin S, Chen J, Zhang W. Evaluation of whole-genome sequence method to diagnose resistance of 13 anti-tuberculosis drugs and characterize resistance genes in clinical multi-drug resistance mycobacterium tuberculosis isolates from China. Front Microbiol. 2019;10:1741.CrossRef
14.
go back to reference Shi W, Chen J, Feng J, Cui P, Zhang S, Weng X, et al. Aspartate decarboxylase (PanD) as a new target of pyrazinamide in Mycobacterium tuberculosis. Emerg Microbes Infect. 2014;3(1):1–8.CrossRef Shi W, Chen J, Feng J, Cui P, Zhang S, Weng X, et al. Aspartate decarboxylase (PanD) as a new target of pyrazinamide in Mycobacterium tuberculosis. Emerg Microbes Infect. 2014;3(1):1–8.CrossRef
15.
go back to reference Zhang S, Chen J, Cui P, Shi W, Zhang W, Zhang Y. Identification of novel mutations associated with clofazimine resistance in Mycobacterium tuberculosis : table 1. J Antimicrob Chemother. 2015;70(9):2507–10.CrossRef Zhang S, Chen J, Cui P, Shi W, Zhang W, Zhang Y. Identification of novel mutations associated with clofazimine resistance in Mycobacterium tuberculosis : table 1. J Antimicrob Chemother. 2015;70(9):2507–10.CrossRef
16.
go back to reference Zhang S, Chen J, Shi W, Liu W, Zhang W, Zhang Y. Mutations in panD encoding aspartate decarboxylase are associated with pyrazinamide resistance in Mycobacterium tuberculosis. Emerg Microbes Infect. 2013;2(1):1–5.CrossRef Zhang S, Chen J, Shi W, Liu W, Zhang W, Zhang Y. Mutations in panD encoding aspartate decarboxylase are associated with pyrazinamide resistance in Mycobacterium tuberculosis. Emerg Microbes Infect. 2013;2(1):1–5.CrossRef
17.
go back to reference Zhang S, Chen J, Cui P, Shi W, Shi X, Niu H, et al. Mycobacterium tuberculosis mutations associated with reduced susceptibility to linezolid. Antimicrob Agents Chemother. 2016;60(4):2542–4.CrossRef Zhang S, Chen J, Cui P, Shi W, Shi X, Niu H, et al. Mycobacterium tuberculosis mutations associated with reduced susceptibility to linezolid. Antimicrob Agents Chemother. 2016;60(4):2542–4.CrossRef
18.
go back to reference Zhang Y, Zhang J, Cui P, Zhang Y, Zhang W. Identification of novel efflux proteins Rv0191, Rv3756c, Rv3008, and Rv1667c involved in pyrazinamide resistance in mycobacterium tuberculosis. Antimicrob Agents Chemother. 2017;61(8):e00940–17 e00940-17.PubMedPubMedCentral Zhang Y, Zhang J, Cui P, Zhang Y, Zhang W. Identification of novel efflux proteins Rv0191, Rv3756c, Rv3008, and Rv1667c involved in pyrazinamide resistance in mycobacterium tuberculosis. Antimicrob Agents Chemother. 2017;61(8):e00940–17 e00940-17.PubMedPubMedCentral
19.
go back to reference Zhang S, Chen J, Shi W, Cui P, Zhang J, Cho S, et al. Mutation in clpC1 encoding an ATP-dependent ATPase involved in protein degradation is associated with pyrazinamide resistance in Mycobacterium tuberculosis. Emerg Microbes Infect. 2017;6(1):1–2. Zhang S, Chen J, Shi W, Cui P, Zhang J, Cho S, et al. Mutation in clpC1 encoding an ATP-dependent ATPase involved in protein degradation is associated with pyrazinamide resistance in Mycobacterium tuberculosis. Emerg Microbes Infect. 2017;6(1):1–2.
21.
go back to reference Lee M, Mok J, Kim DK, Shim TS, Koh W-J, Jeon D, et al. Delamanid, linezolid, levofloxacin, and pyrazinamide for the treatment of patients with fluoroquinolone-sensitive multidrug-resistant tuberculosis (treatment shortening of MDR-TB using existing and new drugs, MDR-END): study protocol for a phase II/III, multicenter, randomized, open-label clinical trial. Trials. 2019;20(1):57.CrossRef Lee M, Mok J, Kim DK, Shim TS, Koh W-J, Jeon D, et al. Delamanid, linezolid, levofloxacin, and pyrazinamide for the treatment of patients with fluoroquinolone-sensitive multidrug-resistant tuberculosis (treatment shortening of MDR-TB using existing and new drugs, MDR-END): study protocol for a phase II/III, multicenter, randomized, open-label clinical trial. Trials. 2019;20(1):57.CrossRef
22.
go back to reference Khan U, Huerga H, Khan AJ, Mitnick CD, Hewison C, Varaine F, et al. The endTB observational study protocol: treatment of MDR-TB with bedaquiline or delamanid containing regimens. BMC Infect Dis. 2019;19(1):733.CrossRef Khan U, Huerga H, Khan AJ, Mitnick CD, Hewison C, Varaine F, et al. The endTB observational study protocol: treatment of MDR-TB with bedaquiline or delamanid containing regimens. BMC Infect Dis. 2019;19(1):733.CrossRef
23.
go back to reference Gopal P, Grüber G, Dartois V, Dick T. Pharmacological and molecular mechanisms behind the sterilizing activity of pyrazinamide. Trends Pharmacol Sci. 2019;40(12):930–40.CrossRef Gopal P, Grüber G, Dartois V, Dick T. Pharmacological and molecular mechanisms behind the sterilizing activity of pyrazinamide. Trends Pharmacol Sci. 2019;40(12):930–40.CrossRef
24.
go back to reference Li S-Y, Tasneen R, Tyagi S, Soni H, Converse PJ, Mdluli K, et al. Bactericidal and sterilizing activity of a novel regimen with Bedaquiline, Pretomanid, Moxifloxacin, and pyrazinamide in a murine model of tuberculosis. Antimicrob Agents Chemother. 2017;61(9):e00913–7 e00913-17.CrossRef Li S-Y, Tasneen R, Tyagi S, Soni H, Converse PJ, Mdluli K, et al. Bactericidal and sterilizing activity of a novel regimen with Bedaquiline, Pretomanid, Moxifloxacin, and pyrazinamide in a murine model of tuberculosis. Antimicrob Agents Chemother. 2017;61(9):e00913–7 e00913-17.CrossRef
25.
go back to reference Njire M, Tan Y, Mugweru J, Wang C, Guo J, Yew W, et al. Pyrazinamide resistance in mycobacterium tuberculosis: review and update. Adv Med Sci. 2016;61(1):63–71.CrossRef Njire M, Tan Y, Mugweru J, Wang C, Guo J, Yew W, et al. Pyrazinamide resistance in mycobacterium tuberculosis: review and update. Adv Med Sci. 2016;61(1):63–71.CrossRef
26.
go back to reference Pym AS, Diacon AH, Tang S-J, Conradie F, Danilovits M, Chuchottaworn C, et al. Bedaquiline in the treatment of multidrug- and extensively drug-resistant tuberculosis. Eur Respir J. 2016;47(2):564–74.CrossRef Pym AS, Diacon AH, Tang S-J, Conradie F, Danilovits M, Chuchottaworn C, et al. Bedaquiline in the treatment of multidrug- and extensively drug-resistant tuberculosis. Eur Respir J. 2016;47(2):564–74.CrossRef
27.
go back to reference Borisov SE, Dheda K, Enwerem M, Romero Leyet R, D’Ambrosio L, Centis R, et al. Effectiveness and safety of bedaquiline-containing regimens in the treatment of MDR- and XDR-TB: a multicentre study. Eur Respir J. 2017;49(5):1700387.CrossRef Borisov SE, Dheda K, Enwerem M, Romero Leyet R, D’Ambrosio L, Centis R, et al. Effectiveness and safety of bedaquiline-containing regimens in the treatment of MDR- and XDR-TB: a multicentre study. Eur Respir J. 2017;49(5):1700387.CrossRef
28.
go back to reference He G, Li Y, Chen X, Chen J, Zhang W. Prediction of treatment outcomes for multidrug-resistant tuberculosis by whole-genome sequencing. Int J Infect Dis. 2020;96:68–72.CrossRef He G, Li Y, Chen X, Chen J, Zhang W. Prediction of treatment outcomes for multidrug-resistant tuberculosis by whole-genome sequencing. Int J Infect Dis. 2020;96:68–72.CrossRef
Metadata
Title
Refining MDR-TB treatment regimens for ultra short therapy (TB-TRUST): study protocol for a randomized controlled trial
Authors
Taoping Weng
Feng Sun
Yang Li
Jiazhen Chen
Xinchang Chen
Rong Li
Shijia Ge
Yanlin Zhao
Wenhong Zhang
Publication date
01-12-2021
Publisher
BioMed Central
Published in
BMC Infectious Diseases / Issue 1/2021
Electronic ISSN: 1471-2334
DOI
https://doi.org/10.1186/s12879-021-05870-w

Other articles of this Issue 1/2021

BMC Infectious Diseases 1/2021 Go to the issue