Skip to main content
Top
Published in: BMC Infectious Diseases 1/2021

Open Access 01-12-2021 | Nosocomial Infection | Research article

Epidemiologic characteristics of orthopedic surgical site infections and under-reporting estimation of registries using capture-recapture analysis

Authors: Niloufar Taherpour, Yadollah Mehrabi, Arash Seifi, Babak Eshrati, Seyed Saeed Hashemi Nazari

Published in: BMC Infectious Diseases | Issue 1/2021

Login to get access

Abstract

Background

Surgical Site Infections (SSIs) are among the leading causes of the postoperative complications. This study aimed at investigating the epidemiologic characteristics of orthopedic SSIs and estimating the under-reporting of registries using the capture-recapture method.

Methods

This study, which was a registry-based, cross-sectional one, was conducted in six educational hospitals in Tehran during a one-year period, from March, 2017 to March, 2018. The data were collected from two hospital registries (National Nosocomial Infection Surveillance System (NNIS) and Health Information Management database (HIM)). First, all orthopedic SSIs registered in these sources were used to perform capture-recapture (N = 503). Second, 202 samples were randomly selected to assess patients` characteristics.

Results

Totally, 76.24% of SSIs were detected post-discharge. Staphylococcus aureus (11.38%) was the most frequently detected bacterium in orthopedic SSIs. The median time between the detection of a SSI and the discharge was 17 days. The results of a study done on 503 SSIs showed that the coverage of NNIS and HIM was 59.95 and 65.17%, respectively. After capture-recapture estimation, it was found that about 221 of orthopedic SSIs were not detected by two sources among six hospitals and the real number of SSIs were estimated to be 623 ± 36.58 (95% CI, 552–695) and under-reporting percentage was 63.32%.

Conclusion

To recognize the trends of SSIs mortality and morbidity in national level, it is significant to have access to a registry with minimum underestimated data. Therefore, according to the weak coverage of NNIS and HIM among Iranian hospitals, a plan for promoting the national Infection Prevention and Control (IPC) programs and providing updated protocols is recommended.
Literature
1.
go back to reference Fan Y, Wei Z, Wang W, Tan L, Jiang H, Tian L, et al. The incidence and distribution of surgical site infection in mainland China: a meta-analysis of 84 prospective observational studies. Sci Rep 2014;4:6783. PubMed PMID: 25356832. Pubmed Central PMCID: PMC4214160. Epub 2014/10/31. eng. Fan Y, Wei Z, Wang W, Tan L, Jiang H, Tian L, et al. The incidence and distribution of surgical site infection in mainland China: a meta-analysis of 84 prospective observational studies. Sci Rep 2014;4:6783. PubMed PMID: 25356832. Pubmed Central PMCID: PMC4214160. Epub 2014/10/31. eng.
2.
go back to reference Horan TC, Gaynes RP, Martone WJ, Jarvis WR, Emori TG. CDC definitions of nosocomial surgical site infections, 1992: a modification of CDC definitions of surgical wound infections. Infect Control Hosp Epidemiol 1992;13(10):606–608. PubMed PMID: 1334988. Epub 1992/10/01. eng. Horan TC, Gaynes RP, Martone WJ, Jarvis WR, Emori TG. CDC definitions of nosocomial surgical site infections, 1992: a modification of CDC definitions of surgical wound infections. Infect Control Hosp Epidemiol 1992;13(10):606–608. PubMed PMID: 1334988. Epub 1992/10/01. eng.
3.
go back to reference Mardanpour K, Rahbar M, Mardanpour S, Mardanpour N. Surgical site infections in orthopedic surgery: incidence and risk factors at an Iranian teaching hospital. Clin Trials Orthop Dis. 2017;2(4):132–7.CrossRef Mardanpour K, Rahbar M, Mardanpour S, Mardanpour N. Surgical site infections in orthopedic surgery: incidence and risk factors at an Iranian teaching hospital. Clin Trials Orthop Dis. 2017;2(4):132–7.CrossRef
4.
go back to reference Ghashghaee A, Behzadifar M, Azari S, Farhadi Z, Luigi Bragazzi N, Behzadifar M, et al. Prevalence of nosocomial infections in Iran: A systematic review and meta-analysis. Med J Islam Repub Iran. 2018;32: 48-. PubMed PMID: 30159299. eng. Ghashghaee A, Behzadifar M, Azari S, Farhadi Z, Luigi Bragazzi N, Behzadifar M, et al. Prevalence of nosocomial infections in Iran: A systematic review and meta-analysis. Med J Islam Repub Iran. 2018;32: 48-. PubMed PMID: 30159299. eng.
6.
9.
go back to reference Maleknejad A, Dastyar N, Badakhsh M, Balouchi A, Rafiemanesh H, Al Rawajfah O, et al. Surgical site infections in eastern Mediterranean region: a systematic review and meta-analysis. Infect Dis. 2019:1–11. Maleknejad A, Dastyar N, Badakhsh M, Balouchi A, Rafiemanesh H, Al Rawajfah O, et al. Surgical site infections in eastern Mediterranean region: a systematic review and meta-analysis. Infect Dis. 2019:1–11.
11.
go back to reference Vieira Gde D, Mendonca HR, Alves Tda C, Araujo DF, Silveira Filho ML, Freitas AP, et al. Survey of infection in orthopedic postoperative and their causative agents: a prospective study. Rev Assoc Med Bras (1992). 2015;61(4):341–346. PubMed PMID: 26466216. Epub 2015/10/16. eng. Vieira Gde D, Mendonca HR, Alves Tda C, Araujo DF, Silveira Filho ML, Freitas AP, et al. Survey of infection in orthopedic postoperative and their causative agents: a prospective study. Rev Assoc Med Bras (1992). 2015;61(4):341–346. PubMed PMID: 26466216. Epub 2015/10/16. eng.
15.
go back to reference Chapman DG. The estimation of biological populations. Ann Math Stat. 1954:1–15. Chapman DG. The estimation of biological populations. Ann Math Stat. 1954:1–15.
16.
go back to reference Seber GAF. The effects of trap response on tag recapture estimates. Biometrics. 1970:13–22. Seber GAF. The effects of trap response on tag recapture estimates. Biometrics. 1970:13–22.
17.
go back to reference Najjar YW, Al-Wahsh ZM, Hamdan M, Saleh MY. Risk factors of orthopedic surgical site infection in Jordan: A prospective cohort study. Int J Surg Open. 2018;15:1–6.CrossRef Najjar YW, Al-Wahsh ZM, Hamdan M, Saleh MY. Risk factors of orthopedic surgical site infection in Jordan: A prospective cohort study. Int J Surg Open. 2018;15:1–6.CrossRef
21.
go back to reference Ducel G, Fubry J, Nicolle L. Prevention of hospital-acquired infections. Switzerland: WHO;2002–2012.p1,3. Ducel G, Fubry J, Nicolle L. Prevention of hospital-acquired infections. Switzerland: WHO;2002–2012.p1,3.
23.
go back to reference Huenger F, Schmachtenberg A, Haefner H, Zolldann D, Nowicki K, Wirtz DC, et al. Evaluation of postdischarge surveillance of surgical site infections after total hip and knee arthroplasty. Am J Infect Control. 2005;33(8):455–62.CrossRef Huenger F, Schmachtenberg A, Haefner H, Zolldann D, Nowicki K, Wirtz DC, et al. Evaluation of postdischarge surveillance of surgical site infections after total hip and knee arthroplasty. Am J Infect Control. 2005;33(8):455–62.CrossRef
24.
go back to reference Ercole FF, Franco LMC, Macieira TGR, Wenceslau LCC, Resende HINd, Chianca TCM. Risk of surgical site infection in patients undergoing orthopedic surgery. Rev Latino-Am Enfermagem 2011;19:1362–1368. Ercole FF, Franco LMC, Macieira TGR, Wenceslau LCC, Resende HINd, Chianca TCM. Risk of surgical site infection in patients undergoing orthopedic surgery. Rev Latino-Am Enfermagem 2011;19:1362–1368.
26.
go back to reference Seifi A, Dehghan-Nayeri N, Rostamnia L, Varaei S, Akbari Sari A, Haghani H, et al. Health care-associated infection surveillance system in Iran: reporting and accuracy. Am J Infect Control 2019;47(8):951–955. PubMed PMID: 30738720. Epub 2019/02/11. eng. Seifi A, Dehghan-Nayeri N, Rostamnia L, Varaei S, Akbari Sari A, Haghani H, et al. Health care-associated infection surveillance system in Iran: reporting and accuracy. Am J Infect Control 2019;47(8):951–955. PubMed PMID: 30738720. Epub 2019/02/11. eng.
29.
go back to reference Askarian M, Mahmoudi H, Assadian O. Incidence of nosocomial infections in a big University affiliated Hospital in Shiraz, Iran: a six-month experience. Int J Prev Med. 2013;4(3):366–72.PubMedPubMedCentral Askarian M, Mahmoudi H, Assadian O. Incidence of nosocomial infections in a big University affiliated Hospital in Shiraz, Iran: a six-month experience. Int J Prev Med. 2013;4(3):366–72.PubMedPubMedCentral
31.
go back to reference Borchardt RA, Tzizik D. Update on surgical site infections: the new CDC guidelines. JAAPA 2018;31(4):52–54. PubMed PMID: 30973535. Epub 2019/04/12. eng. Borchardt RA, Tzizik D. Update on surgical site infections: the new CDC guidelines. JAAPA 2018;31(4):52–54. PubMed PMID: 30973535. Epub 2019/04/12. eng.
33.
go back to reference Nguhuni B, De Nardo P, Gentilotti E, Chaula Z, Damian C, Mencarini P, et al. Reliability and validity of using telephone calls for post-discharge surveillance of surgical site infection following caesarean section at a tertiary hospital in Tanzania. Antimicrob Resist Infect Control. 2017;6(1):43.CrossRef Nguhuni B, De Nardo P, Gentilotti E, Chaula Z, Damian C, Mencarini P, et al. Reliability and validity of using telephone calls for post-discharge surveillance of surgical site infection following caesarean section at a tertiary hospital in Tanzania. Antimicrob Resist Infect Control. 2017;6(1):43.CrossRef
Metadata
Title
Epidemiologic characteristics of orthopedic surgical site infections and under-reporting estimation of registries using capture-recapture analysis
Authors
Niloufar Taherpour
Yadollah Mehrabi
Arash Seifi
Babak Eshrati
Seyed Saeed Hashemi Nazari
Publication date
01-12-2021
Publisher
BioMed Central
Published in
BMC Infectious Diseases / Issue 1/2021
Electronic ISSN: 1471-2334
DOI
https://doi.org/10.1186/s12879-020-05687-z

Other articles of this Issue 1/2021

BMC Infectious Diseases 1/2021 Go to the issue