Skip to main content
Top
Published in: BMC Infectious Diseases 1/2020

01-12-2020 | Tuberculosis | Research article

The geno-spatio analysis of Mycobacterium tuberculosis complex in hot and cold spots of Guangxi, China

Authors: Dingwen Lin, Zhezhe Cui, Virasakdi Chongsuvivatwong, Prasit Palittapongarnpim, Angkana Chaiprasert, Wuthiwat Ruangchai, Jing Ou, Liwen Huang

Published in: BMC Infectious Diseases | Issue 1/2020

Login to get access

Abstract

Background

At present, there are few studies on polymorphism of Mycobacterium tuberculosis (Mtb) gene and how it affects the TB epidemic. This study aimed to document the differences of polymorphisms between tuberculosis hot and cold spot areas of Guangxi Zhuang Autonomous Region, China.

Methods

The cold and hot spot areas, each with 3 counties, had been pre-identified by TB incidence for 5 years from the surveillance database. Whole genome sequencing analysis was performed on all sputum Mtb isolates from the detected cases during January and June 2018. Single nucleotide polymorphism (SNP) of each isolate compared to the H37Rv strain were called and used for lineage and sub-lineage identification. Pairwise SNP differences between every pair of isolates were computed. Analyses of Molecular Variance (AMOVA) across counties of the same hot or cold spot area and between the two areas were performed.

Results

As a whole, 59.8% (57.7% sub-lineage 2.2 and 2.1% sub-lineage 2.1) and 39.8% (17.8% sub-lineage 4.4, 6.5% sub-lineage 4.2 and 15.5% sub-lineage 4.5) of the Mtb strains were Lineage 2 and Lineage 4 respectively. The percentages of sub-lineage 2.2 (Beijing family strains) are significantly higher in hot spots. Through the MDS dimension reduction, the genomic population structure in the three hot spot counties is significantly different from those three cold spot counties (T-test p = 0.05). The median of SNPs distances among Mtb isolates in cold spots was greater than that in hot spots (897 vs 746, Rank-sum test p < 0.001). Three genomic clusters, each with genomic distance ≤12 SNPs, were identified with 2, 3 and 4 consanguineous strains. Two clusters were from hot spots and one was from cold spots.

Conclusion

Narrower genotype diversity in the hot area may indicate higher transmissibility of the Mtb strains in the area compared to those in the cold spot area.
Appendix
Available only for authorised users
Literature
1.
go back to reference Maharjan B, Nakajima C, Isoda N, Thapa J, Poudel A, Shah Y, et al. Genetic diversity and distribution dynamics of multidrug-resistant mycobacterium tuberculosis isolates in Nepal. Sci Rep-Uk. 2018;8:16634. Maharjan B, Nakajima C, Isoda N, Thapa J, Poudel A, Shah Y, et al. Genetic diversity and distribution dynamics of multidrug-resistant mycobacterium tuberculosis isolates in Nepal. Sci Rep-Uk. 2018;8:16634.
2.
go back to reference Wiens KE, Woyczynski LP, Ledesma JR, Ross JM, Zenteno-Cuevas R, Goodridge A, et al. Global variation in bacterial strains that cause tuberculosis disease: a systematic review and meta-analysis. BMC Med. 2018;16:196. Wiens KE, Woyczynski LP, Ledesma JR, Ross JM, Zenteno-Cuevas R, Goodridge A, et al. Global variation in bacterial strains that cause tuberculosis disease: a systematic review and meta-analysis. BMC Med. 2018;16:196.
3.
go back to reference Monteserin J, Paul R, Gravina E, Reniero A, Hernandez T, Mazzeo E, et al. Genotypic diversity of mycobacterium tuberculosis in Buenos Aires, Argentina. Infection Genetics Evol. 2018;62:1–7.CrossRef Monteserin J, Paul R, Gravina E, Reniero A, Hernandez T, Mazzeo E, et al. Genotypic diversity of mycobacterium tuberculosis in Buenos Aires, Argentina. Infection Genetics Evol. 2018;62:1–7.CrossRef
4.
go back to reference Rasigade JP, Barbier M, Dumitrescu O, Pichat C, Carret G, Ronnaux-Baron AS, et al. Strain-specific estimation of epidemic success provides insights into the transmission dynamics of tuberculosis. Sci Rep-Uk. 2017;7:45326. Rasigade JP, Barbier M, Dumitrescu O, Pichat C, Carret G, Ronnaux-Baron AS, et al. Strain-specific estimation of epidemic success provides insights into the transmission dynamics of tuberculosis. Sci Rep-Uk. 2017;7:45326.
5.
go back to reference Lin M, Cui ZZ, Lin DW, Liang DB, Huang MY, Su HB, et al. Visual-spatial and temporal characteristics related to infectious tuberculosis epidemics in Guangxi Zhuang autonomous region, 2012-2015. Zhonghua Liu Xing Bing Xue Za Zhi. 2017;38:1206–11.PubMed Lin M, Cui ZZ, Lin DW, Liang DB, Huang MY, Su HB, et al. Visual-spatial and temporal characteristics related to infectious tuberculosis epidemics in Guangxi Zhuang autonomous region, 2012-2015. Zhonghua Liu Xing Bing Xue Za Zhi. 2017;38:1206–11.PubMed
6.
go back to reference Cui Z, Lin D, Chongsuvivatwong V, Zhao J, Lin M, Ou J, et al. Spatiotemporal patterns and ecological factors of tuberculosis notification: a spatial panel data analysis in Guangxi. China PLoS One. 2019;14:e0212051.CrossRef Cui Z, Lin D, Chongsuvivatwong V, Zhao J, Lin M, Ou J, et al. Spatiotemporal patterns and ecological factors of tuberculosis notification: a spatial panel data analysis in Guangxi. China PLoS One. 2019;14:e0212051.CrossRef
7.
go back to reference Gardy JL, Johnston JC, Sui SJH, Cook VJ, Shah LN, Brodkin E, et al. Whole-genome sequencing and social-network analysis of a tuberculosis outbreak. New Engl J Med. 2011;364:730–9.CrossRef Gardy JL, Johnston JC, Sui SJH, Cook VJ, Shah LN, Brodkin E, et al. Whole-genome sequencing and social-network analysis of a tuberculosis outbreak. New Engl J Med. 2011;364:730–9.CrossRef
8.
go back to reference Hanekom M, van der Spuy GD, Gey van Pittius NC, McEvoy CRE, Hoek KGP, Ndabambi SL, et al. Discordance between mycobacterial interspersed repetitive-unit-variable-number tandem-repeat typing and IS6110 restriction fragment length polymorphism genotyping for analysis of mycobacterium tuberculosis Beijing strains in a setting of high incidence of tuberculosis. J Clin Microbiol. 2008;46:3338–45.CrossRef Hanekom M, van der Spuy GD, Gey van Pittius NC, McEvoy CRE, Hoek KGP, Ndabambi SL, et al. Discordance between mycobacterial interspersed repetitive-unit-variable-number tandem-repeat typing and IS6110 restriction fragment length polymorphism genotyping for analysis of mycobacterium tuberculosis Beijing strains in a setting of high incidence of tuberculosis. J Clin Microbiol. 2008;46:3338–45.CrossRef
9.
go back to reference Luo T, Yang CG, Gagneux S, Gicquel B, Mei J, Gao Q. Combination of single nucleotide polymorphism and variable-number tandem repeats for genotyping a homogenous population of mycobacterium tuberculosis Beijing strains in China. J Clin Microbiol. 2012;50:633–9.CrossRef Luo T, Yang CG, Gagneux S, Gicquel B, Mei J, Gao Q. Combination of single nucleotide polymorphism and variable-number tandem repeats for genotyping a homogenous population of mycobacterium tuberculosis Beijing strains in China. J Clin Microbiol. 2012;50:633–9.CrossRef
10.
go back to reference Mathema B, Kurepina NE, Bifani PJ, Kreiswirth BN. Molecular epidemiology of tuberculosis: current insights. Clin Microbiol Rev. 2006;19:658–85.CrossRef Mathema B, Kurepina NE, Bifani PJ, Kreiswirth BN. Molecular epidemiology of tuberculosis: current insights. Clin Microbiol Rev. 2006;19:658–85.CrossRef
11.
go back to reference Roetzer A, Diel R, Kohl TA, Ruckert C, Nubel U, Blom J, et al. Whole genome sequencing versus traditional genotyping for investigation of a mycobacterium tuberculosis outbreak: a longitudinal molecular epidemiological study. PLoS Med. 2013;10:e1001387. Roetzer A, Diel R, Kohl TA, Ruckert C, Nubel U, Blom J, et al. Whole genome sequencing versus traditional genotyping for investigation of a mycobacterium tuberculosis outbreak: a longitudinal molecular epidemiological study. PLoS Med. 2013;10:e1001387.
12.
go back to reference Walker TM, Clp CL, Harrell RH, Evans JT, Kapatai G, Dedicoat MJ, et al. Whole-genome sequencing to delineate mycobacterium tuberculosis outbreaks: a retrospective observational study. Lancet Infect Dis. 2013;13:137–46.CrossRef Walker TM, Clp CL, Harrell RH, Evans JT, Kapatai G, Dedicoat MJ, et al. Whole-genome sequencing to delineate mycobacterium tuberculosis outbreaks: a retrospective observational study. Lancet Infect Dis. 2013;13:137–46.CrossRef
13.
go back to reference Fleiss JL, Levin B, Paik MC. Statistical methods for rates and proportions. 3rd ed. Hoboken, N.J.: J. Wiley, 2003 Wiley series in probability and statistics). Fleiss JL, Levin B, Paik MC. Statistical methods for rates and proportions. 3rd ed. Hoboken, N.J.: J. Wiley, 2003 Wiley series in probability and statistics).
14.
go back to reference Langmead B, Trapnell C, Pop M, Salzberg SL. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 2009;10:R25.CrossRef Langmead B, Trapnell C, Pop M, Salzberg SL. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 2009;10:R25.CrossRef
15.
go back to reference Huelsenbeck JP, Ronquist F. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics. 2001;17:754–5.CrossRef Huelsenbeck JP, Ronquist F. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics. 2001;17:754–5.CrossRef
16.
go back to reference Ajawatanawong P, Yanai H, Smittipat N, Disratthakit A, Yamada N, Miyahara R, et al. A novel ancestral Beijing sublineage of mycobacterium tuberculosis suggests the transition site to modern Beijing sublineages. Sci Rep. 2019;9:13718.CrossRef Ajawatanawong P, Yanai H, Smittipat N, Disratthakit A, Yamada N, Miyahara R, et al. A novel ancestral Beijing sublineage of mycobacterium tuberculosis suggests the transition site to modern Beijing sublineages. Sci Rep. 2019;9:13718.CrossRef
17.
go back to reference Luo T, Comas I, Luo D, Lu B, Wu J, Wei L, et al. Southern east Asian origin and coexpansion of mycobacterium tuberculosis Beijing family with Han Chinese. Proc Natl Acad Sci U S A. 2015;112:8136–41.CrossRef Luo T, Comas I, Luo D, Lu B, Wu J, Wei L, et al. Southern east Asian origin and coexpansion of mycobacterium tuberculosis Beijing family with Han Chinese. Proc Natl Acad Sci U S A. 2015;112:8136–41.CrossRef
18.
go back to reference Comas I, Coscolla M, Luo T, Borrell S, Holt KE, Kato-Maeda M, et al. Out-of-Africa migration and Neolithic coexpansion of mycobacterium tuberculosis with modern humans. Nat Genet. 2013;45:1176–82.CrossRef Comas I, Coscolla M, Luo T, Borrell S, Holt KE, Kato-Maeda M, et al. Out-of-Africa migration and Neolithic coexpansion of mycobacterium tuberculosis with modern humans. Nat Genet. 2013;45:1176–82.CrossRef
19.
go back to reference Gutierrez MC, Brisse S, Brosch R, Fabre M, Omais B, Marmiesse M, et al. Ancient origin and gene mosaicism of the progenitor of mycobacterium tuberculosis. PLoS Pathog. 2005;1:e5.CrossRef Gutierrez MC, Brisse S, Brosch R, Fabre M, Omais B, Marmiesse M, et al. Ancient origin and gene mosaicism of the progenitor of mycobacterium tuberculosis. PLoS Pathog. 2005;1:e5.CrossRef
20.
go back to reference Hershberg R, Lipatov M, Small PM, Sheffer H, Niemann S, Homolka S, et al. High functional diversity in mycobacterium tuberculosis driven by genetic drift and human demography. PLoS Biol. 2008;6:e311.CrossRef Hershberg R, Lipatov M, Small PM, Sheffer H, Niemann S, Homolka S, et al. High functional diversity in mycobacterium tuberculosis driven by genetic drift and human demography. PLoS Biol. 2008;6:e311.CrossRef
21.
go back to reference Wirth T, Hildebrand F, Allix-Beguec C, Wolbeling F, Kubica T, Kremer K, et al. Origin, spread and demography of the mycobacterium tuberculosis complex. PLoS Pathog. 2008;4:e1000160.CrossRef Wirth T, Hildebrand F, Allix-Beguec C, Wolbeling F, Kubica T, Kremer K, et al. Origin, spread and demography of the mycobacterium tuberculosis complex. PLoS Pathog. 2008;4:e1000160.CrossRef
22.
go back to reference Liu Q, Ma A, Wei L, Pang Y, Wu B, Luo T, et al. China's tuberculosis epidemic stems from historical expansion of four strains of mycobacterium tuberculosis. Nat Ecol Evol. 2018;2:1982–92.CrossRef Liu Q, Ma A, Wei L, Pang Y, Wu B, Luo T, et al. China's tuberculosis epidemic stems from historical expansion of four strains of mycobacterium tuberculosis. Nat Ecol Evol. 2018;2:1982–92.CrossRef
23.
go back to reference Guo YL, Liu Y, Wang SM, Li CY. The identification of mycobacterium tuberculosis isolates by DNA typing technique. Zhonghua Liu Xing Bing Xue Za Zhi. 2005;26:361–5.PubMed Guo YL, Liu Y, Wang SM, Li CY. The identification of mycobacterium tuberculosis isolates by DNA typing technique. Zhonghua Liu Xing Bing Xue Za Zhi. 2005;26:361–5.PubMed
24.
go back to reference Luo D, Zhao J, Lin M, Liu F, Huang S, Zhang Y, et al. Drug resistance in newly presenting and previously treated tuberculosis patients in Guangxi Province, People's Republic of China. Asia Pac J Public Health. 2017;29:296–303.CrossRef Luo D, Zhao J, Lin M, Liu F, Huang S, Zhang Y, et al. Drug resistance in newly presenting and previously treated tuberculosis patients in Guangxi Province, People's Republic of China. Asia Pac J Public Health. 2017;29:296–303.CrossRef
25.
go back to reference Demay C, Liens B, Burguiere T, Hill V, Couvin D, Millet J, et al. SITVITWEB--a publicly available international multimarker database for studying mycobacterium tuberculosis genetic diversity and molecular epidemiology. Infect Genet Evol. 2012;12:755–66.CrossRef Demay C, Liens B, Burguiere T, Hill V, Couvin D, Millet J, et al. SITVITWEB--a publicly available international multimarker database for studying mycobacterium tuberculosis genetic diversity and molecular epidemiology. Infect Genet Evol. 2012;12:755–66.CrossRef
26.
go back to reference Coscolla M, Gagneux S. Consequences of genomic diversity in mycobacterium tuberculosis. Semin Immunol. 2014;26:431–44.CrossRef Coscolla M, Gagneux S. Consequences of genomic diversity in mycobacterium tuberculosis. Semin Immunol. 2014;26:431–44.CrossRef
27.
go back to reference Stucki D, Brites D, Jeljeli L, Coscolla M, Liu Q, Trauner A, et al. Mycobacterium tuberculosis lineage 4 comprises globally distributed and geographically restricted sublineages. Nat Genet. 2016;48:1535–43.CrossRef Stucki D, Brites D, Jeljeli L, Coscolla M, Liu Q, Trauner A, et al. Mycobacterium tuberculosis lineage 4 comprises globally distributed and geographically restricted sublineages. Nat Genet. 2016;48:1535–43.CrossRef
28.
go back to reference Berney M, Cook GM. Unique flexibility in energy metabolism allows mycobacteria to combat starvation and hypoxia. PLoS One. 2010;5:e8614. Berney M, Cook GM. Unique flexibility in energy metabolism allows mycobacteria to combat starvation and hypoxia. PLoS One. 2010;5:e8614.
29.
go back to reference Berney M, Weimar MR, Heikal A, Cook GM. Regulation of proline metabolism in mycobacteria and its role in carbon metabolism under hypoxia. Mol Microbiol. 2012;84:664–81.CrossRef Berney M, Weimar MR, Heikal A, Cook GM. Regulation of proline metabolism in mycobacteria and its role in carbon metabolism under hypoxia. Mol Microbiol. 2012;84:664–81.CrossRef
30.
go back to reference Smith DA, Parish T, Stoker NG, Bancroft GJ. Characterization of auxotrophic mutants of mycobacterium tuberculosis and their potential as vaccine candidates. Infect Immun. 2001;69:1142–50.CrossRef Smith DA, Parish T, Stoker NG, Bancroft GJ. Characterization of auxotrophic mutants of mycobacterium tuberculosis and their potential as vaccine candidates. Infect Immun. 2001;69:1142–50.CrossRef
31.
go back to reference DeJesus MA, Gerrick ER, Xu W, Park SW, Long JE, Boutte CC, et al. Comprehensive essentiality analysis of the mycobacterium tuberculosis genome via saturating transposon mutagenesis. Mbio. 2017;8:e02133–16. DeJesus MA, Gerrick ER, Xu W, Park SW, Long JE, Boutte CC, et al. Comprehensive essentiality analysis of the mycobacterium tuberculosis genome via saturating transposon mutagenesis. Mbio. 2017;8:e02133–16.
32.
go back to reference Lamichhane G, Zignol M, Blades NJ, Geiman DE, Dougherty A, Grosset J, et al. A postgenomic method for predicting essential genes at subsaturation levels of mutagenesis: application to mycobacterium tuberculosis. Proc Natl Acad Sci U S A. 2003;100:7213–8.CrossRef Lamichhane G, Zignol M, Blades NJ, Geiman DE, Dougherty A, Grosset J, et al. A postgenomic method for predicting essential genes at subsaturation levels of mutagenesis: application to mycobacterium tuberculosis. Proc Natl Acad Sci U S A. 2003;100:7213–8.CrossRef
33.
go back to reference Sassetti CM, Rubin EJ. Genetic requirements for mycobacterial survival during infection. Proc Natl Acad Sci U S A. 2003;100:12989–94.CrossRef Sassetti CM, Rubin EJ. Genetic requirements for mycobacterial survival during infection. Proc Natl Acad Sci U S A. 2003;100:12989–94.CrossRef
34.
go back to reference Liu Y, Zhang X, Zhang Y, Sun Y, Yao C, Wang W, et al. Characterization of mycobacterium tuberculosis strains in Beijing, China: drug susceptibility phenotypes and Beijing genotype family transmission. BMC Infect Dis. 2018;18:658.CrossRef Liu Y, Zhang X, Zhang Y, Sun Y, Yao C, Wang W, et al. Characterization of mycobacterium tuberculosis strains in Beijing, China: drug susceptibility phenotypes and Beijing genotype family transmission. BMC Infect Dis. 2018;18:658.CrossRef
35.
go back to reference Wang W, Hu Y, Mathema B, Jiang W, Kreiswirth B, Xu B. Recent transmission of W-Beijing family mycobacterium tuberculosis in rural eastern China. Int J Tuberc Lung Dis. 2012;16:306–11.CrossRef Wang W, Hu Y, Mathema B, Jiang W, Kreiswirth B, Xu B. Recent transmission of W-Beijing family mycobacterium tuberculosis in rural eastern China. Int J Tuberc Lung Dis. 2012;16:306–11.CrossRef
36.
go back to reference Yamamoto K, Takeuchi S, Seto J, Shimouchi A, Komukai J, Hase A, et al. Longitudinal genotyping surveillance of Mycobacterium tuberculosis in an area with high tuberculosis incidence shows high transmission rate of the modern Beijing subfamily in Japan. Infect Genet Evol 2018;25–30. Yamamoto K, Takeuchi S, Seto J, Shimouchi A, Komukai J, Hase A, et al. Longitudinal genotyping surveillance of Mycobacterium tuberculosis in an area with high tuberculosis incidence shows high transmission rate of the modern Beijing subfamily in Japan. Infect Genet Evol 2018;25–30.
37.
go back to reference Meehan CJ, Moris P, Kohl TA, Pecerska J, Akter S, Merker M, et al. The relationship between transmission time and clustering methods in mycobacterium tuberculosis epidemiology. Ebiomedicine. 2018;37:410–6.CrossRef Meehan CJ, Moris P, Kohl TA, Pecerska J, Akter S, Merker M, et al. The relationship between transmission time and clustering methods in mycobacterium tuberculosis epidemiology. Ebiomedicine. 2018;37:410–6.CrossRef
38.
go back to reference Luo T, Yang C, Peng Y, Lu L, Sun G, Wu J, et al. Whole-genome sequencing to detect recent transmission of mycobacterium tuberculosis in settings with a high burden of tuberculosis. Tuberculosis (Edinb). 2014;94:434–40.CrossRef Luo T, Yang C, Peng Y, Lu L, Sun G, Wu J, et al. Whole-genome sequencing to detect recent transmission of mycobacterium tuberculosis in settings with a high burden of tuberculosis. Tuberculosis (Edinb). 2014;94:434–40.CrossRef
39.
go back to reference Cui Z, Lin D, Chongsuvivatwong V, Graviss EA, Chaiprasert A, Palittapongarnpim P, et al. Hot and cold spot areas of household tuberculosis transmission in southern China: effects of socio-economic status and mycobacterium tuberculosis genotypes. Int J Environ Res Public Health. 2019;16:1863. Cui Z, Lin D, Chongsuvivatwong V, Graviss EA, Chaiprasert A, Palittapongarnpim P, et al. Hot and cold spot areas of household tuberculosis transmission in southern China: effects of socio-economic status and mycobacterium tuberculosis genotypes. Int J Environ Res Public Health. 2019;16:1863.
40.
go back to reference Hoffner S, Sahebi L, Ansarin K, Sabour S, Mohajeri P. Mycobacterium tuberculosis of the Beijing genotype in Iran and the World Health Organization eastern Mediterranean region: a meta-analysis. Microb Drug Resist. 2018;24:693–8.CrossRef Hoffner S, Sahebi L, Ansarin K, Sabour S, Mohajeri P. Mycobacterium tuberculosis of the Beijing genotype in Iran and the World Health Organization eastern Mediterranean region: a meta-analysis. Microb Drug Resist. 2018;24:693–8.CrossRef
41.
go back to reference Reiling N, Homolka S, Walter K, Brandenburg J, Niwinski L, Ernst M, et al. Clade-specific virulence patterns of mycobacterium tuberculosis complex strains in human primary macrophages and Aerogenically infected mice. Mbio. 2013;4:e00250–13. Reiling N, Homolka S, Walter K, Brandenburg J, Niwinski L, Ernst M, et al. Clade-specific virulence patterns of mycobacterium tuberculosis complex strains in human primary macrophages and Aerogenically infected mice. Mbio. 2013;4:e00250–13.
42.
go back to reference Li J, Liu XQ, Jiang SW, Li X, Yu F, Wang Y, et al. Improving tuberculosis case detection in underdeveloped multi-ethnic regions with high disease burden: a case study of integrated control program in China. Infect Dis Poverty. 2017;6:151.CrossRef Li J, Liu XQ, Jiang SW, Li X, Yu F, Wang Y, et al. Improving tuberculosis case detection in underdeveloped multi-ethnic regions with high disease burden: a case study of integrated control program in China. Infect Dis Poverty. 2017;6:151.CrossRef
43.
go back to reference Wang LX, Liu XQ, Huang F, Hennig C, Uplekar M, Jiang SW. Engaging hospitals to meet tuberculosis control targets in China: using the internet as a tool to put policy into practice. B World Health Organ. 2010;88:937–42.CrossRef Wang LX, Liu XQ, Huang F, Hennig C, Uplekar M, Jiang SW. Engaging hospitals to meet tuberculosis control targets in China: using the internet as a tool to put policy into practice. B World Health Organ. 2010;88:937–42.CrossRef
Metadata
Title
The geno-spatio analysis of Mycobacterium tuberculosis complex in hot and cold spots of Guangxi, China
Authors
Dingwen Lin
Zhezhe Cui
Virasakdi Chongsuvivatwong
Prasit Palittapongarnpim
Angkana Chaiprasert
Wuthiwat Ruangchai
Jing Ou
Liwen Huang
Publication date
01-12-2020
Publisher
BioMed Central
Published in
BMC Infectious Diseases / Issue 1/2020
Electronic ISSN: 1471-2334
DOI
https://doi.org/10.1186/s12879-020-05189-y

Other articles of this Issue 1/2020

BMC Infectious Diseases 1/2020 Go to the issue