Skip to main content
Top
Published in: BMC Infectious Diseases 1/2020

01-12-2020 | Rhinovirus | Research article

Pathogen analysis of pertussis-like syndrome in children

Authors: Wenjing Gu, Kun Wang, Xinxing Zhang, Chuangli Hao, Yanhong Lu, Min Wu, Sainan Chen, Yanyu He, Jun Xu, Xuejun Shao, Yuqing Wang

Published in: BMC Infectious Diseases | Issue 1/2020

Login to get access

Abstract

Background

The aim of the study was to identify the pathogens, in addition to bordetella pertussis (B. pertussis), which cause pertussis-like syndrome in children and to compare clinical presentation between those with B. pertussis and pertussis-like syndrome.

Methods

A cross-sectional analysis was conducted from March 2016 to September 2018. In total, 281 children with suspected pertussis infections were enrolled in this study. Multi-pathogen detection was performed.

Results

In total, 281 children were enrolled including 139 males and 142 females. Among them, 149 (53.0%) were B. pertussis positive, and 72 (15.6%) children tested positive for other pathogens. Mycoplasma pneumoniae (MP, 27 cases) was the most common causative pathogen in pertussis-like syndrome, followed by human rhinovirus (HRV, 23 cases), Streptococcus pneumoniae (SP, 13 cases), Haemophilus influenzae (HI, 12 cases) and parainfluenza virus 3 (Pinf-3, 9 cases). Children in the B. pertussis group had a higher rate of vaccination and longer hospital stay (P < 0.05). B. pertussis was more likely to be detected in winter than other pathogens, but this difference was not significant (P = 0.074). The number of white blood cells, neutrophils and blood platelets was significantly higher in children in the B. pertussis than in the pertussis-like group (P < 0.05). In addition, the percentage of CD3-CD19+ cells was significantly higher in the B. pertussis group (P = 0.018).

Conclusion

About half of the children with pertussis-like syndrome were B. pertussis positive. MP was the second most common causative pathogen followed by HRV, SP, HI and Pinf-3. Children infected with B. pertussis had longer hospital stay and higher numbers of white blood cells, neutrophil and blood platelets compared with other pathogens.
Literature
1.
go back to reference Haghighi F, Shahcheraghi F, Abbasi E, Eshraghi SS, Zeraati H, Mousavi SA, et al. Genetic profile variation in vaccine strains and clinical isolates of Bordetella pertussis recovered from Iranian patients. Avicenna J Med Biotechnol. 2014;6:178.PubMedPubMedCentral Haghighi F, Shahcheraghi F, Abbasi E, Eshraghi SS, Zeraati H, Mousavi SA, et al. Genetic profile variation in vaccine strains and clinical isolates of Bordetella pertussis recovered from Iranian patients. Avicenna J Med Biotechnol. 2014;6:178.PubMedPubMedCentral
2.
go back to reference Nguyen VTN, Simon L. Pertussis: the whooping cough. Prim Care. 2018;45(3):423–31.CrossRef Nguyen VTN, Simon L. Pertussis: the whooping cough. Prim Care. 2018;45(3):423–31.CrossRef
3.
go back to reference Shojaei J, Saffar MJ, Hashemi A, Ghorbani GR, Rezai MS, Shahmohammadi S. Clinical and laboratory features of pertussis in hospitalized infants with confirmed versus probable pertussis cases. Ann Med Health Sci Res. 2014;4:910–4.CrossRef Shojaei J, Saffar MJ, Hashemi A, Ghorbani GR, Rezai MS, Shahmohammadi S. Clinical and laboratory features of pertussis in hospitalized infants with confirmed versus probable pertussis cases. Ann Med Health Sci Res. 2014;4:910–4.CrossRef
4.
go back to reference Pavic-Espinoza I, Bendezú-Medina S, Herrera-Alzamora A, Weilg P, Pons MJ, Aguilar-Luis MA, et al. High prevalence of Bordetella pertussis in children under 5 years old hospitalized with acute respiratory infections in Lima. Peru BMC Infect Dis. 2015;15:554.CrossRef Pavic-Espinoza I, Bendezú-Medina S, Herrera-Alzamora A, Weilg P, Pons MJ, Aguilar-Luis MA, et al. High prevalence of Bordetella pertussis in children under 5 years old hospitalized with acute respiratory infections in Lima. Peru BMC Infect Dis. 2015;15:554.CrossRef
5.
go back to reference Tizolova A, Guiso N, Guillot S. Insertion sequences shared by Bordetella species and implications for the biological diagnosis of pertussis syndrome. Eur J Clin Microbiol Infect Dis. 2013;32:89–96.CrossRef Tizolova A, Guiso N, Guillot S. Insertion sequences shared by Bordetella species and implications for the biological diagnosis of pertussis syndrome. Eur J Clin Microbiol Infect Dis. 2013;32:89–96.CrossRef
6.
go back to reference Papenburg J, Fontela P. What is the significance of a high cycle threshold positive IS481 PCR for Bordetella pertussis? Pediatr Infect Dis J. 2009;28:1143 author reply −4.CrossRef Papenburg J, Fontela P. What is the significance of a high cycle threshold positive IS481 PCR for Bordetella pertussis? Pediatr Infect Dis J. 2009;28:1143 author reply −4.CrossRef
7.
go back to reference Gao F, Mahoney JC, Daly ER, Lamothe W, Tullo D, Bean C. Evaluation of a multitarget real-time PCR assay for detection of Bordetella species during a pertussis outbreak in New Hampshire in 2011. J Clin Microbiol. 2014;52:302–6.CrossRef Gao F, Mahoney JC, Daly ER, Lamothe W, Tullo D, Bean C. Evaluation of a multitarget real-time PCR assay for detection of Bordetella species during a pertussis outbreak in New Hampshire in 2011. J Clin Microbiol. 2014;52:302–6.CrossRef
8.
go back to reference Tatti KM, Sparks KN, Boney KO, Tondella ML. Novel multitarget real-time PCR assay for rapid detection of Bordetella species in clinical specimens. J Clin Microbiol. 2011;49:4059–66.CrossRef Tatti KM, Sparks KN, Boney KO, Tondella ML. Novel multitarget real-time PCR assay for rapid detection of Bordetella species in clinical specimens. J Clin Microbiol. 2011;49:4059–66.CrossRef
9.
go back to reference Sarbay H, Polat A, Mete E, Balci YI, Akin M. Pertussis-like syndrome associated with adenovirus presenting with hyperleukocytosis: Case report. North Clin Istanbul. 2016;3:140–2. Sarbay H, Polat A, Mete E, Balci YI, Akin M. Pertussis-like syndrome associated with adenovirus presenting with hyperleukocytosis: Case report. North Clin Istanbul. 2016;3:140–2.
10.
go back to reference Saiki-Macedo V-E, Cornejo-Tapia CME, Petrozzi-Helasvuo V, Aguilar-Luis MA, et al. Identfication of viral and bacterial etiologic agents of the pertussis-like syndrome in children under 5 years old hospitalized. BMC Infect Dis. 2019;19:75.CrossRef Saiki-Macedo V-E, Cornejo-Tapia CME, Petrozzi-Helasvuo V, Aguilar-Luis MA, et al. Identfication of viral and bacterial etiologic agents of the pertussis-like syndrome in children under 5 years old hospitalized. BMC Infect Dis. 2019;19:75.CrossRef
11.
go back to reference Al Maani A, Al Qayoudhi A, Nazir HF, Omar H, Al Jardani A, Al Muharrmi Z, et al. Pertussis and pertussis like illness: pediatric experience in Oman. Oman Med J. 2017;32:396–402.CrossRef Al Maani A, Al Qayoudhi A, Nazir HF, Omar H, Al Jardani A, Al Muharrmi Z, et al. Pertussis and pertussis like illness: pediatric experience in Oman. Oman Med J. 2017;32:396–402.CrossRef
12.
go back to reference Guinto-Ocampo H, Bennett JE, Attia MW. Predicting pertussis in infants. Pediatr Emerg Care. 2008;24:16–20.PubMed Guinto-Ocampo H, Bennett JE, Attia MW. Predicting pertussis in infants. Pediatr Emerg Care. 2008;24:16–20.PubMed
13.
go back to reference Pierce C, Klein N, Peters M. Is leukocytosis a predictor of mortality in severe pertussis infection? Intensive Care Med. 2000;26:1512–4.CrossRef Pierce C, Klein N, Peters M. Is leukocytosis a predictor of mortality in severe pertussis infection? Intensive Care Med. 2000;26:1512–4.CrossRef
14.
go back to reference Eby JC, Hoffman CL, Gonyar LA, Hewlett EL. Review of the neutrophil response to Bordetella pertussis infection. Pathog Dis. 2015;73:ftv081.CrossRef Eby JC, Hoffman CL, Gonyar LA, Hewlett EL. Review of the neutrophil response to Bordetella pertussis infection. Pathog Dis. 2015;73:ftv081.CrossRef
15.
go back to reference Sindt KA, Hewlett EL, Redpath GT, Rappuoli R, Gray LS, Vandenberg SR. Pertussis toxin activates platelets through an interaction with platelet glycoprotein Ib. Infect Immun. 1994;62:3108–14.CrossRef Sindt KA, Hewlett EL, Redpath GT, Rappuoli R, Gray LS, Vandenberg SR. Pertussis toxin activates platelets through an interaction with platelet glycoprotein Ib. Infect Immun. 1994;62:3108–14.CrossRef
16.
go back to reference Teixeira MM, Giembycz MA, Lindsay MA, Hellewell PG. Pertussis toxin shows distinct early signalling events in platelet-activating factor-, leukotriene B4-, and C5a-induced eosinophil homotypic aggregation in vitro and recruitment in vivo. Blood. 1997;89:4566–73.CrossRef Teixeira MM, Giembycz MA, Lindsay MA, Hellewell PG. Pertussis toxin shows distinct early signalling events in platelet-activating factor-, leukotriene B4-, and C5a-induced eosinophil homotypic aggregation in vitro and recruitment in vivo. Blood. 1997;89:4566–73.CrossRef
17.
go back to reference Iwaki M, Kamachi K, Heveker N, Konda T. Suppression of platelet aggregation by Bordetella pertussis adenylate cyclase toxin. Infect Immun. 1999;67:2763–8.CrossRef Iwaki M, Kamachi K, Heveker N, Konda T. Suppression of platelet aggregation by Bordetella pertussis adenylate cyclase toxin. Infect Immun. 1999;67:2763–8.CrossRef
18.
go back to reference Sobieszczańska BM, Kasprzykowska U, Duda-Madej A, Secewicz A, Marciniak J, Gościniak G. Relevance of serology for mycoplasma pneumoniae infection among children with persistent cough. Adv Clin Exp Med. 2014;23:185–90.CrossRef Sobieszczańska BM, Kasprzykowska U, Duda-Madej A, Secewicz A, Marciniak J, Gościniak G. Relevance of serology for mycoplasma pneumoniae infection among children with persistent cough. Adv Clin Exp Med. 2014;23:185–90.CrossRef
19.
go back to reference Yuan X, Liu Y, Bai C, Luo Y, Wang R, Wang R, et al. Mycoplasma pneumoniae infection is associated with subacute cough. Eur Respir J. 2014;43:1178–81.CrossRef Yuan X, Liu Y, Bai C, Luo Y, Wang R, Wang R, et al. Mycoplasma pneumoniae infection is associated with subacute cough. Eur Respir J. 2014;43:1178–81.CrossRef
20.
go back to reference Wang K, Chalker V, Bermingham A, Harrison T, Mant D, Harnden A. Mycoplasma pneumoniae and respiratory virus infections in children with persistent cough in England: a retrospective analysis. Pediatr Infect Dis J. 2011;30:1047–51.CrossRef Wang K, Chalker V, Bermingham A, Harrison T, Mant D, Harnden A. Mycoplasma pneumoniae and respiratory virus infections in children with persistent cough in England: a retrospective analysis. Pediatr Infect Dis J. 2011;30:1047–51.CrossRef
21.
go back to reference Koepke R, Bartholomew ML, Eickhoff JC, Ayele RA, Rodd D, Kuennen J, et al. Widespread Bordetella parapertussis infections-Wisconsin, 2011-2012: clinical and epidemiologic features and antibiotic use for treatment and prevention. Clin Infect Dis. 2015;61(9):1421–31.CrossRef Koepke R, Bartholomew ML, Eickhoff JC, Ayele RA, Rodd D, Kuennen J, et al. Widespread Bordetella parapertussis infections-Wisconsin, 2011-2012: clinical and epidemiologic features and antibiotic use for treatment and prevention. Clin Infect Dis. 2015;61(9):1421–31.CrossRef
Metadata
Title
Pathogen analysis of pertussis-like syndrome in children
Authors
Wenjing Gu
Kun Wang
Xinxing Zhang
Chuangli Hao
Yanhong Lu
Min Wu
Sainan Chen
Yanyu He
Jun Xu
Xuejun Shao
Yuqing Wang
Publication date
01-12-2020
Publisher
BioMed Central
Published in
BMC Infectious Diseases / Issue 1/2020
Electronic ISSN: 1471-2334
DOI
https://doi.org/10.1186/s12879-020-05074-8

Other articles of this Issue 1/2020

BMC Infectious Diseases 1/2020 Go to the issue