Skip to main content
Top
Published in: BMC Infectious Diseases 1/2020

Open Access 01-12-2020 | Tuberculosis | Research article

Statistical methods for predicting tuberculosis incidence based on data from Guangxi, China

Authors: Yanling Zheng, Liping Zhang, Lei Wang, Ramziya Rifhat

Published in: BMC Infectious Diseases | Issue 1/2020

Login to get access

Abstract

Background

Tuberculosis (TB) remains a serious public health problem with substantial financial burden in China. The incidence of TB in Guangxi province is much higher than that in the national level, however, there is no predictive study of TB in recent years in Guangxi, therefore, it is urgent to construct a model to predict the incidence of TB, which could provide help for the prevention and control of TB.

Methods

Box-Jenkins model methods have been successfully applied to predict the incidence of infectious disease. In this study, based on the analysis of TB incidence in Guangxi from January 2012 to June 2019, we constructed TB prediction model by Box-Jenkins methods, and used root mean square error (RMSE), mean absolute error (MAE) and mean absolute percentage error (MAPE) to test the performance and prediction accuracy of model.

Results

From January 2012 to June 2019, a total of 587,344 cases of TB were reported and 879 cases died in Guangxi. Based on TB incidence from January 2012 to December 2018, the SARIMA((2),0,(2))(0,1,0)12 model was established, the AIC and SC of this model were 2.87 and 2.98, the fitting accuracy indexes, such as RMSE, MAE and MAPE were 0.98, 0.77 and 5.8 respectively; the prediction accuracy indexes, such as RMSE, MAE and MAPE were 0.62, 0.45 and 3.77, respectively. Based on the SARIMA((2),0,(2))(0,1,0)12 model, we predicted the TB incidence in Guangxi from July 2019 to December 2020.

Conclusions

This study filled the gap in the prediction of TB incidence in Guangxi in recent years. The established SARIMA((2),0,(2))(0,1,0)12 model has high prediction accuracy and good prediction performance. The results suggested the change trend of TB incidence predicted by SARIMA((2),0,(2))(0,1,0)12 model from July 2019 to December 2020 was similar to that in the previous two years, and TB incidence will experience slight decrease, the predicted results can provide scientific reference for the prevention and control of TB in Guangxi, China.
Appendix
Available only for authorised users
Literature
1.
go back to reference Zhao Y, Li M, Yuan S. Analysis of transmission and control of tuberculosis in mainland China, 2005-2016, based on the age structure mathematical model. Int J Environ Res Public Health. 2017;14:1192.CrossRef Zhao Y, Li M, Yuan S. Analysis of transmission and control of tuberculosis in mainland China, 2005-2016, based on the age structure mathematical model. Int J Environ Res Public Health. 2017;14:1192.CrossRef
3.
go back to reference Moosazadeh M, Khanjani N, Nasehi M, et al. Predicting the incidence of smear positive tuberculosis cases in Iran using time series analysis. Iran J Public Health. 2015;44:1526–34.PubMedPubMedCentral Moosazadeh M, Khanjani N, Nasehi M, et al. Predicting the incidence of smear positive tuberculosis cases in Iran using time series analysis. Iran J Public Health. 2015;44:1526–34.PubMedPubMedCentral
4.
go back to reference Tian CW, Wang H, Luo XM. Time-series modelling and forecasting of hand, foot and mouth disease cases in China from 2008 to 2018. Epidemiol Infect. 2019;147:e82.CrossRef Tian CW, Wang H, Luo XM. Time-series modelling and forecasting of hand, foot and mouth disease cases in China from 2008 to 2018. Epidemiol Infect. 2019;147:e82.CrossRef
5.
go back to reference Wang T, Zhou Y, Wang L, et al. Using an autoregressive integrated moving average model to predict the incidence of hemorrhagic fever with renal syndrome in Zibo, China, 2004-2014. Jpn J Infect Dis. 2016;69(4):279–84.CrossRef Wang T, Zhou Y, Wang L, et al. Using an autoregressive integrated moving average model to predict the incidence of hemorrhagic fever with renal syndrome in Zibo, China, 2004-2014. Jpn J Infect Dis. 2016;69(4):279–84.CrossRef
6.
go back to reference Gharbi M, Quenel P, Gustave J, et al. Time series analysis of dengue incidence in Guadeloupe, French West Indies: Forecasting models using climate variables as predictors. BMC Infect Dis. 2011;11:166.CrossRef Gharbi M, Quenel P, Gustave J, et al. Time series analysis of dengue incidence in Guadeloupe, French West Indies: Forecasting models using climate variables as predictors. BMC Infect Dis. 2011;11:166.CrossRef
7.
go back to reference López-Montenegro LE, Pulecio-Montoya AM, Marcillo-Hernández GA. Dengue cases in Colombia: mathematical forecasts for 2018-2022. MEDICC Rev. 2019;21(2–3):38–45.PubMed López-Montenegro LE, Pulecio-Montoya AM, Marcillo-Hernández GA. Dengue cases in Colombia: mathematical forecasts for 2018-2022. MEDICC Rev. 2019;21(2–3):38–45.PubMed
8.
go back to reference Zheng Y-L, Zhang L-P, Zhang X-L, et al. Forecast model analysis for the morbidity of tuberculosis in Xinjiang, China. PLoS ONE. 2015;10(3):e0116832.CrossRef Zheng Y-L, Zhang L-P, Zhang X-L, et al. Forecast model analysis for the morbidity of tuberculosis in Xinjiang, China. PLoS ONE. 2015;10(3):e0116832.CrossRef
9.
go back to reference Liao Z, Zhang X, Zhang Y, et al. Seasonality and Trend Forecasting of Tuberculosis Incidence in Chongqing, China. Interdiscip Sci. 2019;11(1):77–85.CrossRef Liao Z, Zhang X, Zhang Y, et al. Seasonality and Trend Forecasting of Tuberculosis Incidence in Chongqing, China. Interdiscip Sci. 2019;11(1):77–85.CrossRef
10.
go back to reference Carvajal Thaddeus M, Viacrusis Katherine M, Hernandez Lara Fides T, et al. Machine learning methods reveal the temporal pattern of dengue incidence using meteorological factors in metropolitan Manila, Philippines. BMC Infect Dis. 2018;18:183.CrossRef Carvajal Thaddeus M, Viacrusis Katherine M, Hernandez Lara Fides T, et al. Machine learning methods reveal the temporal pattern of dengue incidence using meteorological factors in metropolitan Manila, Philippines. BMC Infect Dis. 2018;18:183.CrossRef
11.
go back to reference Mao Q, Zhang K, Yan W, et al. Forecasting the incidence of tuberculosis in China using the seasonal auto-regressive integrated moving average (SARIMA) model. J Infect Public Health. 2018;11(5):707–12.CrossRef Mao Q, Zhang K, Yan W, et al. Forecasting the incidence of tuberculosis in China using the seasonal auto-regressive integrated moving average (SARIMA) model. J Infect Public Health. 2018;11(5):707–12.CrossRef
12.
go back to reference Anokye R, Acheampong E, Owusu I, et al. Time series analysis of malaria in Kumasi: Using ARIMA models to forecast future incidence. Cogent Soc Sci. 2018;4(1):1461544. Anokye R, Acheampong E, Owusu I, et al. Time series analysis of malaria in Kumasi: Using ARIMA models to forecast future incidence. Cogent Soc Sci. 2018;4(1):1461544.
13.
go back to reference Withanage GP, Viswakula SD, Yi SGN, et al. A forecasting model for dengue incidence in the district of Gampaha, Sri Lanka. Parasit Vectors. 2018;11(1):262.CrossRef Withanage GP, Viswakula SD, Yi SGN, et al. A forecasting model for dengue incidence in the district of Gampaha, Sri Lanka. Parasit Vectors. 2018;11(1):262.CrossRef
14.
go back to reference Siregar FA, Makmur T, Saprin S. Forecasting dengue hemorrhagic fever cases using ARIMA model: a case study in Asahan district. In: IOP Conference Series Materials Science and Engineering; 2018. p. 300. Siregar FA, Makmur T, Saprin S. Forecasting dengue hemorrhagic fever cases using ARIMA model: a case study in Asahan district. In: IOP Conference Series Materials Science and Engineering; 2018. p. 300.
15.
go back to reference Tohidinik HR, Mohebali M, Mansournia MA, et al. Forecasting zoonotic cutaneous leishmaniasis using meteorological factors in eastern Fars province, Iran: a SARIMA analysis. Tropical Med Int Health. 2018;23(8):860–9.CrossRef Tohidinik HR, Mohebali M, Mansournia MA, et al. Forecasting zoonotic cutaneous leishmaniasis using meteorological factors in eastern Fars province, Iran: a SARIMA analysis. Tropical Med Int Health. 2018;23(8):860–9.CrossRef
16.
go back to reference Xu Q, Li R, Liu Y, et al. Forecasting the incidence of mumps in Zibo City based on a SARIMA model. Int J Environ Res Public Health. 2017;14(8):925.CrossRef Xu Q, Li R, Liu Y, et al. Forecasting the incidence of mumps in Zibo City based on a SARIMA model. Int J Environ Res Public Health. 2017;14(8):925.CrossRef
17.
go back to reference Wang H, Tian CW, Wang WM, et al. Time-series analysis of tuberculosis from 2005 to 2017 in China. Epidemiol Infect. 2018;146(8):935–9.CrossRef Wang H, Tian CW, Wang WM, et al. Time-series analysis of tuberculosis from 2005 to 2017 in China. Epidemiol Infect. 2018;146(8):935–9.CrossRef
18.
go back to reference Box GEP, Jenkins GM, Reinsel GC, et al. Time series analysis: forecasting and control, 5th edition. J Oper Res Soc. 2015;22(2):199–201. Box GEP, Jenkins GM, Reinsel GC, et al. Time series analysis: forecasting and control, 5th edition. J Oper Res Soc. 2015;22(2):199–201.
19.
go back to reference Box, George E.P, Jenkins, Gwilym M, Reinsel, Gregory C. Time series analysis. Forecasting and control. 3rd ed. journal of time. 2010;31(4):303. Box, George E.P, Jenkins, Gwilym M, Reinsel, Gregory C. Time series analysis. Forecasting and control. 3rd ed. journal of time. 2010;31(4):303.
20.
go back to reference Moon MS, Kim SS, Moon H. (i) Tuberculosis of the spine: Current views in diagnosis, management, and setting a global standard. Orthopaedics Trauma. 2013;27(4):185–94.CrossRef Moon MS, Kim SS, Moon H. (i) Tuberculosis of the spine: Current views in diagnosis, management, and setting a global standard. Orthopaedics Trauma. 2013;27(4):185–94.CrossRef
21.
go back to reference Maitra A, Bates S, Shaik M, et al. Repurposing drugs for treatment of tuberculosis: a role for non-steroidalanti-inflammatory drugs. Br Med Bull. 2016;118(1):138–48.CrossRef Maitra A, Bates S, Shaik M, et al. Repurposing drugs for treatment of tuberculosis: a role for non-steroidalanti-inflammatory drugs. Br Med Bull. 2016;118(1):138–48.CrossRef
22.
go back to reference Berlin L. Tuberculosis: resurgent disease, renewed liability. AJR Am J Roentgenol. 2008;190(6):1438–44.CrossRef Berlin L. Tuberculosis: resurgent disease, renewed liability. AJR Am J Roentgenol. 2008;190(6):1438–44.CrossRef
Metadata
Title
Statistical methods for predicting tuberculosis incidence based on data from Guangxi, China
Authors
Yanling Zheng
Liping Zhang
Lei Wang
Ramziya Rifhat
Publication date
01-12-2020
Publisher
BioMed Central
Published in
BMC Infectious Diseases / Issue 1/2020
Electronic ISSN: 1471-2334
DOI
https://doi.org/10.1186/s12879-020-05033-3

Other articles of this Issue 1/2020

BMC Infectious Diseases 1/2020 Go to the issue