Skip to main content
Top
Published in: BMC Infectious Diseases 1/2019

Open Access 01-12-2019 | Tuberculosis | Research article

Estimating the impact of a novel drug regimen for treatment of tuberculosis: a modeling analysis of projected patient outcomes and epidemiological considerations

Authors: Emily A. Kendall, Shelly Malhotra, Sarah Cook-Scalise, Claudia M. Denkinger, David W. Dowdy

Published in: BMC Infectious Diseases | Issue 1/2019

Login to get access

Abstract

Background

Regimens that could treat both rifampin-resistant (RR) and rifampin-susceptible tuberculosis (TB) while shortening the treatment duration have reached late-stage clinical trials. Decisions about whether and how to implement such regimens will require an understanding of their likely clinical impact and how this impact depends on local epidemiology and implementation strategy.

Methods

A Markov state-transition model of 100,000 representative South African adults with TB was used to simulate implementation of the regimen BPaMZ (bedaquiline, pretomanid, moxifloxacin, and pyrazinamide), either for RR-TB only or universally for all patients. Patient outcomes, including cure rates, time with active TB, and time on treatment, were compared to outcomes under current care. Sensitivity analyses varied the drug-resistance epidemiology, rifampin susceptibility testing practices, and regimen efficacy.

Results

Using BPaMZ exclusively for RR-TB increased the proportion of all RR-TB that was cured by initial treatment from 60 ± 1% to 67 ± 1%. Expanding use of BPaMZ to all patients increased cure of RR-TB to 89 ± 1% and cure of all TB from 87.3 ± 0.1% to 89.5 ± 0.1%, while shortening treatment by 1.9 months/person. In sensitivity analyses, reducing the coverage of rifampin susceptibility testing resulted in lower projected proportions of patients cured under all regimen scenarios (current care, RR-only BPaMZ, and universal BPaMZ), compared to the proportions projected using South Africa’s high coverage; however, this reduced coverage resulted in greater expected incremental benefits of universal BPaMZ implementation, both when compared to RR-only BPaMZ implementation and when compared to to current care under the same low rifampin susceptibility testing coverage. In settings with higher RR-TB prevalence, the benefits of BPaMZ were magnified both for RR-specific and universal BPaMZ implementation.

Conclusions

Novel regimens such as BPaMZ could improve RR-TB outcomes and shorten treatment for all patients, particularly with universal use. Decision-makers weighing early options for implementing such regimens at scale will want to consider the expected impact on patient outcomes and on the burden of treatment in their local context.
Appendix
Available only for authorised users
Literature
1.
go back to reference World Health Organization. Global tuberculosis report 2018. Geneva: World Health Organization; 2018. World Health Organization. Global tuberculosis report 2018. Geneva: World Health Organization; 2018.
2.
go back to reference Romanowski K, Balshaw RF, Benedetti A, Campbell JR, Menzies D, Ahmad Khan F, et al. Predicting tuberculosis relapse in patients treated with the standard 6-month regimen: an individual patient data meta-analysis. Thorax. 2019;74:291–7.CrossRef Romanowski K, Balshaw RF, Benedetti A, Campbell JR, Menzies D, Ahmad Khan F, et al. Predicting tuberculosis relapse in patients treated with the standard 6-month regimen: an individual patient data meta-analysis. Thorax. 2019;74:291–7.CrossRef
3.
go back to reference Lienhardt C, Nahid P, Rich ML, Bansbach C, Kendall EA, Churchyard G, et al. Target regimen profiles for treatment of tuberculosis: a WHO document. Eur Respir J. 2017;49:1602352.CrossRef Lienhardt C, Nahid P, Rich ML, Bansbach C, Kendall EA, Churchyard G, et al. Target regimen profiles for treatment of tuberculosis: a WHO document. Eur Respir J. 2017;49:1602352.CrossRef
5.
go back to reference Li S-Y, Tasneen R, Tyagi S, Soni H, Converse PJ, Mdluli K, et al. Bactericidal and sterilizing activity of a novel regimen with Bedaquiline, Pretomanid, moxifloxacin, and pyrazinamide in a murine model of tuberculosis. Antimicrob Agents Chemother. 2017;61:e00913–7.PubMedPubMedCentral Li S-Y, Tasneen R, Tyagi S, Soni H, Converse PJ, Mdluli K, et al. Bactericidal and sterilizing activity of a novel regimen with Bedaquiline, Pretomanid, moxifloxacin, and pyrazinamide in a murine model of tuberculosis. Antimicrob Agents Chemother. 2017;61:e00913–7.PubMedPubMedCentral
6.
go back to reference Clinicaltrials.gov. Trial to Evaluate the Efficacy, Safety and Tolerability of BPaMZ in Drug-Sensitive (DS-TB) Adult Patients and Drug-Resistant(DR-TB) Adult Patients [Internet]. US National Library of Medicine; 4 Sept 2019 [cited 5 Sept 2019]. Available from: https://clinicaltrials.gov/ct2/show/NCT03338621. Clinicaltrials.gov. Trial to Evaluate the Efficacy, Safety and Tolerability of BPaMZ in Drug-Sensitive (DS-TB) Adult Patients and Drug-Resistant(DR-TB) Adult Patients [Internet]. US National Library of Medicine; 4 Sept 2019 [cited 5 Sept 2019]. Available from: https://​clinicaltrials.​gov/​ct2/​show/​NCT03338621.
7.
go back to reference Zignol M, Dean AS, Alikhanova N, Andres S, Cabibbe AM, Cirillo DM, et al. Population-based resistance of mycobacterium tuberculosis isolates to pyrazinamide and fluoroquinolones: results from a multicountry surveillance project. Lancet Infect Dis. 2016;16:1185–92.CrossRef Zignol M, Dean AS, Alikhanova N, Andres S, Cabibbe AM, Cirillo DM, et al. Population-based resistance of mycobacterium tuberculosis isolates to pyrazinamide and fluoroquinolones: results from a multicountry surveillance project. Lancet Infect Dis. 2016;16:1185–92.CrossRef
10.
go back to reference Ministry of Health and Family Welfare, World Health Organization India, DOTS, National Health Mission, USAID. Report of the first National Anti TB drug resistance survey, India 2014–2016. Ministry of Health and Family Welfare, World Health Organization India, DOTS, National Health Mission, USAID. Report of the first National Anti TB drug resistance survey, India 2014–2016.
11.
go back to reference Subbaraman R, Nathavitharana RR, Satyanarayana S, Pai M, Thomas BE, Chadha VK, et al. The tuberculosis Cascade of Care in India’s public sector: a systematic review and meta-analysis. PLoS Med. 2016;13:e1002149.CrossRef Subbaraman R, Nathavitharana RR, Satyanarayana S, Pai M, Thomas BE, Chadha VK, et al. The tuberculosis Cascade of Care in India’s public sector: a systematic review and meta-analysis. PLoS Med. 2016;13:e1002149.CrossRef
12.
go back to reference Kruk ME, Schwalbe NR, Aguiar CA. Timing of default from tuberculosis treatment: a systematic review. Tropical Med Int Health. 2008;13:703–12.CrossRef Kruk ME, Schwalbe NR, Aguiar CA. Timing of default from tuberculosis treatment: a systematic review. Tropical Med Int Health. 2008;13:703–12.CrossRef
13.
go back to reference Tiemersma EW, van der Werf MJ, Borgdorff MW, Williams BG, Nagelkerke NJD. Natural history of tuberculosis: duration and fatality of untreated pulmonary tuberculosis in HIV negative patients: a systematic review. PLoS One. 2011;6:e17601.CrossRef Tiemersma EW, van der Werf MJ, Borgdorff MW, Williams BG, Nagelkerke NJD. Natural history of tuberculosis: duration and fatality of untreated pulmonary tuberculosis in HIV negative patients: a systematic review. PLoS One. 2011;6:e17601.CrossRef
14.
go back to reference Merle CS, Fielding K, Sow OB, Gninafon M, Lo MB, Mthiyane T, et al. A four-month gatifloxacin-containing regimen for treating tuberculosis. N Engl J Med. 2014;371:1588–98.CrossRef Merle CS, Fielding K, Sow OB, Gninafon M, Lo MB, Mthiyane T, et al. A four-month gatifloxacin-containing regimen for treating tuberculosis. N Engl J Med. 2014;371:1588–98.CrossRef
15.
go back to reference Gillespie SH, Crook AM, McHugh TD, Mendel CM, Meredith SK, Murray SR, et al. Four-month moxifloxacin-based regimens for drug-sensitive tuberculosis. N Engl J Med. 2014;371:1577–87.CrossRef Gillespie SH, Crook AM, McHugh TD, Mendel CM, Meredith SK, Murray SR, et al. Four-month moxifloxacin-based regimens for drug-sensitive tuberculosis. N Engl J Med. 2014;371:1577–87.CrossRef
16.
go back to reference Jindani A, Harrison TS, Nunn AJ, Phillips PPJ, Churchyard GJ, Charalambous S, et al. High-dose rifapentine with moxifloxacin for pulmonary tuberculosis. N Engl J Med. 2014;371:1599–608.CrossRef Jindani A, Harrison TS, Nunn AJ, Phillips PPJ, Churchyard GJ, Charalambous S, et al. High-dose rifapentine with moxifloxacin for pulmonary tuberculosis. N Engl J Med. 2014;371:1599–608.CrossRef
17.
go back to reference Ahmad N, Ahuja SD, Akkerman OW, Alffenaar J-WC, Anderson LF, Baghaei P, et al. Treatment correlates of successful outcomes in pulmonary multidrug-resistant tuberculosis: an individual patient data meta-analysis. Lancet. 2018;392:821–34.CrossRef Ahmad N, Ahuja SD, Akkerman OW, Alffenaar J-WC, Anderson LF, Baghaei P, et al. Treatment correlates of successful outcomes in pulmonary multidrug-resistant tuberculosis: an individual patient data meta-analysis. Lancet. 2018;392:821–34.CrossRef
18.
go back to reference Menzies D, Benedetti A, Paydar A, Martin I, Royce S, Pai M, et al. Effect of duration and intermittency of rifampin on tuberculosis treatment outcomes: a systematic review and meta-analysis. PLoS Med. 2009;6:e1000146.CrossRef Menzies D, Benedetti A, Paydar A, Martin I, Royce S, Pai M, et al. Effect of duration and intermittency of rifampin on tuberculosis treatment outcomes: a systematic review and meta-analysis. PLoS Med. 2009;6:e1000146.CrossRef
19.
go back to reference Cegielski JP, Kurbatova E, van der Walt M, Brand J, Ershova J, Tupasi T, et al. Multidrug-resistant tuberculosis treatment outcomes in relation to treatment and initial versus acquired second-line drug resistance. Clin Infect Dis. 2016;62:418–30.PubMed Cegielski JP, Kurbatova E, van der Walt M, Brand J, Ershova J, Tupasi T, et al. Multidrug-resistant tuberculosis treatment outcomes in relation to treatment and initial versus acquired second-line drug resistance. Clin Infect Dis. 2016;62:418–30.PubMed
20.
go back to reference Dawson R, Diacon AH, Everitt D, van Niekerk C, Donald PR, Burger DA, et al. Efficiency and safety of the combination of moxifloxacin, pretomanid (PA-824), and pyrazinamide during the first 8 weeks of antituberculosis treatment: a phase 2b, open-label, partly randomised trial in patients with drug-susceptible or drug-resistant pulmonary tuberculosis. Lancet. 2015;385:1738–47.CrossRef Dawson R, Diacon AH, Everitt D, van Niekerk C, Donald PR, Burger DA, et al. Efficiency and safety of the combination of moxifloxacin, pretomanid (PA-824), and pyrazinamide during the first 8 weeks of antituberculosis treatment: a phase 2b, open-label, partly randomised trial in patients with drug-susceptible or drug-resistant pulmonary tuberculosis. Lancet. 2015;385:1738–47.CrossRef
21.
go back to reference Wallis RS, Peppard T, Hermann D. Month 2 culture status and treatment duration as predictors of recurrence in pulmonary tuberculosis: model validation and update. PLoS One. 2015;10:e0125403.CrossRef Wallis RS, Peppard T, Hermann D. Month 2 culture status and treatment duration as predictors of recurrence in pulmonary tuberculosis: model validation and update. PLoS One. 2015;10:e0125403.CrossRef
22.
go back to reference Ahuja SD, Ashkin D, Avendano M, Banerjee R, Bauer M, Bayona JN, et al. Multidrug resistant pulmonary tuberculosis treatment regimens and patient outcomes: an individual patient data meta-analysis of 9,153 patients. PLoS Med. 2012;9:e1001300.CrossRef Ahuja SD, Ashkin D, Avendano M, Banerjee R, Bauer M, Bayona JN, et al. Multidrug resistant pulmonary tuberculosis treatment regimens and patient outcomes: an individual patient data meta-analysis of 9,153 patients. PLoS Med. 2012;9:e1001300.CrossRef
23.
go back to reference Organization WH. WHO treatment guidelines for drug-resistant tuberculosis: 2016 update. 2016. Organization WH. WHO treatment guidelines for drug-resistant tuberculosis: 2016 update. 2016.
24.
go back to reference Nunn AJ, Phillips PPJ, Meredith SK, Chiang C-Y, Conradie F, Dalai D, et al. A trial of a shorter regimen for rifampin-resistant tuberculosis. N Engl J Med. 2019;380:1201–13.CrossRef Nunn AJ, Phillips PPJ, Meredith SK, Chiang C-Y, Conradie F, Dalai D, et al. A trial of a shorter regimen for rifampin-resistant tuberculosis. N Engl J Med. 2019;380:1201–13.CrossRef
25.
go back to reference Ndjeka N, Schnippel K, Master I, Meintjes G, Maartens G, Romero R, et al. High treatment success rate for multidrug-resistant and extensively drug-resistant tuberculosis using a bedaquiline-containing treatment regimen. Eur Respir J. 2018;52:1801528.CrossRef Ndjeka N, Schnippel K, Master I, Meintjes G, Maartens G, Romero R, et al. High treatment success rate for multidrug-resistant and extensively drug-resistant tuberculosis using a bedaquiline-containing treatment regimen. Eur Respir J. 2018;52:1801528.CrossRef
26.
go back to reference Villellas C, Coeck N, Meehan CJ, Lounis N, de Jong B, Rigouts L, et al. Unexpected high prevalence of resistance-associated Rv0678 variants in MDR-TB patients without documented prior use of clofazimine or bedaquiline. J Antimicrob Chemother. 2016;72:dkw502.CrossRef Villellas C, Coeck N, Meehan CJ, Lounis N, de Jong B, Rigouts L, et al. Unexpected high prevalence of resistance-associated Rv0678 variants in MDR-TB patients without documented prior use of clofazimine or bedaquiline. J Antimicrob Chemother. 2016;72:dkw502.CrossRef
27.
go back to reference Hartkoorn RC, Uplekar S, Cole ST. Cross-resistance between clofazimine and bedaquiline through upregulation of MmpL5 in mycobacterium tuberculosis. Antimicrob Agents Chemother. 2014;58:2979–81.CrossRef Hartkoorn RC, Uplekar S, Cole ST. Cross-resistance between clofazimine and bedaquiline through upregulation of MmpL5 in mycobacterium tuberculosis. Antimicrob Agents Chemother. 2014;58:2979–81.CrossRef
28.
go back to reference Kendall EA, Brigden G, Lienhardt C, Dowdy DW. Would pan-tuberculosis treatment regimens be cost-effective? Lancet Respir Med. 2018;6(7):486–8.CrossRef Kendall EA, Brigden G, Lienhardt C, Dowdy DW. Would pan-tuberculosis treatment regimens be cost-effective? Lancet Respir Med. 2018;6(7):486–8.CrossRef
29.
go back to reference Kunkel A, Furin J, Cohen T. Population implications of the use of bedaquiline in people with extensively drug-resistant tuberculosis: are fears of resistance justified? Lancet Infect Dis. 2017;17(12):e429–33.CrossRef Kunkel A, Furin J, Cohen T. Population implications of the use of bedaquiline in people with extensively drug-resistant tuberculosis: are fears of resistance justified? Lancet Infect Dis. 2017;17(12):e429–33.CrossRef
30.
go back to reference Kunkel A, Cobelens FG, Cohen T. Tradeoffs in introduction policies for the anti-tuberculosis drug Bedaquiline: a model-based analysis. PLoS Med. 2016;13:e1002142.CrossRef Kunkel A, Cobelens FG, Cohen T. Tradeoffs in introduction policies for the anti-tuberculosis drug Bedaquiline: a model-based analysis. PLoS Med. 2016;13:e1002142.CrossRef
31.
go back to reference Shrestha S, Knight GM, Fofana M, Cohen T, White RG, Cobelens F, et al. Drivers and trajectories of resistance to new first-line drug regimens for tuberculosis. Open Forum Infect Dis. 2014;1:ofu073.CrossRef Shrestha S, Knight GM, Fofana M, Cohen T, White RG, Cobelens F, et al. Drivers and trajectories of resistance to new first-line drug regimens for tuberculosis. Open Forum Infect Dis. 2014;1:ofu073.CrossRef
32.
go back to reference Rifat D, Li S-Y, Ioerger T, Lanoix J-P, Lee J, Bashiri G, et al. Mutations in Rv2983 as a novel determinant of resistance to nitroimidazole drugs in mycobacterium tuberculosis. bioRxiv. 2018;1:457754. Rifat D, Li S-Y, Ioerger T, Lanoix J-P, Lee J, Bashiri G, et al. Mutations in Rv2983 as a novel determinant of resistance to nitroimidazole drugs in mycobacterium tuberculosis. bioRxiv. 2018;1:457754.
Metadata
Title
Estimating the impact of a novel drug regimen for treatment of tuberculosis: a modeling analysis of projected patient outcomes and epidemiological considerations
Authors
Emily A. Kendall
Shelly Malhotra
Sarah Cook-Scalise
Claudia M. Denkinger
David W. Dowdy
Publication date
01-12-2019
Publisher
BioMed Central
Published in
BMC Infectious Diseases / Issue 1/2019
Electronic ISSN: 1471-2334
DOI
https://doi.org/10.1186/s12879-019-4429-x

Other articles of this Issue 1/2019

BMC Infectious Diseases 1/2019 Go to the issue