Skip to main content
Top
Published in: BMC Gastroenterology 1/2020

Open Access 01-12-2020 | Colorectal Cancer | Research article

The use of electronic healthcare records for colorectal cancer screening referral decisions and risk prediction model development

Authors: Jennifer Anne Cooper, Ronan Ryan, Nick Parsons, Chris Stinton, Tom Marshall, Sian Taylor-Phillips

Published in: BMC Gastroenterology | Issue 1/2020

Login to get access

Abstract

Background

The database used for the NHS Bowel Cancer Screening Programme (BCSP) derives participant information from primary care records. Combining predictors with FOBTs has shown to improve referral decisions and accuracy. The richer data available from GP databases could be used to complement screening referral decisions by identifying those at greatest risk of colorectal cancer. We determined the availability of data for key predictors and whether this information could be used to inform more accurate screening referral decisions.

Methods

An English BCSP cohort was derived using the electronic notifications received from the BCSP database to GP records. The cohort covered a period between 13th May 2009 to 17th January 2017. Completeness of variables and univariable associations were assessed. Risk prediction models were developed using Cox regression and multivariable fractional polynomials with backwards elimination. Optimism adjusted performance metrics were reported. The sensitivity and specificity of a combined approach using the negative FOBT model plus FOBT positive patients was determined using a probability equivalent to a 3% PPV NICE guidelines level.

Results

292,059 participants aged 60–74 were derived for the BCSP screening cohort. A model including the screening test result had a C-statistic of 0.860, c-slope of 0.997, and R2 of 0.597. A model developed for negative screening results only had a C-statistic of 0.597, c-slope of 0.940, and R2 of 0.062. Risk predictors included in the models included; age, sex, alcohol consumption, IBS diagnosis, family history of gastrointestinal cancer, smoking status, previous negatives and whether a GP had ordered a blood test. For the combined screening approach, sensitivity increased slightly from 53.90% (FOBT only) to 58.82% but at the expense of an increased referral rate.

Conclusions

This research has identified several potential predictors for CRC in a BCSP population. A risk prediction model developed for BCSP FOBT negative patients was not clinically useful due to a low sensitivity and increased referral rate. The predictors identified in this study should be investigated in a refined algorithm combining the quantitative FIT result. Combining data from multiple sources enables fuller patient profiles using the primary care and screening database interface.
Appendix
Available only for authorised users
Literature
1.
go back to reference Hewitson P, Glasziou P, Watson E, Towler B, Irwig L. Cochrane systematic review of colorectal cancer screening using the fecal occult blood test (hemoccult): an update. Am J Gastroenterol. 2008;103(6):1541–9.CrossRef Hewitson P, Glasziou P, Watson E, Towler B, Irwig L. Cochrane systematic review of colorectal cancer screening using the fecal occult blood test (hemoccult): an update. Am J Gastroenterol. 2008;103(6):1541–9.CrossRef
2.
go back to reference Navarro M, Nicolas A, Ferrandez A, Lanas A. Colorectal cancer population screening programs worldwide in 2016: an update. World J Gastroenterol. 2017;23(20):3632–42.CrossRef Navarro M, Nicolas A, Ferrandez A, Lanas A. Colorectal cancer population screening programs worldwide in 2016: an update. World J Gastroenterol. 2017;23(20):3632–42.CrossRef
3.
go back to reference Moss S, Mathews C, Day TJ, Smith S, Seaman HE, Snowball J, Halloran SP. Increased uptake and improved outcomes of bowel cancer screening with a faecal immunochemical test: results from a pilot study within the national screening programme in England. Gut. 2017;66(9):1631–44.CrossRef Moss S, Mathews C, Day TJ, Smith S, Seaman HE, Snowball J, Halloran SP. Increased uptake and improved outcomes of bowel cancer screening with a faecal immunochemical test: results from a pilot study within the national screening programme in England. Gut. 2017;66(9):1631–44.CrossRef
4.
go back to reference Kallenberg FG, Vleugels JL, de Wijkerslooth TR, Stegeman I, Stoop EM, van Leerdam ME, Kuipers EJ, Bossuyt PM, Dekker E. Adding family history to faecal immunochemical testing increases the detection of advanced neoplasia in a colorectal cancer screening programme. Aliment Pharmacol Ther. 2016;44(1):88–96.CrossRef Kallenberg FG, Vleugels JL, de Wijkerslooth TR, Stegeman I, Stoop EM, van Leerdam ME, Kuipers EJ, Bossuyt PM, Dekker E. Adding family history to faecal immunochemical testing increases the detection of advanced neoplasia in a colorectal cancer screening programme. Aliment Pharmacol Ther. 2016;44(1):88–96.CrossRef
5.
go back to reference Jung YS, Park CH, Kim NH, Park JH, Park DI, Sohn CI. A combination of clinical risk stratification and fecal immunochemical test is useful for identifying persons with high priority of early colonoscopy. Dig Liver Dis. 2018;50(3):254–9.CrossRef Jung YS, Park CH, Kim NH, Park JH, Park DI, Sohn CI. A combination of clinical risk stratification and fecal immunochemical test is useful for identifying persons with high priority of early colonoscopy. Dig Liver Dis. 2018;50(3):254–9.CrossRef
6.
go back to reference Stegeman I, de Wijkerslooth TR, Stoop EM, van Leerdam ME, Dekker E, van Ballegooijen M, Kuipers EJ, Fockens P, Kraaijenhagen RA, Bossuyt PM. Combining risk factors with faecal immunochemical test outcome for selecting CRC screenees for colonoscopy. Gut. 2014;63(3):466–71.CrossRef Stegeman I, de Wijkerslooth TR, Stoop EM, van Leerdam ME, Dekker E, van Ballegooijen M, Kuipers EJ, Fockens P, Kraaijenhagen RA, Bossuyt PM. Combining risk factors with faecal immunochemical test outcome for selecting CRC screenees for colonoscopy. Gut. 2014;63(3):466–71.CrossRef
7.
go back to reference Cooper JA, Parsons N, Stinton C, Mathews C, Smith S, Halloran SP, Moss S, Taylor-Phillips S. Risk-adjusted colorectal cancer screening using the FIT and routine screening data: development of a risk prediction model. Br J Cancer. 2018;118(2):285–93.CrossRef Cooper JA, Parsons N, Stinton C, Mathews C, Smith S, Halloran SP, Moss S, Taylor-Phillips S. Risk-adjusted colorectal cancer screening using the FIT and routine screening data: development of a risk prediction model. Br J Cancer. 2018;118(2):285–93.CrossRef
8.
go back to reference Kinar Y, Kalkstein N, Akiva P, Levin B, Half EE, Goldshtein I, Chodick G, Shalev V. Development and validation of a predictive model for detection of colorectal cancer in primary care by analysis of complete blood counts: a binational retrospective study. J Am Med Inform Assoc. 2016;23(5):879–90.CrossRef Kinar Y, Kalkstein N, Akiva P, Levin B, Half EE, Goldshtein I, Chodick G, Shalev V. Development and validation of a predictive model for detection of colorectal cancer in primary care by analysis of complete blood counts: a binational retrospective study. J Am Med Inform Assoc. 2016;23(5):879–90.CrossRef
9.
go back to reference Spell DW, Jones DV, Harper WF, David Bessman J. The value of a complete blood count in predicting cancer of the colon. Cancer Detect Prev. 2004;28(1):37–42.CrossRef Spell DW, Jones DV, Harper WF, David Bessman J. The value of a complete blood count in predicting cancer of the colon. Cancer Detect Prev. 2004;28(1):37–42.CrossRef
10.
go back to reference Goshen R, Mizrahi B, Akiva P, Kinar Y, Choman E, Shalev V, Sopik V, Kariv R, Narod SA. Predicting the presence of colon cancer in members of a health maintenance organisation by evaluating analytes from standard laboratory records. Br J Cancer. 2017;116(7):944–50.CrossRef Goshen R, Mizrahi B, Akiva P, Kinar Y, Choman E, Shalev V, Sopik V, Kariv R, Narod SA. Predicting the presence of colon cancer in members of a health maintenance organisation by evaluating analytes from standard laboratory records. Br J Cancer. 2017;116(7):944–50.CrossRef
11.
go back to reference Shah R, Jones E, Vidart V, Kuppen PJ, Conti JA, Francis NK. Biomarkers for early detection of colorectal cancer and polyps: systematic review. Cancer Epidemiol Biomark Prevent. 2014;23(9):1712–28.CrossRef Shah R, Jones E, Vidart V, Kuppen PJ, Conti JA, Francis NK. Biomarkers for early detection of colorectal cancer and polyps: systematic review. Cancer Epidemiol Biomark Prevent. 2014;23(9):1712–28.CrossRef
12.
go back to reference Niedermaier T, Weigl K, Hoffmeister M, Brenner H. Fecal immunochemical tests in combination with blood tests for colorectal cancer and advanced adenoma detection—systematic review. United European Gastroenterol J. 2018;6(1):13–21.CrossRef Niedermaier T, Weigl K, Hoffmeister M, Brenner H. Fecal immunochemical tests in combination with blood tests for colorectal cancer and advanced adenoma detection—systematic review. United European Gastroenterol J. 2018;6(1):13–21.CrossRef
13.
go back to reference Marshall T, Lancashire R, Sharp D, Peters TJ, Cheng KK, Hamilton W. The diagnostic performance of scoring systems to identify symptomatic colorectal cancer compared to current referral guidance. Gut. 2011;60(9):1242–8.CrossRef Marshall T, Lancashire R, Sharp D, Peters TJ, Cheng KK, Hamilton W. The diagnostic performance of scoring systems to identify symptomatic colorectal cancer compared to current referral guidance. Gut. 2011;60(9):1242–8.CrossRef
14.
go back to reference Hamilton W. The CAPER studies: five case-control studies aimed at identifying and quantifying the risk of cancer in symptomatic primary care patients. Br J Cancer. 2009;101 l 2:S80–6.CrossRef Hamilton W. The CAPER studies: five case-control studies aimed at identifying and quantifying the risk of cancer in symptomatic primary care patients. Br J Cancer. 2009;101 l 2:S80–6.CrossRef
15.
go back to reference Hippisley-Cox J, Coupland C. Identifying patients with suspected colorectal cancer in primary care: derivation and validation of an algorithm. Br J Gen Pract. 2012;62(594):e29–37.CrossRef Hippisley-Cox J, Coupland C. Identifying patients with suspected colorectal cancer in primary care: derivation and validation of an algorithm. Br J Gen Pract. 2012;62(594):e29–37.CrossRef
16.
go back to reference Collins GS, Altman DG. Identifying patients with undetected colorectal cancer: an independent validation of QCancer (colorectal). Br J Cancer. 2012;107:260.CrossRef Collins GS, Altman DG. Identifying patients with undetected colorectal cancer: an independent validation of QCancer (colorectal). Br J Cancer. 2012;107:260.CrossRef
17.
go back to reference Benchimol EI, Smeeth L, Guttmann A, Harron K, Moher D, Petersen I, Sørensen HT, von Elm E, Langan SM, Committee RW. The REporting of studies conducted using observational routinely-collected health data (RECORD) statement. PLoS Med. 2015;12(10):–e1001885. Benchimol EI, Smeeth L, Guttmann A, Harron K, Moher D, Petersen I, Sørensen HT, von Elm E, Langan SM, Committee RW. The REporting of studies conducted using observational routinely-collected health data (RECORD) statement. PLoS Med. 2015;12(10):–e1001885.
18.
go back to reference Moons KG, Altman DG, Reitsma JB, Ioannidis JP, Macaskill P, Steyerberg EW, Vickers AJ, Ransohoff DF, Collins GS. Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD): explanation and elaboration. Ann Intern Med. 2015;162(1):W1–73.CrossRef Moons KG, Altman DG, Reitsma JB, Ioannidis JP, Macaskill P, Steyerberg EW, Vickers AJ, Ransohoff DF, Collins GS. Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD): explanation and elaboration. Ann Intern Med. 2015;162(1):W1–73.CrossRef
20.
go back to reference Maguire A, Blak BT, Thompson M. The importance of defining periods of complete mortality reporting for research using automated data from primary care. Pharmacoepidemiol Drug Saf. 2009;18(1):76–83.CrossRef Maguire A, Blak BT, Thompson M. The importance of defining periods of complete mortality reporting for research using automated data from primary care. Pharmacoepidemiol Drug Saf. 2009;18(1):76–83.CrossRef
21.
go back to reference National Institute for Health and Care Excellence: Suspected cancer: recognition and referral [NICE guidelines NG12]. In.; June 2015. National Institute for Health and Care Excellence: Suspected cancer: recognition and referral [NICE guidelines NG12]. In.; June 2015.
22.
go back to reference Hamilton W, Lancashire R, Sharp D, Peters T, Cheng K, Marshall T. The risk of colorectal cancer with symptoms at different ages and between the sexes: a case-control study. BMC Med. 2009;7(1):17.CrossRef Hamilton W, Lancashire R, Sharp D, Peters T, Cheng K, Marshall T. The risk of colorectal cancer with symptoms at different ages and between the sexes: a case-control study. BMC Med. 2009;7(1):17.CrossRef
23.
go back to reference Hamilton W, Round A, Sharp D, Peters T. Clinical features of colorectal cancer before diagnosis: a population-based case-control study. Br J Cancer. 2005;93:399–405.CrossRef Hamilton W, Round A, Sharp D, Peters T. Clinical features of colorectal cancer before diagnosis: a population-based case-control study. Br J Cancer. 2005;93:399–405.CrossRef
24.
go back to reference Williams TGS, Cubiella J, Griffin SJ, Walter FM, Usher-Smith JA. Risk prediction models for colorectal cancer in people with symptoms: a systematic review. BMC Gastroenterol. 2016;16:63.CrossRef Williams TGS, Cubiella J, Griffin SJ, Walter FM, Usher-Smith JA. Risk prediction models for colorectal cancer in people with symptoms: a systematic review. BMC Gastroenterol. 2016;16:63.CrossRef
25.
go back to reference Moons KM, Altman DG, Reitsma JB, et al. Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (tripod): explanation and elaboration. Ann Intern Med. 2015;162(1):W1–W73.CrossRef Moons KM, Altman DG, Reitsma JB, et al. Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (tripod): explanation and elaboration. Ann Intern Med. 2015;162(1):W1–W73.CrossRef
26.
go back to reference Ahmed S, Leslie A, Thaha MA, Carey FA, Steele RJ. Lower gastrointestinal symptoms are not predictive of colorectal neoplasia in a faecal occult blood screen-positive population. Br J Surg. 2005;92(4):478–81.CrossRef Ahmed S, Leslie A, Thaha MA, Carey FA, Steele RJ. Lower gastrointestinal symptoms are not predictive of colorectal neoplasia in a faecal occult blood screen-positive population. Br J Surg. 2005;92(4):478–81.CrossRef
27.
go back to reference Saldanha JD, Moug SJ, Linton K, Diament RH. Symptoms do not predict colorectal cancer in an FOB screened population. Scott Med J. 2013;58(2):95–8.CrossRef Saldanha JD, Moug SJ, Linton K, Diament RH. Symptoms do not predict colorectal cancer in an FOB screened population. Scott Med J. 2013;58(2):95–8.CrossRef
28.
go back to reference de Klerk CM, van der Vlugt M, Bossuyt PM, Dekker E. A large proportion of fecal immunochemical test-positive participants in colorectal cancer screening is symptomatic. United European Gastroenterol J. 2018;6(3):471–9.CrossRef de Klerk CM, van der Vlugt M, Bossuyt PM, Dekker E. A large proportion of fecal immunochemical test-positive participants in colorectal cancer screening is symptomatic. United European Gastroenterol J. 2018;6(3):471–9.CrossRef
29.
go back to reference Hamilton W. Five misconceptions in cancer diagnosis. Br J Gen Pract. 2009;59(563):441–6.CrossRef Hamilton W. Five misconceptions in cancer diagnosis. Br J Gen Pract. 2009;59(563):441–6.CrossRef
30.
go back to reference Riley RD, Snell KIE, Moons KGM, Debray T, P.A. Fundamental statistical methods for prognosis research. In: Prognosis Research in Healthcare: Concepts, Methods and Impact. Edn. Edited by Riley RD, van der Windt DA, Croft P, Moons KGM. New York, United States of America: Oxford University Press; 2019. Riley RD, Snell KIE, Moons KGM, Debray T, P.A. Fundamental statistical methods for prognosis research. In: Prognosis Research in Healthcare: Concepts, Methods and Impact. Edn. Edited by Riley RD, van der Windt DA, Croft P, Moons KGM. New York, United States of America: Oxford University Press; 2019.
31.
go back to reference Sauerbrei W, Meier-Hirmer C, Benner A, Royston P. Multivariable regression model building by using fractional polynomials: description of SAS, STATA and R programs. Comput Stat Data Anal. 2006;50(12):3464–85.CrossRef Sauerbrei W, Meier-Hirmer C, Benner A, Royston P. Multivariable regression model building by using fractional polynomials: description of SAS, STATA and R programs. Comput Stat Data Anal. 2006;50(12):3464–85.CrossRef
33.
go back to reference Cleves M, Gould W, Marchenko YV. An introduction to survival analysis using Stata, revised third edition edn. Texas, USA: Stata Press; 2016. Cleves M, Gould W, Marchenko YV. An introduction to survival analysis using Stata, revised third edition edn. Texas, USA: Stata Press; 2016.
34.
go back to reference Korn EL, Simon R. Measures of explained variation for survival data. Stat Med. 1990;9(5):487–503.CrossRef Korn EL, Simon R. Measures of explained variation for survival data. Stat Med. 1990;9(5):487–503.CrossRef
35.
go back to reference Van Houwelingen JC, Le Cessie S. Predictive value of statistical models. Stat Med. 1990;9(11):1303–25.CrossRef Van Houwelingen JC, Le Cessie S. Predictive value of statistical models. Stat Med. 1990;9(11):1303–25.CrossRef
36.
go back to reference Launois R, Le Moine JG, Uzzan B, Fiestas Navarrete LI, Benamouzig R. Systematic review and bivariate/HSROC random-effect meta-analysis of immunochemical and guaiac-based fecal occult blood tests for colorectal cancer screening. Eur J Gastroenterol Hepatol. 2014;26(9):978–89.CrossRef Launois R, Le Moine JG, Uzzan B, Fiestas Navarrete LI, Benamouzig R. Systematic review and bivariate/HSROC random-effect meta-analysis of immunochemical and guaiac-based fecal occult blood tests for colorectal cancer screening. Eur J Gastroenterol Hepatol. 2014;26(9):978–89.CrossRef
37.
go back to reference Rees CJ, Bevan R. The National Health Service Bowel Cancer Screening Program: the early years. Expert Rev Gastroenterol Hepatol. 2013;7(5):421–37.CrossRef Rees CJ, Bevan R. The National Health Service Bowel Cancer Screening Program: the early years. Expert Rev Gastroenterol Hepatol. 2013;7(5):421–37.CrossRef
38.
go back to reference Pham TM, Carpenter JR, Morris TP, Wood AM, Petersen I. Population-calibrated multiple imputation for a binary/categorical covariate in categorical regression models. Stat Med. 2019;38(5):792–808. Pham TM, Carpenter JR, Morris TP, Wood AM, Petersen I. Population-calibrated multiple imputation for a binary/categorical covariate in categorical regression models. Stat Med. 2019;38(5):792–808.
39.
go back to reference Boursi B, Mamtani R, Hwang WT, Haynes K, Yang YX. A risk prediction model for sporadic CRC based on routine lab results. Dig Dis Sci. 2016;61(7):2076–86.CrossRef Boursi B, Mamtani R, Hwang WT, Haynes K, Yang YX. A risk prediction model for sporadic CRC based on routine lab results. Dig Dis Sci. 2016;61(7):2076–86.CrossRef
40.
go back to reference Birks J, Bankhead C, Holt TA, Fuller A, Patnick J. Evaluation of a prediction model for colorectal cancer: retrospective analysis of 2.5 million patient records. Cancer Med. 2017;6(10):2453–60.CrossRef Birks J, Bankhead C, Holt TA, Fuller A, Patnick J. Evaluation of a prediction model for colorectal cancer: retrospective analysis of 2.5 million patient records. Cancer Med. 2017;6(10):2453–60.CrossRef
41.
go back to reference Marston L, Carpenter JR, Walters KR, Morris RW, Nazareth I, Petersen I. Issues in multiple imputation of missing data for large general practice clinical databases. Pharmacoepidemiol Drug Saf. 2010;19(6):618–26.CrossRef Marston L, Carpenter JR, Walters KR, Morris RW, Nazareth I, Petersen I. Issues in multiple imputation of missing data for large general practice clinical databases. Pharmacoepidemiol Drug Saf. 2010;19(6):618–26.CrossRef
42.
go back to reference Digby J, Fraser CG, Carey FA, Diament RH, Balsitis M, Steele RJ. Faecal haemoglobin concentration is related to detection of advanced colorectal neoplasia in the next screening round. Journal of medical screening 2016. Digby J, Fraser CG, Carey FA, Diament RH, Balsitis M, Steele RJ. Faecal haemoglobin concentration is related to detection of advanced colorectal neoplasia in the next screening round. Journal of medical screening 2016.
43.
go back to reference Li W, Zhao L-Z, Ma D-W, Wang D-Z, Shi L, Wang H-L, Dong M, Zhang S-Y, Cao L, Zhang W-H et al: Predicting the risk for colorectal cancer with personal characteristics and fecal immunochemical test 2018, 97(18):e0529. Li W, Zhao L-Z, Ma D-W, Wang D-Z, Shi L, Wang H-L, Dong M, Zhang S-Y, Cao L, Zhang W-H et al: Predicting the risk for colorectal cancer with personal characteristics and fecal immunochemical test 2018, 97(18):e0529.
44.
go back to reference van de Veerdonk W, Hoeck S, Peeters M, Van Hal G. Towards risk-stratified colorectal cancer screening. Adding risk factors to the fecal immunochemical test: Evidence, evolution and expectations. Prev Med. 2019;126:105746.CrossRef van de Veerdonk W, Hoeck S, Peeters M, Van Hal G. Towards risk-stratified colorectal cancer screening. Adding risk factors to the fecal immunochemical test: Evidence, evolution and expectations. Prev Med. 2019;126:105746.CrossRef
45.
go back to reference Ford E, Boyd A, Bowles JKF, Havard A, Aldridge RW, Curcin V, Greiver M, Harron K, Katikireddi V, Rodgers SE, et al. Our data, our society, our health: a vision for inclusive and transparent health data science in the United Kingdom and beyond. Learn Health Syst. 2019;3(3):e10191.CrossRef Ford E, Boyd A, Bowles JKF, Havard A, Aldridge RW, Curcin V, Greiver M, Harron K, Katikireddi V, Rodgers SE, et al. Our data, our society, our health: a vision for inclusive and transparent health data science in the United Kingdom and beyond. Learn Health Syst. 2019;3(3):e10191.CrossRef
Metadata
Title
The use of electronic healthcare records for colorectal cancer screening referral decisions and risk prediction model development
Authors
Jennifer Anne Cooper
Ronan Ryan
Nick Parsons
Chris Stinton
Tom Marshall
Sian Taylor-Phillips
Publication date
01-12-2020
Publisher
BioMed Central
Published in
BMC Gastroenterology / Issue 1/2020
Electronic ISSN: 1471-230X
DOI
https://doi.org/10.1186/s12876-020-01206-1

Other articles of this Issue 1/2020

BMC Gastroenterology 1/2020 Go to the issue