Skip to main content
Top
Published in: BMC Cardiovascular Disorders 1/2021

Open Access 01-12-2021 | Research

Adhesion of monocytes and endothelial cells isolated from the human aorta suppresses by miRNA-PEI particles

Authors: Adeleh Poursaleh, Farnaz Sadegh Beigee, Golnaz Esfandiari, Mohammad Najafi

Published in: BMC Cardiovascular Disorders | Issue 1/2021

Login to get access

Abstract

Background

Knowledge of stenosis in coronary arteries requires an understanding of the cellular and molecular processes that occur throughout the leukocyte rolling process. In this study, the roles of miR-125a-5p and miR-495-3p were investigated on the adhesion of endothelial cells (ECs) isolated from the human aorta.

Methods

Human primary endothelial cells were obtained from the aorta of people who had died of brain death. Whole blood was used to isolate the monocytes. The miR-125 and miR-495 were predicted and transfected into ECs using Poly Ethylene Imine (PEI). The expression levels of adhesion molecules and monocyte recruitment were identified by the RT-qPCR technique and Leukocyte-Endothelial Adhesion Assay kit, respectively.

Results

The ICAM-1, ICAM-2 and VCAM-1 expression levels decreased significantly in the miR-495/PEI-transfected ECs (P < 0.05) while in the miR-125/PEI-transfected ECs only the ICAM-2 and ITGB-2 expression levels decreased significantly (P < 0.05) as compared to the miR-synthetic/PEI-transfected ECs. Furthermore, the monocyte adhesion was decreased in the miR-125 and miR-mix/PEI-transfected ECs as compared to the miR-synthetic/PEI-transfected ECs (P = 0.01 and P = 0.04, respectively).

Conclusion

According to the findings, the efficient relations between miR-125 and adhesion molecules may be responsible for the inhibition of monocyte rolling.
Literature
1.
2.
go back to reference Dahlöf B. Cardiovascular disease risk factors: epidemiology and risk assessment. Am J Cardiol. 2010;105(1):3A-9A.PubMedCrossRef Dahlöf B. Cardiovascular disease risk factors: epidemiology and risk assessment. Am J Cardiol. 2010;105(1):3A-9A.PubMedCrossRef
3.
go back to reference Libby P, Ridker PM, Hansson GK. Progress and challenges in translating the biology of atherosclerosis. Nature. 2011;473(7347):317.PubMedCrossRef Libby P, Ridker PM, Hansson GK. Progress and challenges in translating the biology of atherosclerosis. Nature. 2011;473(7347):317.PubMedCrossRef
5.
go back to reference Libby P, Ridker PM, Maseri A. Inflammation and atherosclerosis. Circulation. 2002;105(9):1135–43.PubMedCrossRef Libby P, Ridker PM, Maseri A. Inflammation and atherosclerosis. Circulation. 2002;105(9):1135–43.PubMedCrossRef
6.
go back to reference Tabas I, Williams KJ, Borén J. Subendothelial lipoprotein retention as the initiating process in atherosclerosis: update and therapeutic implications. Circulation. 2007;116(16):1832–44.PubMedCrossRef Tabas I, Williams KJ, Borén J. Subendothelial lipoprotein retention as the initiating process in atherosclerosis: update and therapeutic implications. Circulation. 2007;116(16):1832–44.PubMedCrossRef
7.
go back to reference Chistiakov DA et al. Human miR-221/222 in physiological and atherosclerotic vascular remodeling. In: BioMed research international, 2015. Chistiakov DA et al. Human miR-221/222 in physiological and atherosclerotic vascular remodeling. In: BioMed research international, 2015.
8.
go back to reference Volný O et al. microRNAs in cerebrovascular disease microRNA. In: Medical evidence. 2015, Springer, pp. 155–195. Volný O et al. microRNAs in cerebrovascular disease microRNA. In: Medical evidence. 2015, Springer, pp. 155–195.
11.
14.
go back to reference Solly EL, Dimasi CG, Bursill CA, Psaltis PJ, Tan JTM. MicroRNAs as therapeutic targets and clinical biomarkers in atherosclerosis. J Clin Med. 2019;8(12):2199.PubMedCentralCrossRef Solly EL, Dimasi CG, Bursill CA, Psaltis PJ, Tan JTM. MicroRNAs as therapeutic targets and clinical biomarkers in atherosclerosis. J Clin Med. 2019;8(12):2199.PubMedCentralCrossRef
15.
go back to reference Ghasempour G, Mohammadi A, Zamani-Garmsiri F, Najafi M. miRNAs through beta-ARR2/p-ERK1/2 pathway regulate the VSMC proliferation and migration. Life Sci. 2021;279:119703.PubMedCrossRef Ghasempour G, Mohammadi A, Zamani-Garmsiri F, Najafi M. miRNAs through beta-ARR2/p-ERK1/2 pathway regulate the VSMC proliferation and migration. Life Sci. 2021;279:119703.PubMedCrossRef
16.
go back to reference Ghasempour G, Mahabadi VP, Shabani M, Mohammadi A, Zamani-Garmsiri F, Amirfarhangi A, Karimi M, Najafi M. miR-181b and miR-204 suppress the VSMC proliferation and migration by downregulation of HCK. Microvasc Res. 2021;2021136:104172.CrossRef Ghasempour G, Mahabadi VP, Shabani M, Mohammadi A, Zamani-Garmsiri F, Amirfarhangi A, Karimi M, Najafi M. miR-181b and miR-204 suppress the VSMC proliferation and migration by downregulation of HCK. Microvasc Res. 2021;2021136:104172.CrossRef
17.
go back to reference Rayner KJ, Moore KJ. The plaque “micro” environment: microRNAs control the risk and the development of atherosclerosis. Curr Atheroscler Rep. 2012;14(5):413–21.PubMedPubMedCentralCrossRef Rayner KJ, Moore KJ. The plaque “micro” environment: microRNAs control the risk and the development of atherosclerosis. Curr Atheroscler Rep. 2012;14(5):413–21.PubMedPubMedCentralCrossRef
18.
go back to reference Yang Y, et al. MicroRNA-155 promotes atherosclerosis inflammation via targeting SOCS1. Cell Physiol Biochem. 2015;36(4):1371–81.PubMedCrossRef Yang Y, et al. MicroRNA-155 promotes atherosclerosis inflammation via targeting SOCS1. Cell Physiol Biochem. 2015;36(4):1371–81.PubMedCrossRef
20.
go back to reference Suárez Y, et al. Dicer dependent microRNAs regulate gene expression and functions in human endothelial cells. Circ Res. 2007;100(8):1164–73.PubMedCrossRef Suárez Y, et al. Dicer dependent microRNAs regulate gene expression and functions in human endothelial cells. Circ Res. 2007;100(8):1164–73.PubMedCrossRef
21.
go back to reference Zuo K, et al. A dysregulated microRNA-26a/EphA2 axis impairs endothelial progenitor cell function via the p38 MAPK/VEGF pathway. Cell Physiol Biochem. 2015;35(2):477–88.PubMedCrossRef Zuo K, et al. A dysregulated microRNA-26a/EphA2 axis impairs endothelial progenitor cell function via the p38 MAPK/VEGF pathway. Cell Physiol Biochem. 2015;35(2):477–88.PubMedCrossRef
22.
go back to reference Chamorro-Jorganes A, Araldi E, Suárez Y. MicroRNAs as pharmacological targets in endothelial cell function and dysfunction. Pharmacol Res. 2013;75:15–27.PubMedPubMedCentralCrossRef Chamorro-Jorganes A, Araldi E, Suárez Y. MicroRNAs as pharmacological targets in endothelial cell function and dysfunction. Pharmacol Res. 2013;75:15–27.PubMedPubMedCentralCrossRef
24.
go back to reference Kakavandi N, Rezaee S, Hosseini-Fard SR, Ghasempour G, Khosravi M, Shabani M, Najafi M. Prostaglandin E2 (PGE2) synthesis pathway is involved in coronary artery stenosis and restenosis. Gene. 2021;765:145131.PubMedCrossRef Kakavandi N, Rezaee S, Hosseini-Fard SR, Ghasempour G, Khosravi M, Shabani M, Najafi M. Prostaglandin E2 (PGE2) synthesis pathway is involved in coronary artery stenosis and restenosis. Gene. 2021;765:145131.PubMedCrossRef
26.
go back to reference Davies MJ, et al. The expression of the adhesion molecules ICAM-1, VCAM-1, PECAM, and E-selectin in human atherosclerosis. J Pathol. 1993;171(3):223–9.PubMedCrossRef Davies MJ, et al. The expression of the adhesion molecules ICAM-1, VCAM-1, PECAM, and E-selectin in human atherosclerosis. J Pathol. 1993;171(3):223–9.PubMedCrossRef
27.
go back to reference Churov A, Summerhill V, Grechko A, Orekhova V, Orekhov A. MicroRNAs as Potential Biomarkers in Atherosclerosis. Int J Mol Sci. 2019;20(22):5547.PubMedCentralCrossRef Churov A, Summerhill V, Grechko A, Orekhova V, Orekhov A. MicroRNAs as Potential Biomarkers in Atherosclerosis. Int J Mol Sci. 2019;20(22):5547.PubMedCentralCrossRef
28.
go back to reference Poursaleh A, Esfandiari G, Sadegh Beigee F, Eshghifar N, Najafi M. Isolation of intimal endothelial cells from the human thoracic aorta: study protocol. Med J Islam Repub Iran. 2019;4(33):51. Poursaleh A, Esfandiari G, Sadegh Beigee F, Eshghifar N, Najafi M. Isolation of intimal endothelial cells from the human thoracic aorta: study protocol. Med J Islam Repub Iran. 2019;4(33):51.
29.
go back to reference Matsushita K, et al. Lipopolysaccharide enhances the production of vascular endothelial growth factor by human pulp cells in culture. Infect Immun. 1999;67(4):1633–9.PubMedPubMedCentralCrossRef Matsushita K, et al. Lipopolysaccharide enhances the production of vascular endothelial growth factor by human pulp cells in culture. Infect Immun. 1999;67(4):1633–9.PubMedPubMedCentralCrossRef
30.
go back to reference Heidarzadeh M, Avcı ÇB, Saberianpour S, Ahmadi M, Hassanpour M, Bagheri HS, Rezaie J, Talebi M, Roodbari F, Sokullu E, Darabi M, Rahbarghazi R. Activation of toll-like receptor signaling in endothelial progenitor cells dictates angiogenic potential: from hypothesis to actual state. Cell Tissue Res. 2021;384(2):389–401.PubMedCrossRef Heidarzadeh M, Avcı ÇB, Saberianpour S, Ahmadi M, Hassanpour M, Bagheri HS, Rezaie J, Talebi M, Roodbari F, Sokullu E, Darabi M, Rahbarghazi R. Activation of toll-like receptor signaling in endothelial progenitor cells dictates angiogenic potential: from hypothesis to actual state. Cell Tissue Res. 2021;384(2):389–401.PubMedCrossRef
31.
go back to reference Hassanpour P, et al. Interleukin 6 may be related to indoleamine 2, 3-dioxygense function in M2 macrophages treated with small dense LDL particles. Gene. 2017;626:442–6.PubMedCrossRef Hassanpour P, et al. Interleukin 6 may be related to indoleamine 2, 3-dioxygense function in M2 macrophages treated with small dense LDL particles. Gene. 2017;626:442–6.PubMedCrossRef
32.
go back to reference McDonald RA, et al. Reducing in-stent restenosis: therapeutic manipulation of miRNA in vascular remodeling and inflammation. J Am Coll Cardiol. 2015;65(21):2314–27.PubMedPubMedCentralCrossRef McDonald RA, et al. Reducing in-stent restenosis: therapeutic manipulation of miRNA in vascular remodeling and inflammation. J Am Coll Cardiol. 2015;65(21):2314–27.PubMedPubMedCentralCrossRef
34.
go back to reference Rafiee L, Hajhashemi V, Javanmard SH. Maprotiline inhibits LPS-induced expression of adhesion molecules (ICAM-1 and VCAM-1) in human endothelial cells. Res Pharmaceut Sci. 2016;11(2):138. Rafiee L, Hajhashemi V, Javanmard SH. Maprotiline inhibits LPS-induced expression of adhesion molecules (ICAM-1 and VCAM-1) in human endothelial cells. Res Pharmaceut Sci. 2016;11(2):138.
35.
36.
go back to reference Muller WA. Leukocyte–endothelial-cell interactions in leukocyte transmigration and the inflammatory response. Trends Immunol. 2003;24(6):326–33.CrossRef Muller WA. Leukocyte–endothelial-cell interactions in leukocyte transmigration and the inflammatory response. Trends Immunol. 2003;24(6):326–33.CrossRef
37.
go back to reference Li H, et al. Inducible expression of vascular cell adhesion molecule-1 by vascular smooth muscle cells in vitro and within rabbit atheroma. Am J Pathol. 1993;143(6):1551.PubMedPubMedCentral Li H, et al. Inducible expression of vascular cell adhesion molecule-1 by vascular smooth muscle cells in vitro and within rabbit atheroma. Am J Pathol. 1993;143(6):1551.PubMedPubMedCentral
38.
go back to reference He M, et al. Plasma microRNAs as potential noninvasive biomarkers for in-stent restenosis. PLoS ONE. 2014;9(11):112043.CrossRef He M, et al. Plasma microRNAs as potential noninvasive biomarkers for in-stent restenosis. PLoS ONE. 2014;9(11):112043.CrossRef
39.
go back to reference Romaine SP et al. MicroRNAs in cardiovascular disease: an introduction for clinicians. Heart, 2015. Romaine SP et al. MicroRNAs in cardiovascular disease: an introduction for clinicians. Heart, 2015.
41.
go back to reference Ghosh AK, et al. Molecular basis of cardiac endothelial-to-mesenchymal transition (EndMT): differential expression of microRNAs during EndMT. Cell Signal. 2012;24(5):1031–6.PubMedPubMedCentralCrossRef Ghosh AK, et al. Molecular basis of cardiac endothelial-to-mesenchymal transition (EndMT): differential expression of microRNAs during EndMT. Cell Signal. 2012;24(5):1031–6.PubMedPubMedCentralCrossRef
42.
go back to reference Li D, et al. MicroRNA-125a/b-5p inhibits endothelin-1 expression in vascular endothelial cells. J Hypertens. 2010;28(8):1646–54.PubMedCrossRef Li D, et al. MicroRNA-125a/b-5p inhibits endothelin-1 expression in vascular endothelial cells. J Hypertens. 2010;28(8):1646–54.PubMedCrossRef
43.
go back to reference Gareri C, De Rosa S, Indolfi C. MicroRNAs for restenosis and thrombosis after vascular injury. Circ Res. 2016;118(7):1170–84.PubMedCrossRef Gareri C, De Rosa S, Indolfi C. MicroRNAs for restenosis and thrombosis after vascular injury. Circ Res. 2016;118(7):1170–84.PubMedCrossRef
44.
go back to reference Zheng X, Wu Z, Xu K, Qiu Y, Su X, Zhang Z, Zhou M. Interfering histone deacetylase 4 inhibits the proliferation of vascular smooth muscle cells via regulating MEG3/miR-125a-5p/IRF1. Cell Adh Migr. 2019;13(1):41–9.PubMedCrossRef Zheng X, Wu Z, Xu K, Qiu Y, Su X, Zhang Z, Zhou M. Interfering histone deacetylase 4 inhibits the proliferation of vascular smooth muscle cells via regulating MEG3/miR-125a-5p/IRF1. Cell Adh Migr. 2019;13(1):41–9.PubMedCrossRef
45.
go back to reference Pan Q, Ma C, Wang Y, Wang J, Zheng J, Du D, Liao X, Chen Y, Chen Y, Bihl J, Chen C, Yang Y, Ma X. Microvesicles-mediated communication between endothelial cells modulates, endothelial survival, and angiogenic function via transferring of miR-125a-5p. J Cell Biochem. 2019;120(3):3160–72.PubMedCrossRef Pan Q, Ma C, Wang Y, Wang J, Zheng J, Du D, Liao X, Chen Y, Chen Y, Bihl J, Chen C, Yang Y, Ma X. Microvesicles-mediated communication between endothelial cells modulates, endothelial survival, and angiogenic function via transferring of miR-125a-5p. J Cell Biochem. 2019;120(3):3160–72.PubMedCrossRef
46.
go back to reference Chen T, et al. MicroRNA-125a-5p partly regulates the inflammatory response, lipid uptake, and ORP9 expression in oxLDL-stimulated monocyte/macrophages. Cardiovasc Res. 2009;83(1):131–9.PubMedCrossRef Chen T, et al. MicroRNA-125a-5p partly regulates the inflammatory response, lipid uptake, and ORP9 expression in oxLDL-stimulated monocyte/macrophages. Cardiovasc Res. 2009;83(1):131–9.PubMedCrossRef
47.
go back to reference Schmitz B, Breulmann FL, Jubran B, Rolfes F, Thorwesten L, Krüger M, Klose A, Schnittler HJ, Brand SM. A three-step approach identifies novel shear stress-sensitive endothelial microRNAs involved in vasculoprotective effects of high-intensity interval training (HIIT). Oncotarget. 2019;10(38):3625–40.PubMedPubMedCentralCrossRef Schmitz B, Breulmann FL, Jubran B, Rolfes F, Thorwesten L, Krüger M, Klose A, Schnittler HJ, Brand SM. A three-step approach identifies novel shear stress-sensitive endothelial microRNAs involved in vasculoprotective effects of high-intensity interval training (HIIT). Oncotarget. 2019;10(38):3625–40.PubMedPubMedCentralCrossRef
48.
go back to reference Li J-Z, et al. MicroRNA-495 regulates migration and invasion in prostate cancer cells via targeting Akt and mTOR signaling. Cancer Invest. 2016;34(4):181–8.PubMedCrossRef Li J-Z, et al. MicroRNA-495 regulates migration and invasion in prostate cancer cells via targeting Akt and mTOR signaling. Cancer Invest. 2016;34(4):181–8.PubMedCrossRef
49.
go back to reference Chen Y, et al. Demethylation of miR-495 inhibits cell proliferation, migration and promotes apoptosis by targeting STAT-3 in breast cancer. Oncol Rep. 2017;37(6):3581–9.PubMedCrossRef Chen Y, et al. Demethylation of miR-495 inhibits cell proliferation, migration and promotes apoptosis by targeting STAT-3 in breast cancer. Oncol Rep. 2017;37(6):3581–9.PubMedCrossRef
50.
go back to reference Wang H, et al. MicroRNA-495 inhibits gastric cancer cell migration and invasion possibly via targeting high mobility group AT-hook 2 (HMGA2). Med Sci Monit Int Med J Exp Clin Res. 2017;23:640. Wang H, et al. MicroRNA-495 inhibits gastric cancer cell migration and invasion possibly via targeting high mobility group AT-hook 2 (HMGA2). Med Sci Monit Int Med J Exp Clin Res. 2017;23:640.
51.
go back to reference Hwang-Verslues W, et al. miR-495 is upregulated by E12/E47 in breast cancer stem cells, and promotes oncogenesis and hypoxia resistance via downregulation of E-cadherin and REDD1. Oncogene. 2011;30(21):2463.PubMedCrossRef Hwang-Verslues W, et al. miR-495 is upregulated by E12/E47 in breast cancer stem cells, and promotes oncogenesis and hypoxia resistance via downregulation of E-cadherin and REDD1. Oncogene. 2011;30(21):2463.PubMedCrossRef
52.
go back to reference Liang J, et al. Inhibition of microRNA-495 enhances therapeutic angiogenesis of human induced pluripotent stem cells. Stem Cells. 2017;35(2):337–50.PubMedCrossRef Liang J, et al. Inhibition of microRNA-495 enhances therapeutic angiogenesis of human induced pluripotent stem cells. Stem Cells. 2017;35(2):337–50.PubMedCrossRef
53.
go back to reference Zhou T, Xiang DK, Li SN, Yang LH, Gao LF, Feng C. MicroRNA-495 ameliorates cardiac microvascular endothelial cell injury and inflammatory reaction by suppressing the NLRP3 inflammasome signaling pathway. Cell Physiol Biochem. 2018;49(2):798–815.PubMedCrossRef Zhou T, Xiang DK, Li SN, Yang LH, Gao LF, Feng C. MicroRNA-495 ameliorates cardiac microvascular endothelial cell injury and inflammatory reaction by suppressing the NLRP3 inflammasome signaling pathway. Cell Physiol Biochem. 2018;49(2):798–815.PubMedCrossRef
54.
go back to reference Tan A, Luo R, Ruan P. miR-495 promotes apoptosis and inhibits proliferation in endometrial cells via targeting PIK3R1. Pathol Res Pract. 2019;215(3):594–9.PubMedCrossRef Tan A, Luo R, Ruan P. miR-495 promotes apoptosis and inhibits proliferation in endometrial cells via targeting PIK3R1. Pathol Res Pract. 2019;215(3):594–9.PubMedCrossRef
55.
go back to reference Fu J, Bai P, Chen Y, Yu T, Li F. Inhibition of miR-495 improves both vascular remodeling and angiogenesis in pulmonary hypertension. J Vasc Res. 2019;56(2):97–106.PubMedCrossRef Fu J, Bai P, Chen Y, Yu T, Li F. Inhibition of miR-495 improves both vascular remodeling and angiogenesis in pulmonary hypertension. J Vasc Res. 2019;56(2):97–106.PubMedCrossRef
56.
go back to reference Clark AL, Naya FJ. miR-410 and miR-495 regulate cardiomyocyte proliferation. 2015. Clark AL, Naya FJ. miR-410 and miR-495 regulate cardiomyocyte proliferation. 2015.
57.
go back to reference Takeya M, et al. Detection of monocyte chemoattractant protein-1 in human atherosclerotic lesions by an anti-monocyte chemoattractant protein-1 monoclonal antibody. Hum Pathol. 1993;24(5):534–9.PubMedCrossRef Takeya M, et al. Detection of monocyte chemoattractant protein-1 in human atherosclerotic lesions by an anti-monocyte chemoattractant protein-1 monoclonal antibody. Hum Pathol. 1993;24(5):534–9.PubMedCrossRef
58.
go back to reference Ylä-Herttuala S, et al. Expression of monocyte chemoattractant protein 1 in macrophage-rich areas of human and rabbit atherosclerotic lesions. Proc Natl Acad Sci. 1991;88(12):5252–6.PubMedPubMedCentralCrossRef Ylä-Herttuala S, et al. Expression of monocyte chemoattractant protein 1 in macrophage-rich areas of human and rabbit atherosclerotic lesions. Proc Natl Acad Sci. 1991;88(12):5252–6.PubMedPubMedCentralCrossRef
59.
go back to reference Liu D, et al. MicroRNA-495 regulates the proliferation and apoptosis of human umbilical vein endothelial cells by targeting chemokine CCL2. Thromb Res. 2015;135(1):146–54.PubMedCrossRef Liu D, et al. MicroRNA-495 regulates the proliferation and apoptosis of human umbilical vein endothelial cells by targeting chemokine CCL2. Thromb Res. 2015;135(1):146–54.PubMedCrossRef
60.
go back to reference Weber KS, et al. Expression of CCR2 by endothelial cells: implications for MCP-1 mediated wound injury repair and in vivo inflammatory activation of endothelium. Arterioscler Thromb Vasc Biol. 1999;19(9):2085–93.PubMedCrossRef Weber KS, et al. Expression of CCR2 by endothelial cells: implications for MCP-1 mediated wound injury repair and in vivo inflammatory activation of endothelium. Arterioscler Thromb Vasc Biol. 1999;19(9):2085–93.PubMedCrossRef
62.
go back to reference Sacks D, Baxter B, Campbell BCV, Carpenter JS, Cognard C, Dippel D, Eesa M, Fischer U, Hausegger K, Hirsch JA, Shazam Hussain M, Jansen O, Jayaraman MV, Khalessi AA, Kluck BW, Lavine S, Meyers PM, Ramee S, Rüfenacht DA, Schirmer CM, Vorwerk D. Multisociety consensus quality improvement revised consensus statement for endovascular therapy of acute ischemic stroke. Int J Stroke. 2018;13(6):612–32.PubMed Sacks D, Baxter B, Campbell BCV, Carpenter JS, Cognard C, Dippel D, Eesa M, Fischer U, Hausegger K, Hirsch JA, Shazam Hussain M, Jansen O, Jayaraman MV, Khalessi AA, Kluck BW, Lavine S, Meyers PM, Ramee S, Rüfenacht DA, Schirmer CM, Vorwerk D. Multisociety consensus quality improvement revised consensus statement for endovascular therapy of acute ischemic stroke. Int J Stroke. 2018;13(6):612–32.PubMed
63.
go back to reference Rykowska I, Nowak I, Nowak R. Drug-eluting stents and balloons-materials, structure designs, and coating techniques: a review. Molecules. 2020;25(20):4624.PubMedCentralCrossRef Rykowska I, Nowak I, Nowak R. Drug-eluting stents and balloons-materials, structure designs, and coating techniques: a review. Molecules. 2020;25(20):4624.PubMedCentralCrossRef
Metadata
Title
Adhesion of monocytes and endothelial cells isolated from the human aorta suppresses by miRNA-PEI particles
Authors
Adeleh Poursaleh
Farnaz Sadegh Beigee
Golnaz Esfandiari
Mohammad Najafi
Publication date
01-12-2021
Publisher
BioMed Central
Published in
BMC Cardiovascular Disorders / Issue 1/2021
Electronic ISSN: 1471-2261
DOI
https://doi.org/10.1186/s12872-021-02203-2

Other articles of this Issue 1/2021

BMC Cardiovascular Disorders 1/2021 Go to the issue