Skip to main content
Top
Published in: BMC Cardiovascular Disorders 1/2021

Open Access 01-12-2021 | Arterial Occlusive Disease | Research

A ten-genes-based diagnostic signature for atherosclerosis

Authors: Feng Zhu, Lili Zuo, Rui Hu, Jin Wang, Zhihua Yang, Xin Qi, Limin Feng

Published in: BMC Cardiovascular Disorders | Issue 1/2021

Login to get access

Abstract

Background

Atherosclerosis is the leading cause of cardiovascular disease with a high mortality worldwide. Understanding the atherosclerosis pathogenesis and identification of efficient diagnostic signatures remain major problems of modern medicine. This study aims to screen the potential diagnostic genes for atherosclerosis.

Methods

We downloaded the gene chip data of 135 peripheral blood samples, including 57 samples with atherosclerosis and 78 healthy subjects from GEO database (Accession Number: GSE20129). The weighted gene co-expression network analysis was applied to identify atherosclerosis-related genes. Functional enrichment analysis was conducted by using the clusterProfiler R package. The interaction pairs of proteins encoded by atherosclerosis-related genes were screened using STRING database, and the interaction network was further optimized with the cytoHubba plug-in of Cytoscape software.

Results

The logistic regression diagnostic model was constructed to predict normal and atherosclerosis samples. A gene module which included 532 genes related to the occurrence of atherosclerosis were screened. Functional enrichment analysis basing on the 532 genes identified 235 significantly enriched GO terms and 44 significantly enriched KEGG pathways. The top 50 hub genes of the protein–protein interaction network were identified. The final logistic regression diagnostic model was established by the optimal 10 key genes, which could distinguish atherosclerosis samples from normal samples.

Conclusions

A predictive model based on 10 potential atherosclerosis-related genes was obtained, which should shed light on the diagnostic research of atherosclerosis.
Appendix
Available only for authorised users
Literature
1.
go back to reference Schaftenaar F, Frodermann V, Kuiper J, Lutgens E. Atherosclerosis: the interplay between lipids and immune cells. Curr Opin Lipidol. 2016;27(3):209–15.PubMedCrossRef Schaftenaar F, Frodermann V, Kuiper J, Lutgens E. Atherosclerosis: the interplay between lipids and immune cells. Curr Opin Lipidol. 2016;27(3):209–15.PubMedCrossRef
2.
go back to reference Libby P, Ridker PM, Hansson GK. Progress and challenges in translating the biology of atherosclerosis. Nature. 2011;473(7347):317–25.PubMedCrossRef Libby P, Ridker PM, Hansson GK. Progress and challenges in translating the biology of atherosclerosis. Nature. 2011;473(7347):317–25.PubMedCrossRef
3.
go back to reference Zhang J, Zu Y, Dhanasekara CS, Li J, Wu D, Fan Z, Wang S. Detection and treatment of atherosclerosis using nanoparticles. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2017;9(1):e1412.CrossRef Zhang J, Zu Y, Dhanasekara CS, Li J, Wu D, Fan Z, Wang S. Detection and treatment of atherosclerosis using nanoparticles. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2017;9(1):e1412.CrossRef
5.
go back to reference Maruf A, Wang Y, Yin T, Huang J, Wang N, Durkan C, Tan Y, Wu W, Wang G. Atherosclerosis treatment with stimuli-responsive nanoagents: recent advances and future perspectives. Adv Healthc Mater. 2019;8(11):e1900036.PubMedCrossRef Maruf A, Wang Y, Yin T, Huang J, Wang N, Durkan C, Tan Y, Wu W, Wang G. Atherosclerosis treatment with stimuli-responsive nanoagents: recent advances and future perspectives. Adv Healthc Mater. 2019;8(11):e1900036.PubMedCrossRef
6.
go back to reference Horodinschi RN, Stanescu AMA, Bratu OG, Pantea Stoian A, Radavoi DG, Diaconu CC. Treatment with statins in elderly patients. Medicina (Kaunas). 2019;55(11):721.CrossRef Horodinschi RN, Stanescu AMA, Bratu OG, Pantea Stoian A, Radavoi DG, Diaconu CC. Treatment with statins in elderly patients. Medicina (Kaunas). 2019;55(11):721.CrossRef
7.
go back to reference Lee SG, Lee SJ, Thuy NVP, Kim JS, Lee JJ, Lee OH, Kim CK, Oh J, Park S, Lee OH, et al. Synergistic protective effects of a statin and an angiotensin receptor blocker for initiation and progression of atherosclerosis. PLoS ONE. 2019;14(5):e0215604.PubMedPubMedCentralCrossRef Lee SG, Lee SJ, Thuy NVP, Kim JS, Lee JJ, Lee OH, Kim CK, Oh J, Park S, Lee OH, et al. Synergistic protective effects of a statin and an angiotensin receptor blocker for initiation and progression of atherosclerosis. PLoS ONE. 2019;14(5):e0215604.PubMedPubMedCentralCrossRef
8.
go back to reference Penalvo JL, Fernandez-Friera L, Lopez-Melgar B, Uzhova I, Oliva B, Fernandez-Alvira JM, Laclaustra M, Pocock S, Mocoroa A, Mendiguren JM, et al. Association between a social-business eating pattern and early asymptomatic atherosclerosis. J Am Coll Cardiol. 2016;68(8):805–14.PubMedCrossRef Penalvo JL, Fernandez-Friera L, Lopez-Melgar B, Uzhova I, Oliva B, Fernandez-Alvira JM, Laclaustra M, Pocock S, Mocoroa A, Mendiguren JM, et al. Association between a social-business eating pattern and early asymptomatic atherosclerosis. J Am Coll Cardiol. 2016;68(8):805–14.PubMedCrossRef
9.
go back to reference Ossoli A, Simonelli S, Vitali C, Franceschini G, Calabresi L. Role of LCAT in atherosclerosis. J Atheroscler Thromb. 2016;23(2):119–27.PubMedCrossRef Ossoli A, Simonelli S, Vitali C, Franceschini G, Calabresi L. Role of LCAT in atherosclerosis. J Atheroscler Thromb. 2016;23(2):119–27.PubMedCrossRef
10.
go back to reference Matthijs Blankesteijn W, Hermans KC. Wnt signaling in atherosclerosis. Eur J Pharmacol. 2015;763(Pt A):122–30.PubMedCrossRef Matthijs Blankesteijn W, Hermans KC. Wnt signaling in atherosclerosis. Eur J Pharmacol. 2015;763(Pt A):122–30.PubMedCrossRef
11.
go back to reference Tibaut M, Caprnda M, Kubatka P, Sinkovic A, Valentova V, Filipova S, Gazdikova K, Gaspar L, Mozos I, Egom EE, et al. Markers of atherosclerosis: part 1-serological markers. Heart Lung Circ. 2019;28(5):667–77.PubMedCrossRef Tibaut M, Caprnda M, Kubatka P, Sinkovic A, Valentova V, Filipova S, Gazdikova K, Gaspar L, Mozos I, Egom EE, et al. Markers of atherosclerosis: part 1-serological markers. Heart Lung Circ. 2019;28(5):667–77.PubMedCrossRef
12.
go back to reference Siasos G, Kollia C, Tsigkou V, Basdra EK, Lymperi M, Oikonomou E, Kokkou E, Korompelis P, Papavassiliou AG. MicroRNAs: novel diagnostic and prognostic biomarkers in atherosclerosis. Curr Top Med Chem. 2013;13(13):1503–17.PubMedCrossRef Siasos G, Kollia C, Tsigkou V, Basdra EK, Lymperi M, Oikonomou E, Kokkou E, Korompelis P, Papavassiliou AG. MicroRNAs: novel diagnostic and prognostic biomarkers in atherosclerosis. Curr Top Med Chem. 2013;13(13):1503–17.PubMedCrossRef
13.
go back to reference Langfelder P, Horvath S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinform. 2008;9:559.CrossRef Langfelder P, Horvath S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinform. 2008;9:559.CrossRef
15.
go back to reference Szklarczyk D, Gable AL, Lyon D, Junge A, Wyder S, Huerta-Cepas J, Simonovic M, Doncheva NT, Morris JH, Bork P, et al. STRING v11: protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 2019;47(D1):D607–13.PubMedCrossRef Szklarczyk D, Gable AL, Lyon D, Junge A, Wyder S, Huerta-Cepas J, Simonovic M, Doncheva NT, Morris JH, Bork P, et al. STRING v11: protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 2019;47(D1):D607–13.PubMedCrossRef
16.
go back to reference Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13(11):2498–504.PubMedPubMedCentralCrossRef Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13(11):2498–504.PubMedPubMedCentralCrossRef
17.
18.
19.
go back to reference Du J, Wang S, He C, Zhou B, Ruan YL, Shou H. Identification of regulatory networks and hub genes controlling soybean seed set and size using RNA sequencing analysis. J Exp Bot. 2017;68(8):1955–72.PubMedPubMedCentral Du J, Wang S, He C, Zhou B, Ruan YL, Shou H. Identification of regulatory networks and hub genes controlling soybean seed set and size using RNA sequencing analysis. J Exp Bot. 2017;68(8):1955–72.PubMedPubMedCentral
20.
go back to reference Greenham K, Guadagno CR, Gehan MA, Mockler TC, Weinig C, Ewers BE, McClung CR. Temporal network analysis identifies early physiological and transcriptomic indicators of mild drought in Brassica rapa. Elife. 2017;6:e29655.PubMedPubMedCentralCrossRef Greenham K, Guadagno CR, Gehan MA, Mockler TC, Weinig C, Ewers BE, McClung CR. Temporal network analysis identifies early physiological and transcriptomic indicators of mild drought in Brassica rapa. Elife. 2017;6:e29655.PubMedPubMedCentralCrossRef
22.
go back to reference Chen Q, Lv J, Yang W, Xu B, Wang Z, Yu Z, Wu J, Yang Y, Han Y. Targeted inhibition of STAT3 as a potential treatment strategy for atherosclerosis. Theranostics. 2019;9(22):6424–42.PubMedPubMedCentralCrossRef Chen Q, Lv J, Yang W, Xu B, Wang Z, Yu Z, Wu J, Yang Y, Han Y. Targeted inhibition of STAT3 as a potential treatment strategy for atherosclerosis. Theranostics. 2019;9(22):6424–42.PubMedPubMedCentralCrossRef
23.
go back to reference Dewberry R, Holden H, Crossman D, Francis S. Interleukin-1 receptor antagonist expression in human endothelial cells and atherosclerosis. Arterioscler Thromb Vasc Biol. 2000;20(11):2394–400.PubMedCrossRef Dewberry R, Holden H, Crossman D, Francis S. Interleukin-1 receptor antagonist expression in human endothelial cells and atherosclerosis. Arterioscler Thromb Vasc Biol. 2000;20(11):2394–400.PubMedCrossRef
24.
go back to reference Modinger Y, Rapp A, Pazmandi J, Vikman A, Holzmann K, Haffner-Luntzer M, Huber-Lang M, Ignatius A. C5aR1 interacts with TLR2 in osteoblasts and stimulates the osteoclast-inducing chemokine CXCL10. J Cell Mol Med. 2018;22(12):6002–14.PubMedPubMedCentralCrossRef Modinger Y, Rapp A, Pazmandi J, Vikman A, Holzmann K, Haffner-Luntzer M, Huber-Lang M, Ignatius A. C5aR1 interacts with TLR2 in osteoblasts and stimulates the osteoclast-inducing chemokine CXCL10. J Cell Mol Med. 2018;22(12):6002–14.PubMedPubMedCentralCrossRef
25.
go back to reference An G, Ren G, An F, Zhang C. Role of C5a–C5aR axis in the development of atherosclerosis. Sci China Life Sci. 2014;57(8):790–4.PubMedCrossRef An G, Ren G, An F, Zhang C. Role of C5a–C5aR axis in the development of atherosclerosis. Sci China Life Sci. 2014;57(8):790–4.PubMedCrossRef
26.
go back to reference Matloubian M, David A, Engel S, Ryan JE, Cyster JG. A transmembrane CXC chemokine is a ligand for HIV-coreceptor Bonzo. Nat Immunol. 2000;1(4):298–304.PubMedCrossRef Matloubian M, David A, Engel S, Ryan JE, Cyster JG. A transmembrane CXC chemokine is a ligand for HIV-coreceptor Bonzo. Nat Immunol. 2000;1(4):298–304.PubMedCrossRef
27.
go back to reference Liang K, Liu Y, Eer D, Liu J, Yang F, Hu K. High CXC chemokine LIGAND 16 (CXCL16) expression promotes proliferation and metastasis of lung cancer via regulating the NF-kappaB pathway. Med Sci Monit. 2018;24:405–11.PubMedPubMedCentralCrossRef Liang K, Liu Y, Eer D, Liu J, Yang F, Hu K. High CXC chemokine LIGAND 16 (CXCL16) expression promotes proliferation and metastasis of lung cancer via regulating the NF-kappaB pathway. Med Sci Monit. 2018;24:405–11.PubMedPubMedCentralCrossRef
28.
go back to reference Zivkovic M, Djuric T, Stojkovic L, Jovanovic I, Koncar I, Davidovic L, Veljkovic N, Alavantic D, Stankovic A. CXCL16 haplotypes in patients with human carotid atherosclerosis: preliminary results. J Atheroscler Thromb. 2015;22(1):10–20.PubMedCrossRef Zivkovic M, Djuric T, Stojkovic L, Jovanovic I, Koncar I, Davidovic L, Veljkovic N, Alavantic D, Stankovic A. CXCL16 haplotypes in patients with human carotid atherosclerosis: preliminary results. J Atheroscler Thromb. 2015;22(1):10–20.PubMedCrossRef
29.
go back to reference Lehrke M, Millington SC, Lefterova M, Cumaranatunge RG, Szapary P, Wilensky R, Rader DJ, Lazar MA, Reilly MP. CXCL16 is a marker of inflammation, atherosclerosis, and acute coronary syndromes in humans. J Am Coll Cardiol. 2007;49(4):442–9.PubMedCrossRef Lehrke M, Millington SC, Lefterova M, Cumaranatunge RG, Szapary P, Wilensky R, Rader DJ, Lazar MA, Reilly MP. CXCL16 is a marker of inflammation, atherosclerosis, and acute coronary syndromes in humans. J Am Coll Cardiol. 2007;49(4):442–9.PubMedCrossRef
30.
go back to reference AlShwaimi E, Berggreen E, Furusho H, Rossall JC, Dobeck J, Yoganathan S, Stashenko P, Sasaki H. IL-17 receptor A signaling is protective in infection-stimulated periapical bone destruction. J Immunol. 2013;191(4):1785–91.PubMedCrossRef AlShwaimi E, Berggreen E, Furusho H, Rossall JC, Dobeck J, Yoganathan S, Stashenko P, Sasaki H. IL-17 receptor A signaling is protective in infection-stimulated periapical bone destruction. J Immunol. 2013;191(4):1785–91.PubMedCrossRef
31.
go back to reference Nordlohne J, Helmke A, Ge S, Rong S, Chen R, Waisman A, Haller H, von Vietinghoff S. Aggravated atherosclerosis and vascular inflammation with reduced kidney function depend on interleukin-17 Receptor A and are normalized by inhibition of interleukin-17A. JACC Basic Transl Sci. 2018;3(1):54–66.PubMedPubMedCentralCrossRef Nordlohne J, Helmke A, Ge S, Rong S, Chen R, Waisman A, Haller H, von Vietinghoff S. Aggravated atherosclerosis and vascular inflammation with reduced kidney function depend on interleukin-17 Receptor A and are normalized by inhibition of interleukin-17A. JACC Basic Transl Sci. 2018;3(1):54–66.PubMedPubMedCentralCrossRef
32.
go back to reference Butcher MJ, Gjurich BN, Phillips T, Galkina EV. The IL-17A/IL-17RA axis plays a proatherogenic role via the regulation of aortic myeloid cell recruitment. Circ Res. 2012;110(5):675–87.PubMedPubMedCentralCrossRef Butcher MJ, Gjurich BN, Phillips T, Galkina EV. The IL-17A/IL-17RA axis plays a proatherogenic role via the regulation of aortic myeloid cell recruitment. Circ Res. 2012;110(5):675–87.PubMedPubMedCentralCrossRef
33.
go back to reference Blackwell JM, Goswami T, Evans CA, Sibthorpe D, Papo N, White JK, Searle S, Miller EN, Peacock CS, Mohammed H, et al. SLC11A1 (formerly NRAMP1) and disease resistance. Cell Microbiol. 2001;3(12):773–84.PubMedPubMedCentralCrossRef Blackwell JM, Goswami T, Evans CA, Sibthorpe D, Papo N, White JK, Searle S, Miller EN, Peacock CS, Mohammed H, et al. SLC11A1 (formerly NRAMP1) and disease resistance. Cell Microbiol. 2001;3(12):773–84.PubMedPubMedCentralCrossRef
34.
go back to reference Hagg DA, Jernas M, Wiklund O, Thelle DS, Fagerberg B, Eriksson P, Hamsten A, Olsson B, Carlsson B, Carlsson LM, et al. Expression profiling of macrophages from subjects with atherosclerosis to identify novel susceptibility genes. Int J Mol Med. 2008;21(6):697–704.PubMed Hagg DA, Jernas M, Wiklund O, Thelle DS, Fagerberg B, Eriksson P, Hamsten A, Olsson B, Carlsson B, Carlsson LM, et al. Expression profiling of macrophages from subjects with atherosclerosis to identify novel susceptibility genes. Int J Mol Med. 2008;21(6):697–704.PubMed
35.
go back to reference Roshan MH, Tambo A, Pace NP. The role of TLR2, TLR4, and TLR9 in the pathogenesis of atherosclerosis. Int J Inflam. 2016;2016:1532832.PubMedPubMedCentral Roshan MH, Tambo A, Pace NP. The role of TLR2, TLR4, and TLR9 in the pathogenesis of atherosclerosis. Int J Inflam. 2016;2016:1532832.PubMedPubMedCentral
36.
go back to reference Edfeldt K, Swedenborg J, Hansson GK, Yan ZQ. Expression of toll-like receptors in human atherosclerotic lesions: a possible pathway for plaque activation. Circulation. 2002;105(10):1158–61.PubMedCrossRef Edfeldt K, Swedenborg J, Hansson GK, Yan ZQ. Expression of toll-like receptors in human atherosclerotic lesions: a possible pathway for plaque activation. Circulation. 2002;105(10):1158–61.PubMedCrossRef
37.
go back to reference Dunzendorfer S, Lee HK, Tobias PS. Flow-dependent regulation of endothelial Toll-like receptor 2 expression through inhibition of SP1 activity. Circ Res. 2004;95(7):684–91.PubMedCrossRef Dunzendorfer S, Lee HK, Tobias PS. Flow-dependent regulation of endothelial Toll-like receptor 2 expression through inhibition of SP1 activity. Circ Res. 2004;95(7):684–91.PubMedCrossRef
38.
go back to reference Stegger JG, Schmidt EB, Tjonneland A, Kopp TI, Sorensen TI, Vogel U, Overvad K. Single nucleotide polymorphisms in IL1B and the risk of acute coronary syndrome: a Danish case-cohort study. PLoS ONE. 2012;7(6):e36829.PubMedPubMedCentralCrossRef Stegger JG, Schmidt EB, Tjonneland A, Kopp TI, Sorensen TI, Vogel U, Overvad K. Single nucleotide polymorphisms in IL1B and the risk of acute coronary syndrome: a Danish case-cohort study. PLoS ONE. 2012;7(6):e36829.PubMedPubMedCentralCrossRef
39.
go back to reference Bhaskar V, Yin J, Mirza AM, Phan D, Vanegas S, Issafras H, Michelson K, Hunter JJ, Kantak SS. Monoclonal antibodies targeting IL-1 beta reduce biomarkers of atherosclerosis in vitro and inhibit atherosclerotic plaque formation in Apolipoprotein E-deficient mice. Atherosclerosis. 2011;216(2):313–20.PubMedCrossRef Bhaskar V, Yin J, Mirza AM, Phan D, Vanegas S, Issafras H, Michelson K, Hunter JJ, Kantak SS. Monoclonal antibodies targeting IL-1 beta reduce biomarkers of atherosclerosis in vitro and inhibit atherosclerotic plaque formation in Apolipoprotein E-deficient mice. Atherosclerosis. 2011;216(2):313–20.PubMedCrossRef
40.
go back to reference Uchiumi F, Semba K, Yamanashi Y, Fujisawa J, Yoshida M, Inoue K, Toyoshima K, Yamamoto T. Characterization of the promoter region of the src family gene lyn and its trans activation by human T-cell leukemia virus type I-encoded p40tax. Mol Cell Biol. 1992;12(9):3784–95.PubMedPubMedCentral Uchiumi F, Semba K, Yamanashi Y, Fujisawa J, Yoshida M, Inoue K, Toyoshima K, Yamamoto T. Characterization of the promoter region of the src family gene lyn and its trans activation by human T-cell leukemia virus type I-encoded p40tax. Mol Cell Biol. 1992;12(9):3784–95.PubMedPubMedCentral
41.
go back to reference Chavda B, Ling J, Majernick T, Planey SL. Antiproliferative factor (APF) binds specifically to sites within the cytoskeleton-associated protein 4 (CKAP4) extracellular domain. BMC Biochem. 2017;18(1):13.PubMedPubMedCentralCrossRef Chavda B, Ling J, Majernick T, Planey SL. Antiproliferative factor (APF) binds specifically to sites within the cytoskeleton-associated protein 4 (CKAP4) extracellular domain. BMC Biochem. 2017;18(1):13.PubMedPubMedCentralCrossRef
42.
go back to reference Osugi Y, Fumoto K, Kikuchi A. CKAP4 regulates cell migration via the interaction with and recycling of integrin. Mol Cell Biol. 2019;39(16):e00073-e119.PubMedPubMedCentralCrossRef Osugi Y, Fumoto K, Kikuchi A. CKAP4 regulates cell migration via the interaction with and recycling of integrin. Mol Cell Biol. 2019;39(16):e00073-e119.PubMedPubMedCentralCrossRef
43.
go back to reference Al-Fakhri N, Wilhelm J, Hahn M, Heidt M, Hehrlein FW, Endisch AM, Hupp T, Cherian SM, Bobryshev YV, Lord RS, et al. Increased expression of disintegrin-metalloproteinases ADAM-15 and ADAM-9 following upregulation of integrins alpha5beta1 and alphavbeta3 in atherosclerosis. J Cell Biochem. 2003;89(4):808–23.PubMedCrossRef Al-Fakhri N, Wilhelm J, Hahn M, Heidt M, Hehrlein FW, Endisch AM, Hupp T, Cherian SM, Bobryshev YV, Lord RS, et al. Increased expression of disintegrin-metalloproteinases ADAM-15 and ADAM-9 following upregulation of integrins alpha5beta1 and alphavbeta3 in atherosclerosis. J Cell Biochem. 2003;89(4):808–23.PubMedCrossRef
Metadata
Title
A ten-genes-based diagnostic signature for atherosclerosis
Authors
Feng Zhu
Lili Zuo
Rui Hu
Jin Wang
Zhihua Yang
Xin Qi
Limin Feng
Publication date
01-12-2021
Publisher
BioMed Central
Published in
BMC Cardiovascular Disorders / Issue 1/2021
Electronic ISSN: 1471-2261
DOI
https://doi.org/10.1186/s12872-021-02323-9

Other articles of this Issue 1/2021

BMC Cardiovascular Disorders 1/2021 Go to the issue