Skip to main content
Top
Published in: BMC Cardiovascular Disorders 1/2021

01-12-2021 | Patent Ductus Arteriosus | Research

Association analysis of maternal MTHFR gene polymorphisms and the occurrence of congenital heart disease in offspring

Authors: Mengting Sun, Tingting Wang, Peng Huang, Jingyi Diao, Senmao Zhang, Jinqi Li, Liu Luo, Yihuan Li, Letao Chen, Yiping Liu, Jianhui Wei, Xinli Song, Xiaoqi Sheng, Jiabi Qin

Published in: BMC Cardiovascular Disorders | Issue 1/2021

Login to get access

Abstract

Background

Although many studies showed that the risk of congenital heart disease (CHD) was closely related to genetic factors, the exact pathogenesis is still unknown. Our study aimed to comprehensively assess the association of single nucleotide polymorphisms (SNPs) of maternal MTHFR gene with risk of CHD and its three subtypes in offspring.

Methods

A case–control study involving 569 mothers of CHD cases and 652 health controls was conducted. Thirteen SNPs were detected and analyzed.

Results

Our study showed that genetic polymorphisms of maternal MTHFR gene at rs4846052 and rs1801131 were significantly associated with risk of CHD in the homozygote comparisons (TT vs. CC at rs4846052: OR = 7.62 [95%CI 2.95–19.65]; GG vs. TT at rs1801131: OR = 5.18 [95%CI 2.77–9.71]). And six haplotypes of G–C (involving rs4846048 and rs2274976), A–C (involving rs1801133 and rs4846052), G–T (involving rs1801133 and rs4846052), G–T–G (involving rs2066470, rs3737964 and rs535107), A–C–G (involving rs2066470, rs3737964 and rs535107) and G–C–G (involving rs2066470, rs3737964 and rs535107) were identified to be significantly associated with risk of CHD. Additionally, we observed that a two-locus model involving rs2066470 and rs1801131 as well as a three-locus model involving rs227497, rs1801133 and rs1801131 were significantly associated with risk of CHD in the gene–gene interaction analyses. For three subtypes including atrial septal defect, ventricular septal defect and patent ductus arteriosus, similar results were observed.

Conclusions

Our study indicated genetic polymorphisms of maternal MTHFR gene were significantly associated with risk of fetal CHD in the Chinese population. Additionally, there were significantly interactions among different SNPs on risk of CHD. However, how these SNPs affect the development of fetal heart remains unknown, and more studies in different ethnic populations and with a larger sample are required to confirm these findings.
Appendix
Available only for authorised users
Literature
1.
go back to reference Liu Y, Chen S, Zuhlke L, Black GC, Choy MK, Li N, Keavney BD. Global birth prevalence of congenital heart defects 1970–2017: updated systematic review and meta-analysis of 260 studies. Int J Epidemiol. 2019;48(2):455–63.PubMedPubMedCentralCrossRef Liu Y, Chen S, Zuhlke L, Black GC, Choy MK, Li N, Keavney BD. Global birth prevalence of congenital heart defects 1970–2017: updated systematic review and meta-analysis of 260 studies. Int J Epidemiol. 2019;48(2):455–63.PubMedPubMedCentralCrossRef
2.
go back to reference van der Linde D, Konings EE, Slager MA, Witsenburg M, Helbing WA, Takkenberg JJ, Roos-Hesselink JW. Birth prevalence of congenital heart disease worldwide: a systematic review and meta-analysis. J Am Coll Cardiol. 2011;58(21):2241–7.PubMedCrossRef van der Linde D, Konings EE, Slager MA, Witsenburg M, Helbing WA, Takkenberg JJ, Roos-Hesselink JW. Birth prevalence of congenital heart disease worldwide: a systematic review and meta-analysis. J Am Coll Cardiol. 2011;58(21):2241–7.PubMedCrossRef
3.
go back to reference Zimmerman MS, Smith AG, Sable CA, Echko MM, Wilner LB, Olsen HE, Atalay HT, Awasthi A, Bhutta ZA, Boucher JL, Castro F. Global, regional, and national burden of congenital heart disease, 1990–2017: a systematic analysis for the global burden of disease study 2017. Lancet Child Adolesc Health. 2020;4(3):185–200.CrossRef Zimmerman MS, Smith AG, Sable CA, Echko MM, Wilner LB, Olsen HE, Atalay HT, Awasthi A, Bhutta ZA, Boucher JL, Castro F. Global, regional, and national burden of congenital heart disease, 1990–2017: a systematic analysis for the global burden of disease study 2017. Lancet Child Adolesc Health. 2020;4(3):185–200.CrossRef
4.
go back to reference Ma XJ, Huang GY. Current status of screening, diagnosis, and treatment of neonatal congenital heart disease in China. World J Pediatr. 2018;14(4):313–4.PubMedCrossRef Ma XJ, Huang GY. Current status of screening, diagnosis, and treatment of neonatal congenital heart disease in China. World J Pediatr. 2018;14(4):313–4.PubMedCrossRef
5.
go back to reference Zhao QM, Liu F, Wu L, Ma XJ, Niu C, Huang GY. Prevalence of congenital heart disease at live birth in China. J Pediatr. 2019;204:53–8.PubMedCrossRef Zhao QM, Liu F, Wu L, Ma XJ, Niu C, Huang GY. Prevalence of congenital heart disease at live birth in China. J Pediatr. 2019;204:53–8.PubMedCrossRef
6.
go back to reference Moreau J, Kesteven S, Martin E, Lau KS, Yam MX, O’Reilly VC, Del MG, Baldini A, Feneley MP, Moon AM, et al. Gene-environment interaction impacts on heart development and embryo survival. Development. 2019;146(4):dev172957. Moreau J, Kesteven S, Martin E, Lau KS, Yam MX, O’Reilly VC, Del MG, Baldini A, Feneley MP, Moon AM, et al. Gene-environment interaction impacts on heart development and embryo survival. Development. 2019;146(4):dev172957.
7.
go back to reference Vecoli C, Pulignani S, Foffa I, Andreassi MG. Congenital heart disease: the crossroads of genetics, epigenetics and environment. Curr Genom. 2014;15(5):390–9.CrossRef Vecoli C, Pulignani S, Foffa I, Andreassi MG. Congenital heart disease: the crossroads of genetics, epigenetics and environment. Curr Genom. 2014;15(5):390–9.CrossRef
8.
go back to reference Muntean I, Toganel R, Benedek T. Genetics of congenital heart disease: past and present. Biochem Genet. 2017;55(2):105–23.PubMedCrossRef Muntean I, Toganel R, Benedek T. Genetics of congenital heart disease: past and present. Biochem Genet. 2017;55(2):105–23.PubMedCrossRef
9.
go back to reference Szot JO, Cuny H, Blue GM, Humphreys DT, Ip E, Harrison K, Sholler GF, Giannoulatou E, Leo P, Duncan EL, et al. A Screening approach to identify clinically actionable variants causing congenital heart disease in exome data. Circ Genom Precis Med. 2018;11(3):e1978.CrossRef Szot JO, Cuny H, Blue GM, Humphreys DT, Ip E, Harrison K, Sholler GF, Giannoulatou E, Leo P, Duncan EL, et al. A Screening approach to identify clinically actionable variants causing congenital heart disease in exome data. Circ Genom Precis Med. 2018;11(3):e1978.CrossRef
10.
go back to reference Hobbs CA, James SJ, Jernigan S, Melnyk S, Lu Y, Malik S, Cleves MA. Congenital heart defects, maternal homocysteine, smoking, and the 677 C>T polymorphism in the methylenetetrahydrofolate reductase gene: evaluating gene-environment interactions. Am J Obstet Gynecol. 2006;194(1):218–24.PubMedCrossRef Hobbs CA, James SJ, Jernigan S, Melnyk S, Lu Y, Malik S, Cleves MA. Congenital heart defects, maternal homocysteine, smoking, and the 677 C>T polymorphism in the methylenetetrahydrofolate reductase gene: evaluating gene-environment interactions. Am J Obstet Gynecol. 2006;194(1):218–24.PubMedCrossRef
11.
go back to reference Zhu H, Kartiko S, Finnell RH. Importance of gene-environment interactions in the etiology of selected birth defects. Clin Genet. 2009;75(5):409–23.PubMedCrossRef Zhu H, Kartiko S, Finnell RH. Importance of gene-environment interactions in the etiology of selected birth defects. Clin Genet. 2009;75(5):409–23.PubMedCrossRef
12.
go back to reference Krauss RS, Hong M. Gene-environment interactions and the etiology of birth defects. Curr Top Dev Biol. 2016;116:569–80.PubMedCrossRef Krauss RS, Hong M. Gene-environment interactions and the etiology of birth defects. Curr Top Dev Biol. 2016;116:569–80.PubMedCrossRef
13.
go back to reference Kalayinia S, Maleki M, Mahdavi M, Mahdieh N. A novel de novo dominant mutation of NOTCH1 gene in an Iranian family with non-syndromic congenital heart disease. J Clin Lab Anal. 2020;34(4):e23147.PubMedCrossRef Kalayinia S, Maleki M, Mahdavi M, Mahdieh N. A novel de novo dominant mutation of NOTCH1 gene in an Iranian family with non-syndromic congenital heart disease. J Clin Lab Anal. 2020;34(4):e23147.PubMedCrossRef
14.
go back to reference Kalayinia S, Maleki M, Rokni-Zadeh H, Changi-Ashtiani M, Ahangar H, Biglari A, Shahani T, Mahdieh N. GATA4 screening in Iranian patients of various ethnicities affected with congenital heart disease: Co-occurrence of a novel de novo translocation (5;7) and a likely pathogenic heterozygous GATA4 mutation in a family with autosomal dominant congenital heart disease. J Clin Lab Anal. 2019;33(7):23.CrossRef Kalayinia S, Maleki M, Rokni-Zadeh H, Changi-Ashtiani M, Ahangar H, Biglari A, Shahani T, Mahdieh N. GATA4 screening in Iranian patients of various ethnicities affected with congenital heart disease: Co-occurrence of a novel de novo translocation (5;7) and a likely pathogenic heterozygous GATA4 mutation in a family with autosomal dominant congenital heart disease. J Clin Lab Anal. 2019;33(7):23.CrossRef
15.
go back to reference Wang Y, Liu Y, Ji W, Qin H, Wu H, Xu D, Turtuohut T, Wang Z. Variants in MTHFR gene and neural tube defects susceptibility in China. Metab Brain Dis. 2015;30(4):1017–26.PubMedCrossRef Wang Y, Liu Y, Ji W, Qin H, Wu H, Xu D, Turtuohut T, Wang Z. Variants in MTHFR gene and neural tube defects susceptibility in China. Metab Brain Dis. 2015;30(4):1017–26.PubMedCrossRef
16.
go back to reference Bezerra JF, Oliveira GH, Soares CD, Cardoso ML, Ururahy MA, Neto FP, Lima-Neto LG, Luchessi AD, Silbiger VN, Fajardo CM, et al. Genetic and non-genetic factors that increase the risk of non-syndromic cleft lip and/or palate development. Oral Dis. 2015;21(3):393–9.PubMedCrossRef Bezerra JF, Oliveira GH, Soares CD, Cardoso ML, Ururahy MA, Neto FP, Lima-Neto LG, Luchessi AD, Silbiger VN, Fajardo CM, et al. Genetic and non-genetic factors that increase the risk of non-syndromic cleft lip and/or palate development. Oral Dis. 2015;21(3):393–9.PubMedCrossRef
17.
go back to reference Wenstrom KD, Johanning GL, Johnston KE, DuBard M. Association of the C677T methylenetetrahydrofolate reductase mutation and elevated homocysteine levels with congenital cardiac malformations. Am J Obstet Gynecol. 2001;184(5):806–17.PubMedCrossRef Wenstrom KD, Johanning GL, Johnston KE, DuBard M. Association of the C677T methylenetetrahydrofolate reductase mutation and elevated homocysteine levels with congenital cardiac malformations. Am J Obstet Gynecol. 2001;184(5):806–17.PubMedCrossRef
18.
go back to reference Feng Y, Wang S, Chen R, Tong X, Wu Z, Mo X. Maternal folic acid supplementation and the risk of congenital heart defects in offspring: a meta-analysis of epidemiological observational studies. Sci Rep. 2015;5:8506.PubMedPubMedCentralCrossRef Feng Y, Wang S, Chen R, Tong X, Wu Z, Mo X. Maternal folic acid supplementation and the risk of congenital heart defects in offspring: a meta-analysis of epidemiological observational studies. Sci Rep. 2015;5:8506.PubMedPubMedCentralCrossRef
19.
go back to reference Zhang R, Huo C, Wang X, Dang B, Mu Y, Wang Y. Two common MTHFR gene polymorphisms (C677T and A1298C) and fetal congenital heart disease risk: an updated meta-analysis with trial sequential analysis. Cell Physiol Biochem. 2018;45(6):2483–96.PubMedCrossRef Zhang R, Huo C, Wang X, Dang B, Mu Y, Wang Y. Two common MTHFR gene polymorphisms (C677T and A1298C) and fetal congenital heart disease risk: an updated meta-analysis with trial sequential analysis. Cell Physiol Biochem. 2018;45(6):2483–96.PubMedCrossRef
20.
go back to reference Yang HL, Yang YL, Yu CH, Shiao S. Meta-prediction of MTHFR gene polymorphism and air pollution on the risks of congenital heart defects worldwide: a transgenerational analysis. Int J Environ Res Public Health. 2018;15(8):1660.PubMedCentralCrossRef Yang HL, Yang YL, Yu CH, Shiao S. Meta-prediction of MTHFR gene polymorphism and air pollution on the risks of congenital heart defects worldwide: a transgenerational analysis. Int J Environ Res Public Health. 2018;15(8):1660.PubMedCentralCrossRef
21.
go back to reference Xuan C, Li H, Zhao JX, Wang HW, Wang Y, Ning CP, Liu Z, Zhang BB, He GW, Lun LM. Association between MTHFR polymorphisms and congenital heart disease: a meta-analysis based on 9,329 cases and 15,076 controls. Sci Rep. 2014;4:7311.PubMedPubMedCentralCrossRef Xuan C, Li H, Zhao JX, Wang HW, Wang Y, Ning CP, Liu Z, Zhang BB, He GW, Lun LM. Association between MTHFR polymorphisms and congenital heart disease: a meta-analysis based on 9,329 cases and 15,076 controls. Sci Rep. 2014;4:7311.PubMedPubMedCentralCrossRef
22.
go back to reference Li Y, Diao J, Li J, Luo L, Zhao L, Zhang S, Wang T, Chen L, Yang T, Chen L, et al. Association of maternal dietary intakes and CBS gene polymorphisms with congenital heart disease in offspring. Int J Cardiol. 2021;322:121–8.PubMedCrossRef Li Y, Diao J, Li J, Luo L, Zhao L, Zhang S, Wang T, Chen L, Yang T, Chen L, et al. Association of maternal dietary intakes and CBS gene polymorphisms with congenital heart disease in offspring. Int J Cardiol. 2021;322:121–8.PubMedCrossRef
23.
go back to reference Shaw GM, Lu W, Zhu H, Yang W, Briggs FB, Carmichael SL, Barcellos LF, Lammer EJ, Finnell RH. 118 SNPs of folate-related genes and risks of spina bifida and conotruncal heart defects. BMC Med Genet. 2009;10:49.PubMedPubMedCentralCrossRef Shaw GM, Lu W, Zhu H, Yang W, Briggs FB, Carmichael SL, Barcellos LF, Lammer EJ, Finnell RH. 118 SNPs of folate-related genes and risks of spina bifida and conotruncal heart defects. BMC Med Genet. 2009;10:49.PubMedPubMedCentralCrossRef
24.
go back to reference Czeizel AE, Dudas I, Vereczkey A, Banhidy F. Folate deficiency and folic acid supplementation: the prevention of neural-tube defects and congenital heart defects. Nutrients. 2013;5(11):4760–75.PubMedPubMedCentralCrossRef Czeizel AE, Dudas I, Vereczkey A, Banhidy F. Folate deficiency and folic acid supplementation: the prevention of neural-tube defects and congenital heart defects. Nutrients. 2013;5(11):4760–75.PubMedPubMedCentralCrossRef
25.
go back to reference Xu A, Wang W, Jiang X. The roles of MTRR and MTHFR gene polymorphisms in congenital heart diseases: a meta-analysis. Biosci Rep. 2018;38(6):BSR20181160.PubMedPubMedCentralCrossRef Xu A, Wang W, Jiang X. The roles of MTRR and MTHFR gene polymorphisms in congenital heart diseases: a meta-analysis. Biosci Rep. 2018;38(6):BSR20181160.PubMedPubMedCentralCrossRef
26.
go back to reference Deng C, Deng Y, Xie L, Yu L, Liu L, Liu H, Dai L. Genetic polymorphisms in MTR are associated with non-syndromic congenital heart disease from a family-based case-control study in the Chinese population. Sci Rep. 2019;9(1):5065.PubMedPubMedCentralCrossRef Deng C, Deng Y, Xie L, Yu L, Liu L, Liu H, Dai L. Genetic polymorphisms in MTR are associated with non-syndromic congenital heart disease from a family-based case-control study in the Chinese population. Sci Rep. 2019;9(1):5065.PubMedPubMedCentralCrossRef
27.
go back to reference Yu D, Zhuang Z, Wen Z, Zang X, Mo X. MTHFR A1298C polymorphisms reduce the risk of congenital heart defects: a meta-analysis from 16 case-control studies. Ital J Pediatr. 2017;43(1):108.PubMedPubMedCentralCrossRef Yu D, Zhuang Z, Wen Z, Zang X, Mo X. MTHFR A1298C polymorphisms reduce the risk of congenital heart defects: a meta-analysis from 16 case-control studies. Ital J Pediatr. 2017;43(1):108.PubMedPubMedCentralCrossRef
28.
go back to reference Yuan Y, Yu X, Niu F, Lu N. Genetic polymorphism of methylenetetrahydrofolate reductase as a potential risk factor for congenital heart disease: a meta-analysis in Chinese pediatric population. Medicine (Baltimore). 2017;96(23):e7057.CrossRef Yuan Y, Yu X, Niu F, Lu N. Genetic polymorphism of methylenetetrahydrofolate reductase as a potential risk factor for congenital heart disease: a meta-analysis in Chinese pediatric population. Medicine (Baltimore). 2017;96(23):e7057.CrossRef
30.
go back to reference Chen KH, Chen LL, Li WG, Fang Y, Huang GY. Maternal MTHFR C677T polymorphism and congenital heart defect risk in the Chinese Han population: a meta-analysis. Genet Mol Res. 2013;12(4):6212–9.PubMedCrossRef Chen KH, Chen LL, Li WG, Fang Y, Huang GY. Maternal MTHFR C677T polymorphism and congenital heart defect risk in the Chinese Han population: a meta-analysis. Genet Mol Res. 2013;12(4):6212–9.PubMedCrossRef
31.
go back to reference Guo QN, Wang HD, Tie LZ, Li T, Xiao H, Long JG, Liao SX. Parental genetic variants, MTHFR 677C>T and MTRR 66A>G, associated differently with fetal congenital heart defect. Biomed Res Int. 2017;2017:3043476.PubMedPubMedCentral Guo QN, Wang HD, Tie LZ, Li T, Xiao H, Long JG, Liao SX. Parental genetic variants, MTHFR 677C>T and MTRR 66A>G, associated differently with fetal congenital heart defect. Biomed Res Int. 2017;2017:3043476.PubMedPubMedCentral
32.
go back to reference Garcia-Fragoso L, Garcia-Garcia I, Leavitt G, Renta J, Ayala MA, Cadilla CL. MTHFR polymorphisms in Puerto Rican children with isolated congenital heart disease and their mothers. Int J Genet Mol Biol. 2010;2(3):43–7.PubMedPubMedCentral Garcia-Fragoso L, Garcia-Garcia I, Leavitt G, Renta J, Ayala MA, Cadilla CL. MTHFR polymorphisms in Puerto Rican children with isolated congenital heart disease and their mothers. Int J Genet Mol Biol. 2010;2(3):43–7.PubMedPubMedCentral
33.
go back to reference Elizabeth KE, Praveen SL, Preethi NR, Jissa VT, Pillai MR. Folate, vitamin B12, homocysteine and polymorphisms in folate metabolizing genes in children with congenital heart disease and their mothers. Eur J Clin Nutr. 2017;71(12):1437–41.PubMedCrossRef Elizabeth KE, Praveen SL, Preethi NR, Jissa VT, Pillai MR. Folate, vitamin B12, homocysteine and polymorphisms in folate metabolizing genes in children with congenital heart disease and their mothers. Eur J Clin Nutr. 2017;71(12):1437–41.PubMedCrossRef
34.
go back to reference Mamasoula C, Prentice RR, Pierscionek T, Pangilinan F, Mills JL, Druschel C, Pass K, Russell MW, Hall D, Topf A, et al. Association between C677T polymorphism of methylene tetrahydrofolate reductase and congenital heart disease: meta-analysis of 7697 cases and 13,125 controls. Circ Cardiovasc Genet. 2013;6(4):347–53.PubMedCrossRef Mamasoula C, Prentice RR, Pierscionek T, Pangilinan F, Mills JL, Druschel C, Pass K, Russell MW, Hall D, Topf A, et al. Association between C677T polymorphism of methylene tetrahydrofolate reductase and congenital heart disease: meta-analysis of 7697 cases and 13,125 controls. Circ Cardiovasc Genet. 2013;6(4):347–53.PubMedCrossRef
35.
go back to reference Shi H, Yang S, Liu Y, Huang P, Lin N, Sun X, Yu R, Zhang Y, Qin Y, Wang L. Study on Environmental Causes and SNPs of MTHFR, MS and CBS Genes Related to Congenital Heart Disease. PLoS ONE. 2015;10(6):e128646. Shi H, Yang S, Liu Y, Huang P, Lin N, Sun X, Yu R, Zhang Y, Qin Y, Wang L. Study on Environmental Causes and SNPs of MTHFR, MS and CBS Genes Related to Congenital Heart Disease. PLoS ONE. 2015;10(6):e128646.
36.
go back to reference Scaglione F, Panzavolta G. Folate, folic acid and 5-methyltetrahydrofolate are not the same thing. Xenobiotica. 2014;44(5):480–8.PubMedCrossRef Scaglione F, Panzavolta G. Folate, folic acid and 5-methyltetrahydrofolate are not the same thing. Xenobiotica. 2014;44(5):480–8.PubMedCrossRef
37.
go back to reference Huang J, Mei J, Jiang L, Jiang Z, Liu H, Ding F. MTHFR rs1801133 C>T polymorphism is associated with an increased risk of tetralogy of Fallot. Biomed Rep. 2014;2(2):172–6.PubMedPubMedCentralCrossRef Huang J, Mei J, Jiang L, Jiang Z, Liu H, Ding F. MTHFR rs1801133 C>T polymorphism is associated with an increased risk of tetralogy of Fallot. Biomed Rep. 2014;2(2):172–6.PubMedPubMedCentralCrossRef
38.
go back to reference Chen Z, Karaplis AC, Ackerman SL, Pogribny IP, Melnyk S, Lussier-Cacan S, Chen MF, Pai A, John SW, Smith RS, et al. Mice deficient in methylenetetrahydrofolate reductase exhibit hyperhomocysteinemia and decreased methylation capacity, with neuropathology and aortic lipid deposition. Hum Mol Genet. 2001;10(5):433–43.PubMedCrossRef Chen Z, Karaplis AC, Ackerman SL, Pogribny IP, Melnyk S, Lussier-Cacan S, Chen MF, Pai A, John SW, Smith RS, et al. Mice deficient in methylenetetrahydrofolate reductase exhibit hyperhomocysteinemia and decreased methylation capacity, with neuropathology and aortic lipid deposition. Hum Mol Genet. 2001;10(5):433–43.PubMedCrossRef
39.
go back to reference Thomford NE, Dzobo K, Yao NA, Chimusa E, Evans J, Okai E, Kruszka P, Muenke M, Awandare G, Wonkam A, et al. Genomics and epigenomics of congenital heart defects: expert review and lessons learned in Africa. OMICS. 2018;22(5):301–21.PubMedPubMedCentralCrossRef Thomford NE, Dzobo K, Yao NA, Chimusa E, Evans J, Okai E, Kruszka P, Muenke M, Awandare G, Wonkam A, et al. Genomics and epigenomics of congenital heart defects: expert review and lessons learned in Africa. OMICS. 2018;22(5):301–21.PubMedPubMedCentralCrossRef
40.
go back to reference Friso S, Choi SW, Girelli D, Mason JB, Dolnikowski GG, Bagley PJ, Olivieri O, Jacques PF, Rosenberg IH, Corrocher R, et al. A common mutation in the 5,10-methylenetetrahydrofolate reductase gene affects genomic DNA methylation through an interaction with folate status. Proc Natl Acad Sci USA. 2002;99(8):5606–11.PubMedCrossRefPubMedCentral Friso S, Choi SW, Girelli D, Mason JB, Dolnikowski GG, Bagley PJ, Olivieri O, Jacques PF, Rosenberg IH, Corrocher R, et al. A common mutation in the 5,10-methylenetetrahydrofolate reductase gene affects genomic DNA methylation through an interaction with folate status. Proc Natl Acad Sci USA. 2002;99(8):5606–11.PubMedCrossRefPubMedCentral
41.
go back to reference Mellis D, Caporali A. MicroRNA-based therapeutics in cardiovascular disease: screening and delivery to the target. Biochem Soc Trans. 2018;46(1):11–21.PubMedCrossRef Mellis D, Caporali A. MicroRNA-based therapeutics in cardiovascular disease: screening and delivery to the target. Biochem Soc Trans. 2018;46(1):11–21.PubMedCrossRef
42.
go back to reference Zhu S, Cao L, Zhu J, Kong L, Jin J, Qian L, Zhu C, Hu X, Li M, Guo X, et al. Identification of maternal serum microRNAs as novel non-invasive biomarkers for prenatal detection of fetal congenital heart defects. Clin Chim Acta. 2013;424:66–72.PubMedCrossRef Zhu S, Cao L, Zhu J, Kong L, Jin J, Qian L, Zhu C, Hu X, Li M, Guo X, et al. Identification of maternal serum microRNAs as novel non-invasive biomarkers for prenatal detection of fetal congenital heart defects. Clin Chim Acta. 2013;424:66–72.PubMedCrossRef
43.
go back to reference Xie WQ, Zhou L, Chen Y, Ni B. Circulating microRNAs as potential biomarkers for diagnosis of congenital heart defects. World J Emerg Med. 2016;7(2):85–9.PubMedPubMedCentralCrossRef Xie WQ, Zhou L, Chen Y, Ni B. Circulating microRNAs as potential biomarkers for diagnosis of congenital heart defects. World J Emerg Med. 2016;7(2):85–9.PubMedPubMedCentralCrossRef
44.
go back to reference Arabian M, Mirzadeh AF, Maleki M, Malakootian M. Insights into role of microRNAs in cardiac development, cardiac diseases, and developing novel therapies. Iran J Basic Med Sci. 2020;23(8):961–9.PubMedPubMedCentral Arabian M, Mirzadeh AF, Maleki M, Malakootian M. Insights into role of microRNAs in cardiac development, cardiac diseases, and developing novel therapies. Iran J Basic Med Sci. 2020;23(8):961–9.PubMedPubMedCentral
45.
go back to reference Zheng J, Peng B, Zhang Y, Ai F, Hu X. FOXD3-AS1 knockdown suppresses hypoxia-induced cardiomyocyte injury by increasing cell survival and inhibiting apoptosis via upregulating cardioprotective molecule miR-150-5p in vitro. Front Pharmacol. 2020;11:1284.PubMedPubMedCentralCrossRef Zheng J, Peng B, Zhang Y, Ai F, Hu X. FOXD3-AS1 knockdown suppresses hypoxia-induced cardiomyocyte injury by increasing cell survival and inhibiting apoptosis via upregulating cardioprotective molecule miR-150-5p in vitro. Front Pharmacol. 2020;11:1284.PubMedPubMedCentralCrossRef
46.
go back to reference Pufulete M, Al-Ghnaniem R, Khushal A, Appleby P, Harris N, Gout S, Emery PW, Sanders TA. Effect of folic acid supplementation on genomic DNA methylation in patients with colorectal adenoma. Gut. 2005;54(5):648–53.PubMedPubMedCentralCrossRef Pufulete M, Al-Ghnaniem R, Khushal A, Appleby P, Harris N, Gout S, Emery PW, Sanders TA. Effect of folic acid supplementation on genomic DNA methylation in patients with colorectal adenoma. Gut. 2005;54(5):648–53.PubMedPubMedCentralCrossRef
47.
go back to reference Li C, Ni J, Liu YX, Wang H, Liang ZQ, Wang X. Response of MiRNA-22-3p and MiRNA-149-5p to Folate Deficiency and the Differential Regulation of MTHFR Expression in Normal and Cancerous Human Hepatocytes. PLoS ONE. 2017;12(1):e168049. Li C, Ni J, Liu YX, Wang H, Liang ZQ, Wang X. Response of MiRNA-22-3p and MiRNA-149-5p to Folate Deficiency and the Differential Regulation of MTHFR Expression in Normal and Cancerous Human Hepatocytes. PLoS ONE. 2017;12(1):e168049.
48.
go back to reference Zhou X, Shan L, Na J, Li Y, Wang J. The SNP rs4846048 of MTHFR enhances the cervical cancer risk through association with miR-522: a preliminary report. Mol Genet Genomic Med. 2020;8(1):e1055.PubMed Zhou X, Shan L, Na J, Li Y, Wang J. The SNP rs4846048 of MTHFR enhances the cervical cancer risk through association with miR-522: a preliminary report. Mol Genet Genomic Med. 2020;8(1):e1055.PubMed
49.
go back to reference Shookhoff JM, Gallicano GI. A new perspective on neural tube defects: folic acid and microRNA misexpression. Genesis. 2010;48(5):282–94.PubMed Shookhoff JM, Gallicano GI. A new perspective on neural tube defects: folic acid and microRNA misexpression. Genesis. 2010;48(5):282–94.PubMed
50.
go back to reference Wang L, Yang B, Zhou S, Gao H, Wang F, Zhou J, Wang H, Wang Y. Risk factors and methylenetetrahydrofolate reductase gene in congenital heart disease. J Thorac Dis. 2018;10(1):441–7.PubMedPubMedCentralCrossRef Wang L, Yang B, Zhou S, Gao H, Wang F, Zhou J, Wang H, Wang Y. Risk factors and methylenetetrahydrofolate reductase gene in congenital heart disease. J Thorac Dis. 2018;10(1):441–7.PubMedPubMedCentralCrossRef
Metadata
Title
Association analysis of maternal MTHFR gene polymorphisms and the occurrence of congenital heart disease in offspring
Authors
Mengting Sun
Tingting Wang
Peng Huang
Jingyi Diao
Senmao Zhang
Jinqi Li
Liu Luo
Yihuan Li
Letao Chen
Yiping Liu
Jianhui Wei
Xinli Song
Xiaoqi Sheng
Jiabi Qin
Publication date
01-12-2021

Other articles of this Issue 1/2021

BMC Cardiovascular Disorders 1/2021 Go to the issue