Skip to main content
Top
Published in: BMC Cardiovascular Disorders 1/2021

Open Access 01-12-2021 | Arterial Occlusive Disease | Research article

A 2 miRNAs-based signature for the diagnosis of atherosclerosis

Authors: Xiujiang Han, Huimin Wang, Yongjian Li, Lina Liu, Sheng Gao

Published in: BMC Cardiovascular Disorders | Issue 1/2021

Login to get access

Abstract

Background

Atherosclerosis (AS) is a leading cause of vascular disease worldwide. MicroRNAs (miRNAs) play an essential role in the development of AS. However, the miRNAs-based biomarkers for the diagnosis of AS are still limited. Here, we aimed to identify the miRNAs significantly related to AS and construct the predicting model based on these miRNAs for distinguishing the AS patients from healthy cases.

Methods

The miRNA and mRNA expression microarray data of blood samples from patients with AS and healthy cases were obtained from the GSE59421 and GSE20129 of Gene Expression Omnibus (GEO) database, respectively. Weighted Gene Co-expression Network Analysis (WGCNA) was performed to evaluate the correlation of the miRNAs and mRNAs with AS and identify the miRNAs and mRNAs significantly associated with AS. The potentially critical miRNAs were further optimized by functional enrichment analysis. The logistic regression models were constructed based on these optimized miRNAs and validated by threefold cross-validation method.

Results

WGCNA revealed 42 miRNAs and 532 genes significantly correlated with AS. Functional enrichment analysis identified 12 crucial miRNAs in patients with AS. Moreover, 6 miRNAs among the identified 12 miRNAs, were selected using a stepwise regression model, in which four miRNAs, including hsa-miR-654-5p, hsa-miR-409-3p, hsa-miR-485-5p and hsa-miR-654-3p, were further identified through multivariate regression analysis. The threefold cross-validation method showed that the AUC of logistic regression model based on the four miRNAs was 0.7308, 0.8258, and 0.7483, respectively, with an average AUC of 0.7683.

Conclusion

We identified a total of four miRNAs, including hsa-miR-654-5p and hsa-miR-409-3p, are identified as the potentially critical biomarkers for AS. The logistic regression model based on the identified 2 miRNAs could reliably distinguish the patients with AS from normal cases.

Literature
  1. Herrington W, Lacey B, Sherliker P, et al. Epidemiology of atherosclerosis and the potential to reduce the global burden of atherothrombotic disease. Circ Res. 2016;118(4):535–46. https://​doi.​org/​10.​1161/​CIRCRESAHA.​115.​307611.View ArticlePubMed
  2. Liu Q, Li Y, Song X, et al. Both gut microbiota and cytokines act to atherosclerosis in ApoE-/- mice. Microb Pathog. 2020;138:103827. https://​doi.​org/​10.​1016/​j.​micpath.​2019.​103827.View ArticlePubMed
  3. Bentzon JF, Otsuka F, Virmani R, et al. Mechanisms of plaque formation and rupture. Circ Res. 2014;114(12):1852–66. https://​doi.​org/​10.​1161/​CIRCRESAHA.​114.​302721.View ArticlePubMed
  4. Iida M, Harada S, Takebayashi T. Application of metabolomics to epidemiological studies of atherosclerosis and cardiovascular disease. J Atheroscler Thromb. 2019;26(9):747–57. https://​doi.​org/​10.​5551/​jat.​RV17036.View ArticlePubMedPubMed Central
  5. Hahn C, Schwartz MA. Mechanotransduction in vascular physiology and atherogenesis. Nat Rev Mol Cell Biol. 2009;10(1):53–62. https://​doi.​org/​10.​1038/​nrm2596.View ArticlePubMedPubMed Central
  6. Libby P, Buring JE, Badimon L, et al. Atherosclerosis. Nat Rev Dis Primers. 2019;5(1):56. https://​doi.​org/​10.​1038/​s41572-019-0106-z.View ArticlePubMed
  7. Libby P, Ridker PM, Hansson GK. Progress and challenges in translating the biology of atherosclerosis. Nature. 2011;473(7347):317–25. https://​doi.​org/​10.​1038/​nature10146.View ArticlePubMed
  8. Charasson M, Mahe G, Le Brun C, et al. Atherosclerosis knowledge-diagnosis and management in primary care. Vasa. 2018;47(6):465–70. https://​doi.​org/​10.​1024/​0301-1526/​a000727.View ArticlePubMed
  9. Liu L, Liu Y, Liu C, et al. Analysis of gene expression profile identifies potential biomarkers for atherosclerosis. Mol Med Rep. 2016;14(4):3052–8. https://​doi.​org/​10.​3892/​mmr.​2016.​5650.View ArticlePubMedPubMed Central
  10. Rashad NM, El-Shal AS, Abomandour HG, et al. Intercellular adhesion molecule-1 expression and serum levels as markers of pre-clinical atherosclerosis in polycystic ovary syndrome. J Ovarian Res. 2019;12(1):97. https://​doi.​org/​10.​1186/​s13048-019-0566-5.View ArticlePubMedPubMed Central
  11. Li G, Hu J, Hu G. Biomarker studies in early detection and prognosis of breast cancer. Adv Exp Med Biol. 2017;1026:27–39. https://​doi.​org/​10.​1007/​978-981-10-6020-5_​2.View ArticlePubMed
  12. Lu TX, Rothenberg ME. MicroRNA. J Allergy Clin Immunol. 2018;141(4):1202–7. https://​doi.​org/​10.​1016/​j.​jaci.​2017.​08.​034.View ArticlePubMed
  13. Zhou Q, Huang SX, Zhang F, et al. MicroRNAs: a novel potential biomarker for diagnosis and therapy in patients with non-small cell lung cancer. Cell Prolif. 2017. https://​doi.​org/​10.​1111/​cpr.​12394.View ArticlePubMedPubMed Central
  14. Ouimet M, Ediriweera H, Afonso MS, et al. microRNA-33 regulates macrophage autophagy in atherosclerosis. Arterioscler Thromb Vasc Biol. 2017;37(6):1058–67. https://​doi.​org/​10.​1161/​ATVBAHA.​116.​308916.View ArticlePubMedPubMed Central
  15. Di Gregoli K, Mohamad Anuar NN, Bianco R, et al. MicroRNA-181b controls atherosclerosis and aneurysms through regulation of TIMP-3 and elastin. Circ Res. 2017;120(1):49–65. https://​doi.​org/​10.​1161/​CIRCRESAHA.​116.​309321.View ArticlePubMedPubMed Central
  16. Kok MG, Halliani A, Moerland PD, et al. Normalization panels for the reliable quantification of circulating microRNAs by RT-qPCR. FASEB J. 2015;29(9):3853–62. https://​doi.​org/​10.​1096/​fj.​15-271312.View ArticlePubMed
  17. Huang CC, Lloyd-Jones DM, Guo X, et al. Gene expression variation between African Americans and whites is associated with coronary artery calcification: the multiethnic study of atherosclerosis. Physiol Genom. 2011;43(13):836–43. https://​doi.​org/​10.​1152/​physiolgenomics.​00243.​2010.View Article
  18. Wan Q, Tang J, Han Y, et al. Co-expression modules construction by WGCNA and identify potential prognostic markers of uveal melanoma. Exp Eye Res. 2018;166:13–20. https://​doi.​org/​10.​1016/​j.​exer.​2017.​10.​007.View ArticlePubMed
  19. Kanehisa M, Goto S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000;28(1):27–30. https://​doi.​org/​10.​1093/​nar/​28.​1.​27.View ArticlePubMedPubMed Central
  20. Yu G, Wang LG, Han Y, et al. clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS. 2012;16(5):284–7. https://​doi.​org/​10.​1089/​omi.​2011.​0118.View ArticlePubMedPubMed Central
  21. Szklarczyk D, Gable AL, Lyon D, et al. STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 2019;47(D1):D607–13. https://​doi.​org/​10.​1093/​nar/​gky1131.View ArticlePubMed
  22. Shannon P, Markiel A, Ozier O, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13(11):2498–504. https://​doi.​org/​10.​1101/​gr.​1239303.View ArticlePubMedPubMed Central
  23. Schaftenaar F, Frodermann V, Kuiper J, et al. Atherosclerosis: the interplay between lipids and immune cells. Curr Opin Lipidol. 2016;27(3):209–15. https://​doi.​org/​10.​1097/​MOL.​0000000000000302​.View ArticlePubMed
  24. Zhu Y, Xian X, Wang Z, et al. Research progress on the relationship between atherosclerosis and inflammation. Biomolecules. 2018. https://​doi.​org/​10.​3390/​biom8030080.View ArticlePubMedPubMed Central
  25. Lu M, Yuan S, Li S, et al. The exosome-derived biomarker in atherosclerosis and its clinical application. J Cardiovasc Transl Res. 2019;12(1):68–74. https://​doi.​org/​10.​1007/​s12265-018-9796-y.View ArticlePubMed
  26. Feinberg MW, Moore KJ. MicroRNA regulation of atherosclerosis. Circ Res. 2016;118(4):703–20. https://​doi.​org/​10.​1161/​CIRCRESAHA.​115.​306300.View ArticlePubMedPubMed Central
  27. Lu Y, Thavarajah T, Gu W, et al. Impact of miRNA in atherosclerosis. Arterioscler Thromb Vasc Biol. 2018;38(9):e159–70. https://​doi.​org/​10.​1161/​ATVBAHA.​118.​310227.View ArticlePubMedPubMed Central
  28. Gao W, Liu H, Yuan J, et al. Exosomes derived from mature dendritic cells increase endothelial inflammation and atherosclerosis via membrane TNF-alpha mediated NF-kappaB pathway. J Cell Mol Med. 2016;20(12):2318–27. https://​doi.​org/​10.​1111/​jcmm.​12923.View ArticlePubMedPubMed Central
  29. Moschonas IC, Tselepis AD. The pathway of neutrophil extracellular traps towards atherosclerosis and thrombosis. Atherosclerosis. 2019;288:9–16. https://​doi.​org/​10.​1016/​j.​atherosclerosis.​2019.​06.​919.View ArticlePubMed
  30. Dimova R, Tankova T. The role of vaspin in the development of metabolic and glucose tolerance disorders and atherosclerosis. Biomed Res Int. 2015;2015:823481. https://​doi.​org/​10.​1155/​2015/​823481.View ArticlePubMedPubMed Central
  31. Tang X, Yin R, Shi H, et al. LncRNA ZFAS1 confers inflammatory responses and reduces cholesterol efflux in atherosclerosis through regulating miR-654-3p-ADAM10/RAB22A axis. Int J Cardiol. 2020. https://​doi.​org/​10.​1016/​j.​ijcard.​2020.​03.​056.View ArticlePubMed
  32. Jeong HS, Kim JY, Lee SH, et al. Synergy of circulating miR-212 with markers for cardiovascular risks to enhance estimation of atherosclerosis presence. PLoS ONE. 2017;12(5):e0177809. https://​doi.​org/​10.​1371/​journal.​pone.​0177809.View ArticlePubMedPubMed Central
  33. El-Samahy MH, Adly AA, Elhenawy YI, et al. Urinary miRNA-377 and miRNA-216a as biomarkers of nephropathy and subclinical atherosclerotic risk in pediatric patients with type 1 diabetes. J Diabetes Comp. 2018;32(2):185–92. https://​doi.​org/​10.​1016/​j.​jdiacomp.​2017.​10.​014.View Article
  34. Hwang D, Kim HJ, Lee SP, et al. Topological data analysis of coronary plaques demonstrates the natural history of coronary atherosclerosis. JACC Cardiovasc Imaging. 2021. https://​doi.​org/​10.​1016/​j.​jcmg.​2020.​11.​009.View ArticlePubMed
  35. Yoshida N, Emoto T, Yamashita T, et al. Bacteroides vulgatus and bacteroides dorei reduce gut microbial lipopolysaccharide production and inhibit atherosclerosis. Circulation. 2018;138(22):2486–98. https://​doi.​org/​10.​1161/​CIRCULATIONAHA.​118.​033714.View ArticlePubMed
  36. Fatkhullina AR, Peshkova IO, Dzutsev A, et al. An interleukin-23-interleukin-22 axis regulates intestinal microbial homeostasis to protect from diet-induced atherosclerosis. Immunity. 2018;49(5):943–57. https://​doi.​org/​10.​1016/​j.​immuni.​2018.​09.​011.View ArticlePubMedPubMed Central
Metadata
Title
A 2 miRNAs-based signature for the diagnosis of atherosclerosis
Authors
Xiujiang Han
Huimin Wang
Yongjian Li
Lina Liu
Sheng Gao
Publication date
01-12-2021
Publisher
BioMed Central
Published in
BMC Cardiovascular Disorders / Issue 1/2021
Electronic ISSN: 1471-2261
DOI
https://doi.org/10.1186/s12872-021-01960-4

Other articles of this Issue 1/2021

BMC Cardiovascular Disorders 1/2021 Go to the issue