Skip to main content
Top
Published in: Journal of Cardiovascular Translational Research 1/2019

01-02-2019 | Review Article

The Exosome-Derived Biomarker in Atherosclerosis and Its Clinical Application

Authors: Mengmeng Lu, Shuaifang Yuan, Shicheng Li, Ling Li, Min Liu, Shaogui Wan

Published in: Journal of Cardiovascular Translational Research | Issue 1/2019

Login to get access

Abstract

Exosomes are now accepted as potential biomarkers in cardiovascular disease development, especially in atherosclerosis. Atherosclerosis is a leading cause of cardiovascular disease-related death and morbidity, accounting for one-fifth of all deaths globally. Therefore, the biomarkers for the management of atherosclerosis is urgently needed. Exosomes are reported to play key roles cell-to-cell communication in atherosclerosis with lipid bilayer membranous vesicles containing nucleic acids, proteins, and lipid contents, which are released from all most of multiple kinds of living cells. This review aims to discuss the potential roles of exosome-derived miRNA, protein, and DNA as biomarkers in atherosclerosis pathogenesis, diagnosis, and therapy.
Literature
1.
go back to reference Huber, H. J., & Holvoet, P. (2015). Exosomes: Emerging roles in communication between blood cells and vascular tissues during atherosclerosis. Current Opinion in Lipidology, 26, 412–419.CrossRefPubMedPubMedCentral Huber, H. J., & Holvoet, P. (2015). Exosomes: Emerging roles in communication between blood cells and vascular tissues during atherosclerosis. Current Opinion in Lipidology, 26, 412–419.CrossRefPubMedPubMedCentral
2.
go back to reference Hao, X., & Fan, H. (2017). Identification of miRNAs as atherosclerosis biomarkers and functional role of miR-126 in atherosclerosis progression through MAPK signalling pathway. European Review for Medical and Pharmacological Sciences, 21, 2725–2733.PubMed Hao, X., & Fan, H. (2017). Identification of miRNAs as atherosclerosis biomarkers and functional role of miR-126 in atherosclerosis progression through MAPK signalling pathway. European Review for Medical and Pharmacological Sciences, 21, 2725–2733.PubMed
3.
go back to reference Yin, M., Loyer, X., & Boulanger, C. M. (2015). Extracellular vesicles as new pharmacological targets to treat atherosclerosis. European Journal of Pharmacology, 763, 90–103.CrossRefPubMed Yin, M., Loyer, X., & Boulanger, C. M. (2015). Extracellular vesicles as new pharmacological targets to treat atherosclerosis. European Journal of Pharmacology, 763, 90–103.CrossRefPubMed
4.
go back to reference Chistiakov, D. A., Orekhov, A. N., & Bobryshev, Y. V. (2015). Extracellular vesicles and atherosclerotic disease. Cellular and Molecular Life Sciences, 72, 2697–2708.CrossRefPubMed Chistiakov, D. A., Orekhov, A. N., & Bobryshev, Y. V. (2015). Extracellular vesicles and atherosclerotic disease. Cellular and Molecular Life Sciences, 72, 2697–2708.CrossRefPubMed
5.
go back to reference Ailawadi, S., Wang, X., Gu, H., & Fan, G.-C. (2015). Pathologic function and therapeutic potential of exosomes in cardiovascular disease. Biochimica et Biophysica Acta, 1852, 1–11.CrossRefPubMed Ailawadi, S., Wang, X., Gu, H., & Fan, G.-C. (2015). Pathologic function and therapeutic potential of exosomes in cardiovascular disease. Biochimica et Biophysica Acta, 1852, 1–11.CrossRefPubMed
6.
go back to reference Alvarez-Llamas, G., Cuesta Fdl, G. M. E., Barderas, V., Darde, L. R. P., & Vivanco, F. (2008). Recent advances in atherosclerosis-based proteomics: New biomarkers and a future perspective. Expert Review Proteomics, 5, 679–691.CrossRefPubMed Alvarez-Llamas, G., Cuesta Fdl, G. M. E., Barderas, V., Darde, L. R. P., & Vivanco, F. (2008). Recent advances in atherosclerosis-based proteomics: New biomarkers and a future perspective. Expert Review Proteomics, 5, 679–691.CrossRefPubMed
7.
go back to reference de Jong, O. G., Verhaar, M. C., Chen, Y., Vader, P., Gremmels, H., Posthuma, G., Schiffelers, R. M., Gucek, M., & van Balkom, B. W. (2012). Cellular stress conditions are reflected in the protein and RNA content of endothelial cell-derived exosomes. Journal of Extracellular Vesicles, 1, 18396. https://doi.org/10.3402/jev.v1i0.18396.CrossRef de Jong, O. G., Verhaar, M. C., Chen, Y., Vader, P., Gremmels, H., Posthuma, G., Schiffelers, R. M., Gucek, M., & van Balkom, B. W. (2012). Cellular stress conditions are reflected in the protein and RNA content of endothelial cell-derived exosomes. Journal of Extracellular Vesicles, 1, 18396. https://​doi.​org/​10.​3402/​jev.​v1i0.​18396.CrossRef
8.
go back to reference Wolf, P. (1967). The nature and significance of platelet products in human plasma. British Journal of Haematology, 13, 269–288.CrossRefPubMed Wolf, P. (1967). The nature and significance of platelet products in human plasma. British Journal of Haematology, 13, 269–288.CrossRefPubMed
9.
go back to reference Hessvik, N. P., & Llorente, A. (2018). Current knowledge on exosome biogenesis and release. Cellular and Molecular Life Sciences, 75, 193–208.CrossRefPubMed Hessvik, N. P., & Llorente, A. (2018). Current knowledge on exosome biogenesis and release. Cellular and Molecular Life Sciences, 75, 193–208.CrossRefPubMed
10.
go back to reference Bretz, N. P., Ridinger, J., Rupp, A. K., Rimbach, K., Keller, S., Rupp, C., Marme, F., Umansky, L., Umansky, V., Eigenbrod, T., Sammar, M., & Altevogt, P. (2013). Body fluid exosomes promote secretion of inflammatory cytokines in monocytic cells via toll-like receptor signaling. The Journal of Biological Chemistry, 288, 36691–36702.CrossRefPubMedPubMedCentral Bretz, N. P., Ridinger, J., Rupp, A. K., Rimbach, K., Keller, S., Rupp, C., Marme, F., Umansky, L., Umansky, V., Eigenbrod, T., Sammar, M., & Altevogt, P. (2013). Body fluid exosomes promote secretion of inflammatory cytokines in monocytic cells via toll-like receptor signaling. The Journal of Biological Chemistry, 288, 36691–36702.CrossRefPubMedPubMedCentral
11.
go back to reference Emanueli, C., Shearn, A. I. U., Angelini, G. D., & Sahoo, S. (2015). Exosomes and exosomal miRNAs in cardiovascular protection and repair. Vascular Pharmacology, 71, 24–30.CrossRefPubMedPubMedCentral Emanueli, C., Shearn, A. I. U., Angelini, G. D., & Sahoo, S. (2015). Exosomes and exosomal miRNAs in cardiovascular protection and repair. Vascular Pharmacology, 71, 24–30.CrossRefPubMedPubMedCentral
13.
go back to reference Ge, Q., Zhou, Y., Lu, J., Bai, Y., Xie, X., & Lu, Z. (2014). miRNA in plasma exosome is stable under different storage conditions. Molecules, 19, 1568–1575.CrossRefPubMedPubMedCentral Ge, Q., Zhou, Y., Lu, J., Bai, Y., Xie, X., & Lu, Z. (2014). miRNA in plasma exosome is stable under different storage conditions. Molecules, 19, 1568–1575.CrossRefPubMedPubMedCentral
14.
go back to reference Packard, R. R., & Libby, P. (2008). Inflammation in atherosclerosis: From vascular biology to biomarker discovery and risk prediction. Clinical Chemistry, 54, 24–38.CrossRefPubMed Packard, R. R., & Libby, P. (2008). Inflammation in atherosclerosis: From vascular biology to biomarker discovery and risk prediction. Clinical Chemistry, 54, 24–38.CrossRefPubMed
15.
go back to reference Izarra, A., Moscoso, I., Levent, E., Cañón, S., Cerrada, I., Díez-Juan, A., Blanca, V., Núñez-Gil, I.-J., Valiente, I., Ruíz-Sauri, A., Sepúlveda, P., Tiburcy, M., Zimmermann, W.-H., & Bernad, A. (2014). miR-133a enhances the protective capacity of cardiac progenitors cells after myocardial infarction. Stem Cell Reports, 3, 1029–1042.CrossRefPubMedPubMedCentral Izarra, A., Moscoso, I., Levent, E., Cañón, S., Cerrada, I., Díez-Juan, A., Blanca, V., Núñez-Gil, I.-J., Valiente, I., Ruíz-Sauri, A., Sepúlveda, P., Tiburcy, M., Zimmermann, W.-H., & Bernad, A. (2014). miR-133a enhances the protective capacity of cardiac progenitors cells after myocardial infarction. Stem Cell Reports, 3, 1029–1042.CrossRefPubMedPubMedCentral
16.
go back to reference Hergenreider, E., Heydt, S., Tréguer, K., Boettger, T., Horrevoets, A. J. G., Zeiher, A. M., Scheffer, M. P., Frangakis, A. S., Yin, X., Mayr, M., Braun, T., Urbich, C., Boon, R. A., & Dimmeler, S. (2012). Atheroprotective communication between endothelial cells and smooth muscle cells through miRNAs. Nature Cell Biology, 14, 249–256.CrossRefPubMed Hergenreider, E., Heydt, S., Tréguer, K., Boettger, T., Horrevoets, A. J. G., Zeiher, A. M., Scheffer, M. P., Frangakis, A. S., Yin, X., Mayr, M., Braun, T., Urbich, C., Boon, R. A., & Dimmeler, S. (2012). Atheroprotective communication between endothelial cells and smooth muscle cells through miRNAs. Nature Cell Biology, 14, 249–256.CrossRefPubMed
17.
go back to reference Zhang, Y., Liu, D., Chen, X., Li, J., Li, L., Bian, Z., Sun, F., Lu, J., Yin, Y., Cai, X., Sun, Q., Wang, K., Ba, Y., Wang, Q., Wang, D., Yang, J., Liu, P., Xu, T., Yan, Q., Zhang, J., Zen, K., & Zhang, C. Y. (2010). Secreted monocytic miR-150 enhances targeted endothelial cell migration. Molecular Cell, 39, 133–144.CrossRefPubMed Zhang, Y., Liu, D., Chen, X., Li, J., Li, L., Bian, Z., Sun, F., Lu, J., Yin, Y., Cai, X., Sun, Q., Wang, K., Ba, Y., Wang, Q., Wang, D., Yang, J., Liu, P., Xu, T., Yan, Q., Zhang, J., Zen, K., & Zhang, C. Y. (2010). Secreted monocytic miR-150 enhances targeted endothelial cell migration. Molecular Cell, 39, 133–144.CrossRefPubMed
18.
go back to reference Zheng, B., Yin, W. N., Suzuki, T., Zhang, X. H., Zhang, Y., Song, L. L., Jin, L. S., Zhan, H., Zhang, H., Li, J. S., & Wen, J. K. (2017). Exosome-mediated miR-155 transfer from smooth muscle cells to endothelial cells induces endothelial injury and promotes atherosclerosis. Molecular Therapy, 25, 1279–1294.CrossRefPubMedPubMedCentral Zheng, B., Yin, W. N., Suzuki, T., Zhang, X. H., Zhang, Y., Song, L. L., Jin, L. S., Zhan, H., Zhang, H., Li, J. S., & Wen, J. K. (2017). Exosome-mediated miR-155 transfer from smooth muscle cells to endothelial cells induces endothelial injury and promotes atherosclerosis. Molecular Therapy, 25, 1279–1294.CrossRefPubMedPubMedCentral
19.
go back to reference van Balkom, B. W., de Jong, O. G., Smits, M., Brummelman, J., den Ouden, K., de Bree, P. M., van Eijndhoven, M. A., Pegtel, D. M., Stoorvogel, W., Wurdinger, T., & Verhaar, M. C. (2013). Endothelial cells require miR-214 to secrete exosomes that suppress senescence and induce angiogenesis in human and mouse endothelial cells. Blood, 121, 3997–4006.CrossRefPubMed van Balkom, B. W., de Jong, O. G., Smits, M., Brummelman, J., den Ouden, K., de Bree, P. M., van Eijndhoven, M. A., Pegtel, D. M., Stoorvogel, W., Wurdinger, T., & Verhaar, M. C. (2013). Endothelial cells require miR-214 to secrete exosomes that suppress senescence and induce angiogenesis in human and mouse endothelial cells. Blood, 121, 3997–4006.CrossRefPubMed
20.
go back to reference Ismail, N., Wang, Y., Dakhlallah, D., Moldovan, L., Agarwal, K., Batte, K., Shah, P., Wisler, J., Eubank, T. D., Tridandapani, S., Paulaitis, M. E., Piper, M. G., & Marsh, C. B. (2013). Macrophage microvesicles induce macrophage differentiation and miR-223 transfer. Blood, 121, 984–995.CrossRefPubMedPubMedCentral Ismail, N., Wang, Y., Dakhlallah, D., Moldovan, L., Agarwal, K., Batte, K., Shah, P., Wisler, J., Eubank, T. D., Tridandapani, S., Paulaitis, M. E., Piper, M. G., & Marsh, C. B. (2013). Macrophage microvesicles induce macrophage differentiation and miR-223 transfer. Blood, 121, 984–995.CrossRefPubMedPubMedCentral
21.
go back to reference Tan, M., Yan, H. B., Li, J. N., Li, W. K., Fu, Y. Y., Chen, W., & Zhou, Z. (2016). Thrombin stimulated platelet-derived exosomes inhibit platelet-derived growth factor receptor-beta expression in vascular smooth muscle cells. Cellular Physiology and Biochemistry, 38, 2348–2365.CrossRefPubMed Tan, M., Yan, H. B., Li, J. N., Li, W. K., Fu, Y. Y., Chen, W., & Zhou, Z. (2016). Thrombin stimulated platelet-derived exosomes inhibit platelet-derived growth factor receptor-beta expression in vascular smooth muscle cells. Cellular Physiology and Biochemistry, 38, 2348–2365.CrossRefPubMed
22.
go back to reference Gidlof, O., van der Brug, M., Ohman, J., Gilje, P., Olde, B., Wahlestedt, C., & Erlinge, D. (2013). Platelets activated during myocardial infarction release functional miRNA, which can be taken up by endothelial cells and regulate ICAM-1 expression. Blood, 121, 3908–3917.CrossRefPubMed Gidlof, O., van der Brug, M., Ohman, J., Gilje, P., Olde, B., Wahlestedt, C., & Erlinge, D. (2013). Platelets activated during myocardial infarction release functional miRNA, which can be taken up by endothelial cells and regulate ICAM-1 expression. Blood, 121, 3908–3917.CrossRefPubMed
25.
go back to reference Neppl, R. L., & Wang, D.-Z. (2014). The myriad essential roles of microRNAs in cardiovascular homeostasis and disease. Genes & Diseases, 1, 18–39.CrossRef Neppl, R. L., & Wang, D.-Z. (2014). The myriad essential roles of microRNAs in cardiovascular homeostasis and disease. Genes & Diseases, 1, 18–39.CrossRef
26.
go back to reference Hulsmans, M., & Holvoet, P. (2013). MicroRNA-containing microvesicles regulating inflammation in association with atherosclerotic disease. Cardiovascular Research, 100, 7–18.CrossRefPubMed Hulsmans, M., & Holvoet, P. (2013). MicroRNA-containing microvesicles regulating inflammation in association with atherosclerotic disease. Cardiovascular Research, 100, 7–18.CrossRefPubMed
27.
go back to reference Matkovich, S. J., Wang, W., Tu, Y., Eschenbacher, W. H., Dorn, L. E., Condorelli, G., Diwan, A., Nerbonne, J. M., & Dorn II, G. W. (2010). MicroRNA-133a protects against myocardial fibrosis and modulates electrical repolarization without affecting hypertrophy in pressure-overloaded adult hearts. Circulation Research, 106, 166–175.CrossRefPubMed Matkovich, S. J., Wang, W., Tu, Y., Eschenbacher, W. H., Dorn, L. E., Condorelli, G., Diwan, A., Nerbonne, J. M., & Dorn II, G. W. (2010). MicroRNA-133a protects against myocardial fibrosis and modulates electrical repolarization without affecting hypertrophy in pressure-overloaded adult hearts. Circulation Research, 106, 166–175.CrossRefPubMed
28.
go back to reference Gao, S., Wassler, M., Zhang, L., Li, Y., Wang, J., Zhang, Y., Shelat, H., Williams, J., & Geng, Y. J. (2014). MicroRNA-133a regulates insulin-like growth factor-1 receptor expression and vascular smooth muscle cell proliferation in murine atherosclerosis. Atherosclerosis, 232, 171–179.CrossRefPubMed Gao, S., Wassler, M., Zhang, L., Li, Y., Wang, J., Zhang, Y., Shelat, H., Williams, J., & Geng, Y. J. (2014). MicroRNA-133a regulates insulin-like growth factor-1 receptor expression and vascular smooth muscle cell proliferation in murine atherosclerosis. Atherosclerosis, 232, 171–179.CrossRefPubMed
30.
go back to reference Pan, Y., Liang, H., Liu, H., Li, D., Chen, X., Li, L., Zhang, C. Y., & Zen, K. (2013). Platelet-secreted microRNA-223 promotes endothelial cell apoptosis induced by advanced glycation end products via targeting the insulin-like growth factor 1 receptor. The Journal of Immunology, 192, 437–446.CrossRefPubMed Pan, Y., Liang, H., Liu, H., Li, D., Chen, X., Li, L., Zhang, C. Y., & Zen, K. (2013). Platelet-secreted microRNA-223 promotes endothelial cell apoptosis induced by advanced glycation end products via targeting the insulin-like growth factor 1 receptor. The Journal of Immunology, 192, 437–446.CrossRefPubMed
31.
go back to reference Jiang, M., Jing, Q., Zhang, H., Ding, Q. Q., Xiang, M., Meng, D., Sun, N., & Chen, S. F. (2016). Proteomic identification of proteins in exosomes of patients with atherosclerosis. Chinese Journal Pathophysiology, 24, 1525–1526. Jiang, M., Jing, Q., Zhang, H., Ding, Q. Q., Xiang, M., Meng, D., Sun, N., & Chen, S. F. (2016). Proteomic identification of proteins in exosomes of patients with atherosclerosis. Chinese Journal Pathophysiology, 24, 1525–1526.
32.
go back to reference Chyrchel, B., Toton-Zuranska, J., Kruszelnicka, O., Chyrchel, M., Mielecki, W., Kolton-Wroz, M., Wolkow, P., & Surdacki, A. (2015). Association of plasma miR-223 and platelet reactivity in patients with coronary artery disease on dual antiplatelet therapy: A preliminary report. Platelets, 26, 593–597.CrossRefPubMed Chyrchel, B., Toton-Zuranska, J., Kruszelnicka, O., Chyrchel, M., Mielecki, W., Kolton-Wroz, M., Wolkow, P., & Surdacki, A. (2015). Association of plasma miR-223 and platelet reactivity in patients with coronary artery disease on dual antiplatelet therapy: A preliminary report. Platelets, 26, 593–597.CrossRefPubMed
33.
go back to reference Tang, N., Sun, B., Gupta, A., Rempel, H., & Pulliam, L. (2016). Monocyte exosomes induce adhesion molecules and cytokines via activation of NF-kappaB in endothelial cells. FASEB Journal, 30, 3097–3106.CrossRefPubMedPubMedCentral Tang, N., Sun, B., Gupta, A., Rempel, H., & Pulliam, L. (2016). Monocyte exosomes induce adhesion molecules and cytokines via activation of NF-kappaB in endothelial cells. FASEB Journal, 30, 3097–3106.CrossRefPubMedPubMedCentral
34.
go back to reference Niu, C., Wang, X., Zhao, M., Cai, T., Liu, P., Li, J., Willard, B., Zu, L., Zhou, E., Li, Y., Pan, B., Yang, F., & Zheng, L. (2016). Macrophage foam cell-derived extracellular vesicles promote vascular smooth muscle cell migration and adhesion. Journal of the American Heart Association. https://doi.org/10.1161/JAHA.116.004099. Niu, C., Wang, X., Zhao, M., Cai, T., Liu, P., Li, J., Willard, B., Zu, L., Zhou, E., Li, Y., Pan, B., Yang, F., & Zheng, L. (2016). Macrophage foam cell-derived extracellular vesicles promote vascular smooth muscle cell migration and adhesion. Journal of the American Heart Association. https://​doi.​org/​10.​1161/​JAHA.​116.​004099.
35.
go back to reference Goetzl, E. J., Schwartz, J. B., Mustapic, M., Lobach, I. V., Daneman, R., Abner, E. L., & Jicha, G. A. (2017). Altered cargo proteins of human plasma endothelial cell-derived exosomes in atherosclerotic cerebrovascular disease. FASEB Journal, 31, 3689–3694.CrossRefPubMedPubMedCentral Goetzl, E. J., Schwartz, J. B., Mustapic, M., Lobach, I. V., Daneman, R., Abner, E. L., & Jicha, G. A. (2017). Altered cargo proteins of human plasma endothelial cell-derived exosomes in atherosclerotic cerebrovascular disease. FASEB Journal, 31, 3689–3694.CrossRefPubMedPubMedCentral
36.
go back to reference Zheng, X., Chen, F., Zhang, Q., Liu, Y., You, P., Sun, S., Lin, J., & Chen, N. (2017). Salivary exosomal PSMA7: A promising biomarker of inflammatory bowel disease. Protein & Cell, 8, 686–695.CrossRef Zheng, X., Chen, F., Zhang, Q., Liu, Y., You, P., Sun, S., Lin, J., & Chen, N. (2017). Salivary exosomal PSMA7: A promising biomarker of inflammatory bowel disease. Protein & Cell, 8, 686–695.CrossRef
37.
go back to reference Cai, J., Han, Y., Ren, H., Chen, C., He, D., Zhou, L., Eisner, G. M., Asico, L. D., Jose, P. A., & Zeng, C. (2013). Extracellular vesicle-mediated transfer of donor genomic DNA to recipient cells is a novel mechanism for genetic influence between cells. Journal of Molecular Cell Biology, 5, 227–238.CrossRefPubMedPubMedCentral Cai, J., Han, Y., Ren, H., Chen, C., He, D., Zhou, L., Eisner, G. M., Asico, L. D., Jose, P. A., & Zeng, C. (2013). Extracellular vesicle-mediated transfer of donor genomic DNA to recipient cells is a novel mechanism for genetic influence between cells. Journal of Molecular Cell Biology, 5, 227–238.CrossRefPubMedPubMedCentral
38.
go back to reference Cai, J., Guan, W., Tan, X., Chen, C., Li, L., Wang, N., Zou, X., Zhou, F., Wang, J., Pei, F., Chen, X., Luo, H., Wang, X., He, D., Zhou, L., Jose, P. A., & Zeng, C. (2015). SRY gene transferred by extracellular vesicles accelerates atherosclerosis by promotion of leucocyte adherence to endothelial cells. Clinical Science, 129, 259–269.CrossRefPubMed Cai, J., Guan, W., Tan, X., Chen, C., Li, L., Wang, N., Zou, X., Zhou, F., Wang, J., Pei, F., Chen, X., Luo, H., Wang, X., He, D., Zhou, L., Jose, P. A., & Zeng, C. (2015). SRY gene transferred by extracellular vesicles accelerates atherosclerosis by promotion of leucocyte adherence to endothelial cells. Clinical Science, 129, 259–269.CrossRefPubMed
Metadata
Title
The Exosome-Derived Biomarker in Atherosclerosis and Its Clinical Application
Authors
Mengmeng Lu
Shuaifang Yuan
Shicheng Li
Ling Li
Min Liu
Shaogui Wan
Publication date
01-02-2019
Publisher
Springer US
Published in
Journal of Cardiovascular Translational Research / Issue 1/2019
Print ISSN: 1937-5387
Electronic ISSN: 1937-5395
DOI
https://doi.org/10.1007/s12265-018-9796-y

Other articles of this Issue 1/2019

Journal of Cardiovascular Translational Research 1/2019 Go to the issue