Skip to main content
Top
Published in: BMC Cardiovascular Disorders 1/2020

Open Access 01-12-2020 | Cardiomyopathy | Research article

Identification of candidate genes in ischemic cardiomyopathy by gene expression omnibus database

Authors: Haiming Dang, Yicong Ye, Xiliang Zhao, Yong Zeng

Published in: BMC Cardiovascular Disorders | Issue 1/2020

Login to get access

Abstract

Background

Ischemic cardiomyopathy (ICM) is one of the most usual causes of death worldwide. This study aimed to find the candidate gene for ICM.

Methods

We studied differentially expressed genes (DEGs) in ICM compared to healthy control. According to these DEGs, we carried out the functional annotation, protein-protein interaction (PPI) network and transcriptional regulatory network constructions. The expression of selected candidate genes were confirmed using a published dataset and Quantitative real time polymerase chain reaction (qRT-PCR).

Results

From three Gene Expression Omnibus (GEO) datasets, we acquired 1081 DEGs (578 up-regulated and 503 down-regulated genes) between ICM and healthy control. The functional annotation analysis revealed that cardiac muscle contraction, hypertrophic cardiomyopathy, arrhythmogenic right ventricular cardiomyopathy and dilated cardiomyopathy were significantly enriched pathways in ICM. SNRPB, BLM, RRS1, CDK2, BCL6, BCL2L1, FKBP5, IPO7, TUBB4B and ATP1A1 were considered the hub proteins. PALLD, THBS4, ATP1A1, NFASC, FKBP5, ECM2 and BCL2L1 were top six transcription factors (TFs) with the most downstream genes. The expression of 6 DEGs (MYH6, THBS4, BCL6, BLM, IPO7 and SERPINA3) were consistent with our integration analysis and GSE116250 validation results.

Conclusions

The candidate DEGs and TFs may be related to the ICM process. This study provided novel perspective for understanding mechanism and exploiting new therapeutic means for ICM.
Appendix
Available only for authorised users
Literature
1.
go back to reference Schuster A, Morton G, Chiribiri A, Perera D, Vanoverschelde JL, Nagel E. Imaging in the management of ischemic cardiomyopathy: special focus on magnetic resonance. J Am Coll Cardiol. 2012;59(4):359–70.PubMedCrossRef Schuster A, Morton G, Chiribiri A, Perera D, Vanoverschelde JL, Nagel E. Imaging in the management of ischemic cardiomyopathy: special focus on magnetic resonance. J Am Coll Cardiol. 2012;59(4):359–70.PubMedCrossRef
2.
go back to reference Perera D, Clayton T, Petrie MC, Greenwood JP, O'Kane PD, Evans R, Sculpher M, McDonagh T, Gershlick A, de Belder M, et al. Percutaneous revascularization for ischemic ventricular dysfunction: rationale and design of the REVIVED-BCIS2 trial: percutaneous coronary intervention for ischemic cardiomyopathy. JACC Heart Fail. 2018;6(6):517–26.PubMedCrossRef Perera D, Clayton T, Petrie MC, Greenwood JP, O'Kane PD, Evans R, Sculpher M, McDonagh T, Gershlick A, de Belder M, et al. Percutaneous revascularization for ischemic ventricular dysfunction: rationale and design of the REVIVED-BCIS2 trial: percutaneous coronary intervention for ischemic cardiomyopathy. JACC Heart Fail. 2018;6(6):517–26.PubMedCrossRef
3.
go back to reference Hasenfuss G, Pieske B. Calcium cycling in congestive heart failure. J Mol Cell Cardiol. 2002;34(8):951–69.PubMedCrossRef Hasenfuss G, Pieske B. Calcium cycling in congestive heart failure. J Mol Cell Cardiol. 2002;34(8):951–69.PubMedCrossRef
4.
go back to reference Cicconi S, Ventura N, Pastore D, Bonini P, Di NP, Lauro R, Marlier LN. Characterization of apoptosis signal transduction pathways in HL-5 cardiomyocytes exposed to ischemia/reperfusion oxidative stress model. J Cell Physiol. 2003;195(1):27–37.PubMedCrossRef Cicconi S, Ventura N, Pastore D, Bonini P, Di NP, Lauro R, Marlier LN. Characterization of apoptosis signal transduction pathways in HL-5 cardiomyocytes exposed to ischemia/reperfusion oxidative stress model. J Cell Physiol. 2003;195(1):27–37.PubMedCrossRef
5.
7.
go back to reference Sun Y, Lin J, Zhang L. The application of weighted gene co-expression network analysis in identifying key modules and hub genes associated with disease status in Alzheimer's disease. Ann Transl Med. 2019;7(24):800.PubMedPubMedCentralCrossRef Sun Y, Lin J, Zhang L. The application of weighted gene co-expression network analysis in identifying key modules and hub genes associated with disease status in Alzheimer's disease. Ann Transl Med. 2019;7(24):800.PubMedPubMedCentralCrossRef
8.
go back to reference Rajabi M, Kassiotis C, Razeghi P, Taegtmeyer H. Return to the fetal gene program protects the stressed heart: a strong hypothesis. Heart Fail Rev. 2007;12(3–4):331–43.PubMedCrossRef Rajabi M, Kassiotis C, Razeghi P, Taegtmeyer H. Return to the fetal gene program protects the stressed heart: a strong hypothesis. Heart Fail Rev. 2007;12(3–4):331–43.PubMedCrossRef
9.
go back to reference Li W, Li L, Zhang S, Zhang C, Huang H, Li Y, Hu E, Deng G, Guo S, Wang Y, et al. Identification of potential genes for human ischemic cardiomyopathy based on RNA-Seq data. Oncotarget. 2016;7(50):82063–73.PubMedPubMedCentralCrossRef Li W, Li L, Zhang S, Zhang C, Huang H, Li Y, Hu E, Deng G, Guo S, Wang Y, et al. Identification of potential genes for human ischemic cardiomyopathy based on RNA-Seq data. Oncotarget. 2016;7(50):82063–73.PubMedPubMedCentralCrossRef
10.
go back to reference Roselló-Lletí E, Carnicer R, Tarazón E, Ortega A, Gil-Cayuela C, Lago F, González-Juanatey JR, Portolés M, Rivera M. Human ischemic cardiomyopathy shows cardiac Nos1 translocation and its increased levels are related to left ventricular performance. Sci Rep. 2016;6:24060.PubMedPubMedCentralCrossRef Roselló-Lletí E, Carnicer R, Tarazón E, Ortega A, Gil-Cayuela C, Lago F, González-Juanatey JR, Portolés M, Rivera M. Human ischemic cardiomyopathy shows cardiac Nos1 translocation and its increased levels are related to left ventricular performance. Sci Rep. 2016;6:24060.PubMedPubMedCentralCrossRef
11.
go back to reference Herrer I, Roselló-Lletí E, Ortega A, Tarazón E, Molina-Navarro MM, Triviño JC, Martínez-Dolz L, Almenar L, Lago F, Sánchez-Lázaro I. Gene expression network analysis reveals new transcriptional regulators as novel factors in human ischemic cardiomyopathy. BMC Med Genet. 2015;8(1):14. Herrer I, Roselló-Lletí E, Ortega A, Tarazón E, Molina-Navarro MM, Triviño JC, Martínez-Dolz L, Almenar L, Lago F, Sánchez-Lázaro I. Gene expression network analysis reveals new transcriptional regulators as novel factors in human ischemic cardiomyopathy. BMC Med Genet. 2015;8(1):14.
12.
go back to reference Qiao A, Zhao Z, Zhang H, Sun Z, Cui X. Gene expression profiling reveals genes and transcription factors associated with dilated and ischemic cardiomyopathies. Pathol Res Pract. 2017;213(5):548–57.PubMedCrossRef Qiao A, Zhao Z, Zhang H, Sun Z, Cui X. Gene expression profiling reveals genes and transcription factors associated with dilated and ischemic cardiomyopathies. Pathol Res Pract. 2017;213(5):548–57.PubMedCrossRef
13.
go back to reference Li GM, Zhang CL, Rui RP, Sun B, Guo W. Bioinformatics analysis of common differential genes of coronary artery disease and ischemic cardiomyopathy. Eur Rev Med Pharmacol Sci. 2018;22(11):3553–69.PubMed Li GM, Zhang CL, Rui RP, Sun B, Guo W. Bioinformatics analysis of common differential genes of coronary artery disease and ischemic cardiomyopathy. Eur Rev Med Pharmacol Sci. 2018;22(11):3553–69.PubMed
14.
go back to reference Wang J, Wang F, Zhu J, Song M, An J, Li W. Transcriptome profiling reveals PHLDA1 as a novel molecular marker for ischemic cardiomyopathy. J Mol Neurosci. 2018;65(1):102–9.PubMedPubMedCentralCrossRef Wang J, Wang F, Zhu J, Song M, An J, Li W. Transcriptome profiling reveals PHLDA1 as a novel molecular marker for ischemic cardiomyopathy. J Mol Neurosci. 2018;65(1):102–9.PubMedPubMedCentralCrossRef
15.
go back to reference Cortés R, Rivera M, Roselló-Lletí E, Martínez-Dolz L, Almenar L, Azorín I, Lago F, González-Juanatey JR, Portolés M. Differences in MEF2 and NFAT transcriptional pathways according to human heart failure Aetiology. PLoS One. 2012;7(2):e30915.PubMedPubMedCentralCrossRef Cortés R, Rivera M, Roselló-Lletí E, Martínez-Dolz L, Almenar L, Azorín I, Lago F, González-Juanatey JR, Portolés M. Differences in MEF2 and NFAT transcriptional pathways according to human heart failure Aetiology. PLoS One. 2012;7(2):e30915.PubMedPubMedCentralCrossRef
16.
go back to reference Pashmforoush M, Lu JT, Chen H, Amand TS, Kondo R, Pradervand S, Evans SM, Clark B, Feramisco JR, Giles W. Nkx2-5 pathways and congenital heart disease; loss of ventricular myocyte lineage specification leads to progressive cardiomyopathy and complete heart block. Cell. 2004;117(3):373–86.PubMedCrossRef Pashmforoush M, Lu JT, Chen H, Amand TS, Kondo R, Pradervand S, Evans SM, Clark B, Feramisco JR, Giles W. Nkx2-5 pathways and congenital heart disease; loss of ventricular myocyte lineage specification leads to progressive cardiomyopathy and complete heart block. Cell. 2004;117(3):373–86.PubMedCrossRef
17.
go back to reference Li C, Browder W, Kao RL. Early activation of transcription factor NF-kappaB during ischemia in perfused rat heart. Am J Physiol. 1999;276(2):543–52. Li C, Browder W, Kao RL. Early activation of transcription factor NF-kappaB during ischemia in perfused rat heart. Am J Physiol. 1999;276(2):543–52.
18.
go back to reference Haghikia A, Stapel B, Hoch M, Hilfikerkleiner D. STAT3 and cardiac remodeling. Heart Fail Rev. 2011;16(1):35–47.PubMedCrossRef Haghikia A, Stapel B, Hoch M, Hilfikerkleiner D. STAT3 and cardiac remodeling. Heart Fail Rev. 2011;16(1):35–47.PubMedCrossRef
19.
go back to reference Renata W, Julius M, Allison F, Alexander A, Wagner EF, Thierry P, Grzegorz S, Romeo R. The AP-1 transcription factor c-Jun prevents stress-imposed maladaptive remodeling of the heart. PLoS One. 2013;8(9):e73294.CrossRef Renata W, Julius M, Allison F, Alexander A, Wagner EF, Thierry P, Grzegorz S, Romeo R. The AP-1 transcription factor c-Jun prevents stress-imposed maladaptive remodeling of the heart. PLoS One. 2013;8(9):e73294.CrossRef
20.
go back to reference Kugler KG, Mueller LA, Graber A, Dehmer M. Integrative network biology: graph prototyping for co-expression cancer networks. PLoS One. 2011;6(7):e22843.PubMedPubMedCentralCrossRef Kugler KG, Mueller LA, Graber A, Dehmer M. Integrative network biology: graph prototyping for co-expression cancer networks. PLoS One. 2011;6(7):e22843.PubMedPubMedCentralCrossRef
21.
go back to reference Emmertstreib F, Dehmer M. Networks for systems biology: conceptual connection of data and function. IET Syst Biol. 2011;5(3):185–207.CrossRef Emmertstreib F, Dehmer M. Networks for systems biology: conceptual connection of data and function. IET Syst Biol. 2011;5(3):185–207.CrossRef
22.
go back to reference Yang KC, Yamada KA, Patel AY, Topkara VK, George I, Cheema FH, Ewald GA, Mann DL, Nerbonne JM. Deep RNA sequencing reveals dynamic regulation of myocardial noncoding RNAs in failing human heart and remodeling with mechanical circulatory support. Circulation. 2014;129(9):1009–21.PubMedPubMedCentralCrossRef Yang KC, Yamada KA, Patel AY, Topkara VK, George I, Cheema FH, Ewald GA, Mann DL, Nerbonne JM. Deep RNA sequencing reveals dynamic regulation of myocardial noncoding RNAs in failing human heart and remodeling with mechanical circulatory support. Circulation. 2014;129(9):1009–21.PubMedPubMedCentralCrossRef
23.
go back to reference Akat KM, Moore-McGriff D, Morozov P, Brown M, Gogakos T, Correa Da Rosa J, Mihailovic A, Sauer M, Ji R, Ramarathnam A, et al. Comparative RNA-sequencing analysis of myocardial and circulating small RNAs in human heart failure and their utility as biomarkers. Proc Natl Acad Sci U S A. 2014;111(30):11151–6.PubMedPubMedCentralCrossRef Akat KM, Moore-McGriff D, Morozov P, Brown M, Gogakos T, Correa Da Rosa J, Mihailovic A, Sauer M, Ji R, Ramarathnam A, et al. Comparative RNA-sequencing analysis of myocardial and circulating small RNAs in human heart failure and their utility as biomarkers. Proc Natl Acad Sci U S A. 2014;111(30):11151–6.PubMedPubMedCentralCrossRef
24.
go back to reference Hannenhalli S, Putt ME, Gilmore JM, Wang J, Parmacek MS, Epstein JA, Morrisey EE, Margulies KB, Cappola TP. Transcriptional genomics associates FOX transcription factors with human heart failure. Circulation. 2006;114(12):1269–76.PubMedCrossRef Hannenhalli S, Putt ME, Gilmore JM, Wang J, Parmacek MS, Epstein JA, Morrisey EE, Margulies KB, Cappola TP. Transcriptional genomics associates FOX transcription factors with human heart failure. Circulation. 2006;114(12):1269–76.PubMedCrossRef
25.
go back to reference Sweet ME, Cocciolo A, Slavov D, Jones KL, Sweet JR, Graw SL, Reece TB, Ambardekar AV, Bristow MR, Mestroni L, et al. Transcriptome analysis of human heart failure reveals dysregulated cell adhesion in dilated cardiomyopathy and activated immune pathways in ischemic heart failure. BMC Genomics. 2018;19(1):812.PubMedPubMedCentralCrossRef Sweet ME, Cocciolo A, Slavov D, Jones KL, Sweet JR, Graw SL, Reece TB, Ambardekar AV, Bristow MR, Mestroni L, et al. Transcriptome analysis of human heart failure reveals dysregulated cell adhesion in dilated cardiomyopathy and activated immune pathways in ischemic heart failure. BMC Genomics. 2018;19(1):812.PubMedPubMedCentralCrossRef
26.
go back to reference Felker GM, Shaw LK, O'Connor CM. A standardized definition of ischemic cardiomyopathy for use in clinical research. J Am Coll Cardiol. 2002;39(2):210–8.PubMedCrossRef Felker GM, Shaw LK, O'Connor CM. A standardized definition of ischemic cardiomyopathy for use in clinical research. J Am Coll Cardiol. 2002;39(2):210–8.PubMedCrossRef
27.
go back to reference Liu X, Qu J, Xue W, He L, Wang J, Xi X, Yin Y, Qu Y. Bioinformatics-based identification of potential microRNA biomarkers in frequent and non-frequent exacerbators of COPD. Int J Chron Obstruct Pulmon Dis. 2018;13:1217–28.PubMedPubMedCentralCrossRef Liu X, Qu J, Xue W, He L, Wang J, Xi X, Yin Y, Qu Y. Bioinformatics-based identification of potential microRNA biomarkers in frequent and non-frequent exacerbators of COPD. Int J Chron Obstruct Pulmon Dis. 2018;13:1217–28.PubMedPubMedCentralCrossRef
28.
go back to reference Manchia M, Piras IS, Huentelman MJ, Pinna F, Zai CC, Kennedy JL, Carpiniello B. Pattern of gene expression in different stages of schizophrenia: Down-regulation of NPTX2 gene revealed by a meta-analysis of microarray datasets. Eur Neuropsychopharmacol. 2017;27(10):1054–63.PubMedCrossRef Manchia M, Piras IS, Huentelman MJ, Pinna F, Zai CC, Kennedy JL, Carpiniello B. Pattern of gene expression in different stages of schizophrenia: Down-regulation of NPTX2 gene revealed by a meta-analysis of microarray datasets. Eur Neuropsychopharmacol. 2017;27(10):1054–63.PubMedCrossRef
29.
go back to reference Huang Y, Zhu J, Li W, Zhang Z, Xiong P, Wang H, Zhang J. Serum microRNA panel excavated by machine learning as a potential biomarker for the detection of gastric cancer. Oncol Rep. 2018;39(3):1338–46.PubMed Huang Y, Zhu J, Li W, Zhang Z, Xiong P, Wang H, Zhang J. Serum microRNA panel excavated by machine learning as a potential biomarker for the detection of gastric cancer. Oncol Rep. 2018;39(3):1338–46.PubMed
30.
go back to reference Zhang Q, Chen W, Chen S, Li S, Wei D, He W. Identification of key genes and upstream regulators in ischemic stroke. Brain Behav. 2019;9(7):e01319.PubMedPubMedCentral Zhang Q, Chen W, Chen S, Li S, Wei D, He W. Identification of key genes and upstream regulators in ischemic stroke. Brain Behav. 2019;9(7):e01319.PubMedPubMedCentral
31.
go back to reference Zhao B, Wang M, Xu J, Li M, Yu Y. Identification of pathogenic genes and upstream regulators in age-related macular degeneration. BMC Ophthalmol. 2017;17(1):102.PubMedPubMedCentralCrossRef Zhao B, Wang M, Xu J, Li M, Yu Y. Identification of pathogenic genes and upstream regulators in age-related macular degeneration. BMC Ophthalmol. 2017;17(1):102.PubMedPubMedCentralCrossRef
32.
go back to reference Carniel E, Taylor MR, Sinagra G, Di Lenarda A, Ku L, Fain PR, Boucek MM, Cavanaugh J, Miocic S, Slavov D, et al. Alpha-myosin heavy chain: a sarcomeric gene associated with dilated and hypertrophic phenotypes of cardiomyopathy. Circulation. 2005;112(1):54–9.PubMedCrossRef Carniel E, Taylor MR, Sinagra G, Di Lenarda A, Ku L, Fain PR, Boucek MM, Cavanaugh J, Miocic S, Slavov D, et al. Alpha-myosin heavy chain: a sarcomeric gene associated with dilated and hypertrophic phenotypes of cardiomyopathy. Circulation. 2005;112(1):54–9.PubMedCrossRef
33.
go back to reference Hershberger RE, Norton N, Morales A, Li D, Siegfried JD, Gonzalez-Quintana J. Coding sequence rare variants identified in MYBPC3, MYH6, TPM1, TNNC1, and TNNI3 from 312 patients with familial or idiopathic dilated cardiomyopathy. Circ Cardiovasc Genet. 2010;3(2):155–61.PubMedPubMedCentralCrossRef Hershberger RE, Norton N, Morales A, Li D, Siegfried JD, Gonzalez-Quintana J. Coding sequence rare variants identified in MYBPC3, MYH6, TPM1, TNNC1, and TNNI3 from 312 patients with familial or idiopathic dilated cardiomyopathy. Circ Cardiovasc Genet. 2010;3(2):155–61.PubMedPubMedCentralCrossRef
34.
go back to reference Razmara E, Garshasbi M. Whole-exome sequencing identifies R1279X of MYH6 gene to be associated with congenital heart disease. BMC Cardiovasc Disord. 2018;18(1):137.PubMedPubMedCentralCrossRef Razmara E, Garshasbi M. Whole-exome sequencing identifies R1279X of MYH6 gene to be associated with congenital heart disease. BMC Cardiovasc Disord. 2018;18(1):137.PubMedPubMedCentralCrossRef
35.
go back to reference Posch MG, Waldmuller S, Muller M, Scheffold T, Fournier D, Andrade-Navarro MA, De Geeter B, Guillaumont S, Dauphin C, Yousseff D, et al. Cardiac alpha-myosin (MYH6) is the predominant sarcomeric disease gene for familial atrial septal defects. PLoS One. 2011;6(12):e28872.PubMedPubMedCentralCrossRef Posch MG, Waldmuller S, Muller M, Scheffold T, Fournier D, Andrade-Navarro MA, De Geeter B, Guillaumont S, Dauphin C, Yousseff D, et al. Cardiac alpha-myosin (MYH6) is the predominant sarcomeric disease gene for familial atrial septal defects. PLoS One. 2011;6(12):e28872.PubMedPubMedCentralCrossRef
36.
go back to reference Jiang J, Wakimoto H, Seidman JG, Seidman CE. Allele-specific silencing of mutant Myh6 transcripts in mice suppresses hypertrophic cardiomyopathy. Science (New York, NY). 2013;342(6154):111–4.CrossRef Jiang J, Wakimoto H, Seidman JG, Seidman CE. Allele-specific silencing of mutant Myh6 transcripts in mice suppresses hypertrophic cardiomyopathy. Science (New York, NY). 2013;342(6154):111–4.CrossRef
37.
go back to reference Castellana S, Mastroianno S, Palumbo P, Palumbo O, Biagini T, Leone MP, De Luca G, Potenza DR, Amico CM, Mazza T, et al. Sudden death in mild hypertrophic cardiomyopathy with compound DSG2/DSC2/MYH6 mutations: revisiting phenotype after genetic assessment in a master runner athlete. J Electrocardiol. 2019;53:95–9.PubMedCrossRef Castellana S, Mastroianno S, Palumbo P, Palumbo O, Biagini T, Leone MP, De Luca G, Potenza DR, Amico CM, Mazza T, et al. Sudden death in mild hypertrophic cardiomyopathy with compound DSG2/DSC2/MYH6 mutations: revisiting phenotype after genetic assessment in a master runner athlete. J Electrocardiol. 2019;53:95–9.PubMedCrossRef
38.
go back to reference Granados-Riveron JT, Ghosh TK, Pope M, Bu’Lock F, Thornborough C, Eason J, Kirk EP, Fatkin D, Feneley MP, Harvey RP. Alpha-cardiac myosin heavy chain (MYH6) mutations affecting myofibril formation are associated with congenital heart defects. Hum Mol Genet. 2010;19(20):4007–16.PubMedCrossRef Granados-Riveron JT, Ghosh TK, Pope M, Bu’Lock F, Thornborough C, Eason J, Kirk EP, Fatkin D, Feneley MP, Harvey RP. Alpha-cardiac myosin heavy chain (MYH6) mutations affecting myofibril formation are associated with congenital heart defects. Hum Mol Genet. 2010;19(20):4007–16.PubMedCrossRef
39.
go back to reference Muppala S, Xiao R, Krukovets I, Verbovetsky D, Yendamuri R, Habib N, Raman P, Plow E, Stenina-Adognravi O. Thrombospondin-4 mediates TGF-beta-induced angiogenesis. Oncogene. 2017;36(36):5189–98.PubMedPubMedCentralCrossRef Muppala S, Xiao R, Krukovets I, Verbovetsky D, Yendamuri R, Habib N, Raman P, Plow E, Stenina-Adognravi O. Thrombospondin-4 mediates TGF-beta-induced angiogenesis. Oncogene. 2017;36(36):5189–98.PubMedPubMedCentralCrossRef
40.
go back to reference Stenina-Adognravi O, Plow EF. Thrombospondin-4 in tissue remodeling. Matrix Biol. 2019;75-76:300–13.PubMedCrossRef Stenina-Adognravi O, Plow EF. Thrombospondin-4 in tissue remodeling. Matrix Biol. 2019;75-76:300–13.PubMedCrossRef
41.
go back to reference Liu J, Cheng G, Yang H, Deng X, Qin C, Hua L, Yin C. Reciprocal regulation of long noncoding RNAs THBS4003 and THBS4 control migration and invasion in prostate cancer cell lines. Mol Med Rep. 2016;14(2):1451–8.PubMedPubMedCentralCrossRef Liu J, Cheng G, Yang H, Deng X, Qin C, Hua L, Yin C. Reciprocal regulation of long noncoding RNAs THBS4003 and THBS4 control migration and invasion in prostate cancer cell lines. Mol Med Rep. 2016;14(2):1451–8.PubMedPubMedCentralCrossRef
42.
go back to reference Kuroda K, Yashiro M, Sera T, Yamamoto Y, Kushitani Y, Sugimoto A, Kushiyama S, Nishimura S, Togano S, Okuno T, et al. The clinicopathological significance of Thrombospondin-4 expression in the tumor microenvironment of gastric cancer. PLoS One. 2019;14(11):e0224727.PubMedPubMedCentralCrossRef Kuroda K, Yashiro M, Sera T, Yamamoto Y, Kushitani Y, Sugimoto A, Kushiyama S, Nishimura S, Togano S, Okuno T, et al. The clinicopathological significance of Thrombospondin-4 expression in the tumor microenvironment of gastric cancer. PLoS One. 2019;14(11):e0224727.PubMedPubMedCentralCrossRef
43.
go back to reference Wu H, Zhang G, Li Z, Ma J, Han X, Xiang T, Jiang X. Thrombospondin-4 expression as a prognostic marker in hepatocellular carcinoma. Gene. 2019;696:219–24.PubMedCrossRef Wu H, Zhang G, Li Z, Ma J, Han X, Xiang T, Jiang X. Thrombospondin-4 expression as a prognostic marker in hepatocellular carcinoma. Gene. 2019;696:219–24.PubMedCrossRef
44.
go back to reference Tsoutsman T, Wang X, Garchow K, Riser B, Twigg S, Semsarian C. CCN2 plays a key role in extracellular matrix gene expression in severe hypertrophic cardiomyopathy and heart failure. J Mol Cell Cardiol. 2013;62:164–78.PubMedCrossRef Tsoutsman T, Wang X, Garchow K, Riser B, Twigg S, Semsarian C. CCN2 plays a key role in extracellular matrix gene expression in severe hypertrophic cardiomyopathy and heart failure. J Mol Cell Cardiol. 2013;62:164–78.PubMedCrossRef
45.
go back to reference Kloth JN, Gorter A, Fleuren GJ, Oosting J, Uljee S, ter Haar N, Dreef EJ, Kenter GG, Jordanova ES. Elevated expression of SerpinA1 and SerpinA3 in HLA-positive cervical carcinoma. J Pathol. 2008;215(3):222–30.PubMedCrossRef Kloth JN, Gorter A, Fleuren GJ, Oosting J, Uljee S, ter Haar N, Dreef EJ, Kenter GG, Jordanova ES. Elevated expression of SerpinA1 and SerpinA3 in HLA-positive cervical carcinoma. J Pathol. 2008;215(3):222–30.PubMedCrossRef
46.
go back to reference Asakura M, Kitakaze M. Global gene expression profiling in the failing myocardium. Circ J. 2009;73(9):1568–76.PubMedCrossRef Asakura M, Kitakaze M. Global gene expression profiling in the failing myocardium. Circ J. 2009;73(9):1568–76.PubMedCrossRef
47.
go back to reference Liu Z, Hou L, Liu Y, Gong J. LncRNA GAS5 exacerbates myocardial ischemia-reperfusion injury through regulating serpina3 by targeting miR-137. Int J Cardiol. 2020;306:9.PubMedCrossRef Liu Z, Hou L, Liu Y, Gong J. LncRNA GAS5 exacerbates myocardial ischemia-reperfusion injury through regulating serpina3 by targeting miR-137. Int J Cardiol. 2020;306:9.PubMedCrossRef
Metadata
Title
Identification of candidate genes in ischemic cardiomyopathy by gene expression omnibus database
Authors
Haiming Dang
Yicong Ye
Xiliang Zhao
Yong Zeng
Publication date
01-12-2020
Publisher
BioMed Central
Keyword
Cardiomyopathy
Published in
BMC Cardiovascular Disorders / Issue 1/2020
Electronic ISSN: 1471-2261
DOI
https://doi.org/10.1186/s12872-020-01596-w

Other articles of this Issue 1/2020

BMC Cardiovascular Disorders 1/2020 Go to the issue