Skip to main content
Top
Published in: Heart Failure Reviews 3-4/2007

01-12-2007

Return to the fetal gene program protects the stressed heart: a strong hypothesis

Authors: Mitra Rajabi, Christos Kassiotis, Peter Razeghi, Heinrich Taegtmeyer

Published in: Heart Failure Reviews | Issue 3-4/2007

Login to get access

Abstract

A common feature of the hemodynamically or metabolically stressed heart is the return to a pattern of fetal metabolism. A hallmark of fetal metabolism is the predominance of carbohydrates as substrates for energy provision in a relatively hypoxic environment. When the normal heart is exposed to an oxygen rich environment after birth, energy substrate metabolism is rapidly switched to oxidation of fatty acids. This switch goes along with the expression of “adult” isoforms of metabolic enzymes and other proteins. However, the heart retains the ability to return to the “fetal” gene program. Specifically, the fetal gene program is predominant in a variety of pathophysiologic conditions including hypoxia, ischemia, hypertrophy, and atrophy. A common feature of all of these conditions is extensive remodeling, a decrease in the rate of aerobic metabolism in the cardiomyocyte, and an increase in cardiac efficiency. The adaptation is associated with a whole program of cell survival under stress. The adaptive mechanisms are prominently developed in hibernating myocardium, but they are also a feature of the failing heart muscle. We propose that in failing heart muscle at a certain point the fetal gene program is no longer sufficient to support cardiac structure and function. The exact mechanisms underlying the transition from adaptation to cardiomyocyte dysfunction are still not completely understood.
Literature
1.
go back to reference Razeghi P, Young ME, Alcorn JL, Moravec CS, Frazier OH, Taegtmeyer H (2001) Metabolic gene expression in fetal and failing human heart. Circulation 104:2923–2931PubMed Razeghi P, Young ME, Alcorn JL, Moravec CS, Frazier OH, Taegtmeyer H (2001) Metabolic gene expression in fetal and failing human heart. Circulation 104:2923–2931PubMed
2.
go back to reference Fisher DJ, Heymann MA, Rudolph AM (1980) Myocardial oxygen and carbohydrate consumption in fetal lambs in utero and in adult sheep. Am J Physiol 238:H399–H405PubMed Fisher DJ, Heymann MA, Rudolph AM (1980) Myocardial oxygen and carbohydrate consumption in fetal lambs in utero and in adult sheep. Am J Physiol 238:H399–H405PubMed
3.
go back to reference Fisher D, Heymann M, Rudolph A (1981) Myocardial consumption of oxygen and carbohydrates in newborn sheep. Pediatr Res 15:843–846PubMedCrossRef Fisher D, Heymann M, Rudolph A (1981) Myocardial consumption of oxygen and carbohydrates in newborn sheep. Pediatr Res 15:843–846PubMedCrossRef
4.
go back to reference Lopaschuk GD, Collins-Nakai RL, Itoi T (1992) Developmental changes in energy substrate use by the heart. Cardiovasc Res 26:1172-1180PubMed Lopaschuk GD, Collins-Nakai RL, Itoi T (1992) Developmental changes in energy substrate use by the heart. Cardiovasc Res 26:1172-1180PubMed
5.
go back to reference Bartelds B, Knoester H, Smid GB, Takens J, Visser GH, Penninga L, van der Leij FR, Beaufort-Krol GC, Zijlstra WG, Heymans HS, Kuipers JR (2000) Perinatal changes in myocardial metabolism in lambs. Circulation 102:926–931PubMed Bartelds B, Knoester H, Smid GB, Takens J, Visser GH, Penninga L, van der Leij FR, Beaufort-Krol GC, Zijlstra WG, Heymans HS, Kuipers JR (2000) Perinatal changes in myocardial metabolism in lambs. Circulation 102:926–931PubMed
6.
go back to reference Bartelds B, Gratama JW, Knoester H, Takens J, Smid GB, Aarnoudse JG, Heymans HS, Kuipers JR (1998) Perinatal changes in myocardial supply and flux of fatty acids, carbohydrates, and ketone bodies in lambs. Am J Physiol 274:H1962–H1969PubMed Bartelds B, Gratama JW, Knoester H, Takens J, Smid GB, Aarnoudse JG, Heymans HS, Kuipers JR (1998) Perinatal changes in myocardial supply and flux of fatty acids, carbohydrates, and ketone bodies in lambs. Am J Physiol 274:H1962–H1969PubMed
7.
go back to reference Korvald C, Elvenes OP, Myrmel T (2000) Myocardial substrate metabolism influences left ventricular energetics in vivo. Am J Physiol Heart Circ Physiol 278:H1345–H1351PubMed Korvald C, Elvenes OP, Myrmel T (2000) Myocardial substrate metabolism influences left ventricular energetics in vivo. Am J Physiol Heart Circ Physiol 278:H1345–H1351PubMed
8.
go back to reference Goodwin GW, Taylor CS, Taegtmeyer H (1998) Regulation of energy metabolism of the heart during acute increase in heart work. J Biol Chem 273:29530–29539PubMed Goodwin GW, Taylor CS, Taegtmeyer H (1998) Regulation of energy metabolism of the heart during acute increase in heart work. J Biol Chem 273:29530–29539PubMed
9.
go back to reference Schipke JD (1994) Cardiac efficiency. Basic Res Cardiol 89:207–240PubMed Schipke JD (1994) Cardiac efficiency. Basic Res Cardiol 89:207–240PubMed
10.
go back to reference Bing RJ, Siegel A, Ungar I, Gilbert M (1954) Metabolism of the human heart. II. Studies on fat, ketone and amino acid metabolism. Am J Med 16:504–515PubMed Bing RJ, Siegel A, Ungar I, Gilbert M (1954) Metabolism of the human heart. II. Studies on fat, ketone and amino acid metabolism. Am J Med 16:504–515PubMed
12.
go back to reference Lopaschuk GD, Spafford MA, Marsh DR (1991) Glycolysis is predominant source of ATP production immediately after birth. Am J Physiol 261:H1698–H1705PubMed Lopaschuk GD, Spafford MA, Marsh DR (1991) Glycolysis is predominant source of ATP production immediately after birth. Am J Physiol 261:H1698–H1705PubMed
13.
go back to reference Bartelds B, Knoester H, Beaufort-Krol GC, Smid GB, Takens J, Zijlstra WG, Heymans HS, Kuipers JR (1999) Myocardial lactate metabolism in fetal and newborn lambs. Circulation 99:1892–1897PubMed Bartelds B, Knoester H, Beaufort-Krol GC, Smid GB, Takens J, Zijlstra WG, Heymans HS, Kuipers JR (1999) Myocardial lactate metabolism in fetal and newborn lambs. Circulation 99:1892–1897PubMed
14.
go back to reference Lehman JJ, Kelly DP (2002) Gene regulatory mechanisms governing energy metabolism during cardiac hypertrophic growth. Heart Fail Rev 7:175–185PubMed Lehman JJ, Kelly DP (2002) Gene regulatory mechanisms governing energy metabolism during cardiac hypertrophic growth. Heart Fail Rev 7:175–185PubMed
15.
go back to reference Kantor PF, Robertson MA, Coe JY, Lopaschuk GD (1999) Volume overload hypertrophy of the newborn heart slows the maturation of enzymes involved in the regulation of fatty acid metabolism. J Am Coll Cardiol 33:1724–1734PubMed Kantor PF, Robertson MA, Coe JY, Lopaschuk GD (1999) Volume overload hypertrophy of the newborn heart slows the maturation of enzymes involved in the regulation of fatty acid metabolism. J Am Coll Cardiol 33:1724–1734PubMed
16.
go back to reference Navaratnam V (1987) Heart muscle: ultrastructural studies. Cambridge University Press, New York Navaratnam V (1987) Heart muscle: ultrastructural studies. Cambridge University Press, New York
17.
go back to reference Pederson BA, Chen H, Schroeder JM, Shou W, DePaoli-Roach AA, Roach PJ (2004) Abnormal cardiac development in the absence of heart glycogen. Mol Cell Biol 24:7179–7187PubMed Pederson BA, Chen H, Schroeder JM, Shou W, DePaoli-Roach AA, Roach PJ (2004) Abnormal cardiac development in the absence of heart glycogen. Mol Cell Biol 24:7179–7187PubMed
18.
go back to reference Scholz TD, Laughlin MR, Balaban RS, Kupriyanov VV, Heineman FW (1995) Effect of substrate on mitochondrial NADH, cytosolic redox state, and phosphorylated compounds in isolated hearts. Am J Physiol 268:H82–H91PubMed Scholz TD, Laughlin MR, Balaban RS, Kupriyanov VV, Heineman FW (1995) Effect of substrate on mitochondrial NADH, cytosolic redox state, and phosphorylated compounds in isolated hearts. Am J Physiol 268:H82–H91PubMed
19.
go back to reference Scholz TD, Koppenhafer SL, tenEyck CJ, Schutte BC (1998) Ontogeny of malate-aspartate shuttle capacity and gene expression in cardiac mitochondria. Am J Physiol 274:C780–C788PubMed Scholz TD, Koppenhafer SL, tenEyck CJ, Schutte BC (1998) Ontogeny of malate-aspartate shuttle capacity and gene expression in cardiac mitochondria. Am J Physiol 274:C780–C788PubMed
20.
go back to reference Lehman JJ, Barger PM, Kovacs A, Saffitz JE, Medeiros DM, Kelly DP (2000) Peroxisome proliferator-activated receptor gamma coactivator-1 promotes cardiac mitochondrial biogenesis. J Clin Invest 106:847–856PubMed Lehman JJ, Barger PM, Kovacs A, Saffitz JE, Medeiros DM, Kelly DP (2000) Peroxisome proliferator-activated receptor gamma coactivator-1 promotes cardiac mitochondrial biogenesis. J Clin Invest 106:847–856PubMed
21.
go back to reference Kelly DP, Scarpulla RC (2004) Transcriptional regulatory circuits controlling mitochondrial biogenesis and function. Genes Dev 18:357–368PubMed Kelly DP, Scarpulla RC (2004) Transcriptional regulatory circuits controlling mitochondrial biogenesis and function. Genes Dev 18:357–368PubMed
22.
go back to reference Sano M, Izumi Y, Helenius K, Asakura M, Rossi DJ, Xie M, Taffet G, Hu L, Pautler RG, Wilson CR, Boudina S, Abel ED, Taegtmeyer H, Scaglia F, Graham BH, Kralli A, Shimizu N, Tanaka H, Makela TP, Schneider MD (2007) Menage-a-Trois 1 is critical for the transcriptional function of PPARgamma coactivator 1. Cell Metab 5:129–142PubMed Sano M, Izumi Y, Helenius K, Asakura M, Rossi DJ, Xie M, Taffet G, Hu L, Pautler RG, Wilson CR, Boudina S, Abel ED, Taegtmeyer H, Scaglia F, Graham BH, Kralli A, Shimizu N, Tanaka H, Makela TP, Schneider MD (2007) Menage-a-Trois 1 is critical for the transcriptional function of PPARgamma coactivator 1. Cell Metab 5:129–142PubMed
23.
go back to reference Onay-Besikci A, Campbell FM, Hopkins TA, Dyck JR, Lopaschuk GD, Onay Besikci A (2003) Relative importance of malonyl CoA and carnitine in maturation of fatty acid oxidation in newborn rabbit heart. Am J Physiol Heart Circ Physiol. 284:H283–H289PubMed Onay-Besikci A, Campbell FM, Hopkins TA, Dyck JR, Lopaschuk GD, Onay Besikci A (2003) Relative importance of malonyl CoA and carnitine in maturation of fatty acid oxidation in newborn rabbit heart. Am J Physiol Heart Circ Physiol. 284:H283–H289PubMed
24.
go back to reference Young ME, Laws FA, Goodwin GW, Taegtmeyer H (2001) Reactivation of peroxisome proliferator-activated receptor alpha is associated with contractile dysfunction in hypertrophied rat heart. J Biol Chem 276:44390–44395PubMed Young ME, Laws FA, Goodwin GW, Taegtmeyer H (2001) Reactivation of peroxisome proliferator-activated receptor alpha is associated with contractile dysfunction in hypertrophied rat heart. J Biol Chem 276:44390–44395PubMed
25.
go back to reference Goodwin CW, Mela L, Deutsch C, Forster RE, Miller LD, Kelivoria-Papadopoulos M (1976) Development and adaptation of heart mitochondrial respiratory chain function in fetus and in newborn. Adv Exp Med Biol 75:13–19 Goodwin CW, Mela L, Deutsch C, Forster RE, Miller LD, Kelivoria-Papadopoulos M (1976) Development and adaptation of heart mitochondrial respiratory chain function in fetus and in newborn. Adv Exp Med Biol 75:13–19
26.
go back to reference Rolph T, Jones C, Parry D (1982) Ultrastructural and enzymatic development of fetal guinea pig heart. Am J Physiol 243:H87–H93PubMed Rolph T, Jones C, Parry D (1982) Ultrastructural and enzymatic development of fetal guinea pig heart. Am J Physiol 243:H87–H93PubMed
27.
go back to reference Wells RJ, Friedman WF, Sobbel BE (1972) Increase oxidative metabolism in the fetal and newborn lamb heart. Am J Physiol 222:1488–1493PubMed Wells RJ, Friedman WF, Sobbel BE (1972) Increase oxidative metabolism in the fetal and newborn lamb heart. Am J Physiol 222:1488–1493PubMed
28.
go back to reference Smith HE, Page E (1977) Ultrastructural changes in rabbit heart mitochondria during the perinatal period. Neonatal transition to aerobic metabolism Dev Biol 57:109–117PubMed Smith HE, Page E (1977) Ultrastructural changes in rabbit heart mitochondria during the perinatal period. Neonatal transition to aerobic metabolism Dev Biol 57:109–117PubMed
29.
go back to reference Girard J, Ferre P, Pegorier JP, Duee PH (1992) Adaptations of glucose and fatty acid metabolism during perinatal period and suckling-weaning transition. Physiol Rev 72:507–562PubMed Girard J, Ferre P, Pegorier JP, Duee PH (1992) Adaptations of glucose and fatty acid metabolism during perinatal period and suckling-weaning transition. Physiol Rev 72:507–562PubMed
30.
go back to reference Gibson DM, Harris RA (2002) Metabolic regulation in mammals, Taylor & Francis, London, p 224 Gibson DM, Harris RA (2002) Metabolic regulation in mammals, Taylor & Francis, London, p 224
31.
go back to reference Taegtmeyer H, Golfman L, Sharma S, Razeghi P, van Arsdall M (2004) Linking gene expression to function: metabolic flexibility in the normal and diseased heart. Ann N Y Acad Sci 1015:202–213PubMed Taegtmeyer H, Golfman L, Sharma S, Razeghi P, van Arsdall M (2004) Linking gene expression to function: metabolic flexibility in the normal and diseased heart. Ann N Y Acad Sci 1015:202–213PubMed
32.
go back to reference Swynghedauw B (1986) Developmental and functional adaptation of contractile proteins in cardiac and skeletal muscles. Physiol Rev 66:710–771PubMed Swynghedauw B (1986) Developmental and functional adaptation of contractile proteins in cardiac and skeletal muscles. Physiol Rev 66:710–771PubMed
33.
go back to reference Morkin E (1993) Regulation of myosin heavy chain genes in the heart. Circulation. 87:1451–1460PubMed Morkin E (1993) Regulation of myosin heavy chain genes in the heart. Circulation. 87:1451–1460PubMed
34.
go back to reference Sassoon DA, Garner I, Buckingham M (1988) Transcripts of alpha-cardiac and alpha-skeletal actins are early markers for myogenesis in the mouse embryo. Development 104:155–164PubMed Sassoon DA, Garner I, Buckingham M (1988) Transcripts of alpha-cardiac and alpha-skeletal actins are early markers for myogenesis in the mouse embryo. Development 104:155–164PubMed
35.
go back to reference Schwartz K, Carrier L, Chassagne C, Wisnewsky C, Boheler KR (1992) Regulation of myosin heavy chain and actin isogenes during cardiac growth and hypertrophy. Symp Soc Exp Biol 46:265–272PubMed Schwartz K, Carrier L, Chassagne C, Wisnewsky C, Boheler KR (1992) Regulation of myosin heavy chain and actin isogenes during cardiac growth and hypertrophy. Symp Soc Exp Biol 46:265–272PubMed
36.
go back to reference Everett AW (1986) Isomyosin expression in human heart in early pre- and post-natal life. J Mol Cell Cardiol 18:607–615PubMed Everett AW (1986) Isomyosin expression in human heart in early pre- and post-natal life. J Mol Cell Cardiol 18:607–615PubMed
37.
go back to reference Lahmers S, Wu Y, Call DR, Labeit S, Granzier H (2004) Developmental control of titin isoform expression and passive stiffness in fetal and neonatal myocardium. Circ Res 94:505–513PubMed Lahmers S, Wu Y, Call DR, Labeit S, Granzier H (2004) Developmental control of titin isoform expression and passive stiffness in fetal and neonatal myocardium. Circ Res 94:505–513PubMed
38.
go back to reference Opitz CA, Leake MC, Makarenko I, Benes V, Linke WA (2004) Developmentally regulated switching of titin size alters myofibrillar stiffness in the perinatal heart. Circ Res 94:967–975PubMed Opitz CA, Leake MC, Makarenko I, Benes V, Linke WA (2004) Developmentally regulated switching of titin size alters myofibrillar stiffness in the perinatal heart. Circ Res 94:967–975PubMed
39.
go back to reference Neagoe C, Kulke M, del Monte F, Gwathmey JK, de Tombe PP, Hajjar RJ, Linke WA (2002) Titin isoform switch in ischemic human heart disease. Circulation 106:1333–1341PubMed Neagoe C, Kulke M, del Monte F, Gwathmey JK, de Tombe PP, Hajjar RJ, Linke WA (2002) Titin isoform switch in ischemic human heart disease. Circulation 106:1333–1341PubMed
40.
go back to reference Wu Y, Bell SP, Trombitas K, Witt CC, Labeit S, LeWinter MM, Granzier H (2002) Changes in titin isoform expression in pacing-induced cardiac failure give rise to increased passive muscle stiffness. Circulation 106:1384–1389PubMed Wu Y, Bell SP, Trombitas K, Witt CC, Labeit S, LeWinter MM, Granzier H (2002) Changes in titin isoform expression in pacing-induced cardiac failure give rise to increased passive muscle stiffness. Circulation 106:1384–1389PubMed
41.
go back to reference Makarenko I, Opitz CA, Leake MC, Neagoe C, Kulke M, Gwathmey JK, del Monte F, Hajjar RJ, Linke WA (2004) Passive stiffness changes caused by upregulation of compliant titin isoforms in human dilated cardiomyopathy hearts. Circ Res 95:708–716PubMed Makarenko I, Opitz CA, Leake MC, Neagoe C, Kulke M, Gwathmey JK, del Monte F, Hajjar RJ, Linke WA (2004) Passive stiffness changes caused by upregulation of compliant titin isoforms in human dilated cardiomyopathy hearts. Circ Res 95:708–716PubMed
42.
go back to reference Nagueh SF, Shah G, Wu Y, Torre-Amione G, King NM, Lahmers S, Witt CC, Becker K, Labeit S, Granzier HL (2004) Altered titin expression, myocardial stiffness, and left ventricular function in patients with dilated cardiomyopathy. Circulation 110:155–162PubMed Nagueh SF, Shah G, Wu Y, Torre-Amione G, King NM, Lahmers S, Witt CC, Becker K, Labeit S, Granzier HL (2004) Altered titin expression, myocardial stiffness, and left ventricular function in patients with dilated cardiomyopathy. Circulation 110:155–162PubMed
43.
go back to reference Lim CC, Sawyer DB (2005) Modulation of cardiac function: titin springs into action. J Gen Physiol 125:249–252PubMed Lim CC, Sawyer DB (2005) Modulation of cardiac function: titin springs into action. J Gen Physiol 125:249–252PubMed
44.
go back to reference Akazawa H, Komuro I (2003) Roles of cardiac transcription factors in cardiac hypertrophy. Circ Res 92:1079–1088PubMed Akazawa H, Komuro I (2003) Roles of cardiac transcription factors in cardiac hypertrophy. Circ Res 92:1079–1088PubMed
45.
go back to reference Heineke J, Molkentin JD (2006) Regulation of cardiac hypertrophy by intracellular signalling pathways. Nat Rev Mol Cell Biol 7:589–600PubMed Heineke J, Molkentin JD (2006) Regulation of cardiac hypertrophy by intracellular signalling pathways. Nat Rev Mol Cell Biol 7:589–600PubMed
46.
go back to reference Oka T, Xu J, Molkentin JD (2007) Re-employment of developmental transcription factors in adult heart disease. Semin Cell Dev Biol 18:117–131PubMed Oka T, Xu J, Molkentin JD (2007) Re-employment of developmental transcription factors in adult heart disease. Semin Cell Dev Biol 18:117–131PubMed
47.
go back to reference Frey N, Olson EN (2003) Cardiac hypertrophy: the good, the bad, and the ugly. Annu Rev Physiol 65:45–79PubMed Frey N, Olson EN (2003) Cardiac hypertrophy: the good, the bad, and the ugly. Annu Rev Physiol 65:45–79PubMed
48.
go back to reference Morkin E (2000) Control of cardiac myosin heavy chain gene expression. Microsc Res Tech 50:522–531PubMed Morkin E (2000) Control of cardiac myosin heavy chain gene expression. Microsc Res Tech 50:522–531PubMed
49.
go back to reference Sack MN, Disch DL, Rockman HA, Kelly DP (1997) A role for Sp and nuclear receptor transcription factors in a cardiac hypertrophic growth program. Proc Natl Acad Sci U S A 94:6438–6443PubMed Sack MN, Disch DL, Rockman HA, Kelly DP (1997) A role for Sp and nuclear receptor transcription factors in a cardiac hypertrophic growth program. Proc Natl Acad Sci U S A 94:6438–6443PubMed
50.
go back to reference Depre C, Shipley GL, Chen W, Han Q, Doenst T, Moore ML, Stepkowski S, Davies PJ, Taegtmeyer H (1998) Unloaded heart in vivo replicates fetal gene expression of cardiac hypertrophy. Nat Med 4:1269–1275PubMed Depre C, Shipley GL, Chen W, Han Q, Doenst T, Moore ML, Stepkowski S, Davies PJ, Taegtmeyer H (1998) Unloaded heart in vivo replicates fetal gene expression of cardiac hypertrophy. Nat Med 4:1269–1275PubMed
51.
go back to reference Allard MF, Schonekess BO, Henning SL, English DR, Lopaschuk GD (1994) Contribution of oxidative metabolism and glycolysis to ATP production in hypertrophied hearts. Am J Physiol 267:H742–H750PubMed Allard MF, Schonekess BO, Henning SL, English DR, Lopaschuk GD (1994) Contribution of oxidative metabolism and glycolysis to ATP production in hypertrophied hearts. Am J Physiol 267:H742–H750PubMed
52.
go back to reference Doenst T, Goodwin GW, Cedars AM, Wang M, Stepkowski S, Taegtmeyer H (2001) Load-induced changes in vivo alter substrate fluxes and insulin responsiveness of rat heart in vitro. Metabolism 50:1083–1090PubMed Doenst T, Goodwin GW, Cedars AM, Wang M, Stepkowski S, Taegtmeyer H (2001) Load-induced changes in vivo alter substrate fluxes and insulin responsiveness of rat heart in vitro. Metabolism 50:1083–1090PubMed
53.
go back to reference Barger PM, Kelly DP (2000) PPAR signaling in the control of cardiac energy metabolism. Trends Cardiovasc Med 10:238–245PubMed Barger PM, Kelly DP (2000) PPAR signaling in the control of cardiac energy metabolism. Trends Cardiovasc Med 10:238–245PubMed
54.
go back to reference van Bilsen M, Van der Vusse GJ, Reneman RS (1998) Transcriptional regulation of metabolic processes: implications for cardiac metabolism. Pflugers Arch 437:2–14PubMed van Bilsen M, Van der Vusse GJ, Reneman RS (1998) Transcriptional regulation of metabolic processes: implications for cardiac metabolism. Pflugers Arch 437:2–14PubMed
55.
go back to reference Taegtmeyer H (1994) Energy metabolism of the heart: from basic concepts to clinical applications. Curr Prob Cardiol 19:57–116CrossRef Taegtmeyer H (1994) Energy metabolism of the heart: from basic concepts to clinical applications. Curr Prob Cardiol 19:57–116CrossRef
56.
go back to reference Dawes GS, Mott JC, Shelley HJ (1959) The importance of cardiac glycogen for the maintenance of life in foetal lambs and newborn animals during anoxia. J Physiol (Lond) 146:516–538 Dawes GS, Mott JC, Shelley HJ (1959) The importance of cardiac glycogen for the maintenance of life in foetal lambs and newborn animals during anoxia. J Physiol (Lond) 146:516–538
57.
go back to reference Kim SJ, Peppas A, Hong SK, Yang G, Huang Y, Diaz G, Sadoshima J, Vatner DE, Vatner SF (2003) Persistent stunning induces myocardial hibernation and protection: flow/function and metabolic mechanisms. Circ Res 92:1233–1239PubMed Kim SJ, Peppas A, Hong SK, Yang G, Huang Y, Diaz G, Sadoshima J, Vatner DE, Vatner SF (2003) Persistent stunning induces myocardial hibernation and protection: flow/function and metabolic mechanisms. Circ Res 92:1233–1239PubMed
58.
go back to reference Depre C, Vanoverschelde JL, Melin JA, Borgers M, Bol A, Ausma J, Dion R, Wijns W (1995) Structural and metabolic correlates of the reversibility of chronic left ventricular ischemic dysfunction in humans. Am J Physiol 268:H1265–H1275PubMed Depre C, Vanoverschelde JL, Melin JA, Borgers M, Bol A, Ausma J, Dion R, Wijns W (1995) Structural and metabolic correlates of the reversibility of chronic left ventricular ischemic dysfunction in humans. Am J Physiol 268:H1265–H1275PubMed
59.
go back to reference Taegtmeyer H (2004) Glycogen in the heart—an expanded view. J Mol Cell Cardiol 37:7–10PubMed Taegtmeyer H (2004) Glycogen in the heart—an expanded view. J Mol Cell Cardiol 37:7–10PubMed
60.
go back to reference Listenberger LL, Han X, Lewis SE, Cases S, Farese RV Jr (2003), Ory DS, Schaffer JE. Triglyceride accumulation protects against fatty acid-induced lipotoxicity. Proc Natl Acad Sci U S A 100:3077–3082PubMed Listenberger LL, Han X, Lewis SE, Cases S, Farese RV Jr (2003), Ory DS, Schaffer JE. Triglyceride accumulation protects against fatty acid-induced lipotoxicity. Proc Natl Acad Sci U S A 100:3077–3082PubMed
61.
go back to reference Chin E, Allen D (1997) Effects of reduced muscle glycogen concentration on force, Ca2+ release and contractile protein function in intact mouse skeletal muscle. J Physiol (Lond) 498:17–29 Chin E, Allen D (1997) Effects of reduced muscle glycogen concentration on force, Ca2+ release and contractile protein function in intact mouse skeletal muscle. J Physiol (Lond) 498:17–29
62.
go back to reference Entman ML, Kanike K, Goldstein MA, Nelson TE, Bornet EP, Futch TW, Schwartz A (1976) Association of glycogenolysis with cardiac sarcoplasmic reticulum. J Biol Chem 251:3140–3146 Entman ML, Kanike K, Goldstein MA, Nelson TE, Bornet EP, Futch TW, Schwartz A (1976) Association of glycogenolysis with cardiac sarcoplasmic reticulum. J Biol Chem 251:3140–3146
63.
go back to reference Ingwall JS, Weiss RG (2004) Is the failing heart energy starved? On using chemical energy to support cardiac function. Circ Res 95:135–145PubMed Ingwall JS, Weiss RG (2004) Is the failing heart energy starved? On using chemical energy to support cardiac function. Circ Res 95:135–145PubMed
64.
go back to reference Taegtmeyer H (2004) Cardiac metabolism as a target for the treatment of heart failure. Circulation 110:894–896PubMed Taegtmeyer H (2004) Cardiac metabolism as a target for the treatment of heart failure. Circulation 110:894–896PubMed
65.
go back to reference Semenza GL (2004) O2-regulated gene expression: transcriptional control of cardiorespiratory physiology by HIF-1. J Appl Physiol 96:1173–1177; discussion 1170–1172 Semenza GL (2004) O2-regulated gene expression: transcriptional control of cardiorespiratory physiology by HIF-1. J Appl Physiol 96:1173–1177; discussion 1170–1172
66.
go back to reference Depre C, Taegtmeyer H (2000) Metabolic aspects of programmed cell survival and cell death in the heart. Cardiovasc Res 45:538–548PubMed Depre C, Taegtmeyer H (2000) Metabolic aspects of programmed cell survival and cell death in the heart. Cardiovasc Res 45:538–548PubMed
67.
go back to reference Schoene RB, Hackett PH, Hornbern TF (2000) High altitude. Murray & Nadel textbook of respiratory medicine, 3rd edn. W. B. Saunders Company, Philadelphia, 1915–1950 Schoene RB, Hackett PH, Hornbern TF (2000) High altitude. Murray & Nadel textbook of respiratory medicine, 3rd edn. W. B. Saunders Company, Philadelphia, 1915–1950
68.
go back to reference Razeghi P, Young ME, Abbasi S, Taegtmeyer H (2001) Hypoxia in vivo decreases peroxisome proliferator-activated receptor alpha-regulated gene expression in rat heart. Biochem Biophys Res Commun 287:5–10PubMed Razeghi P, Young ME, Abbasi S, Taegtmeyer H (2001) Hypoxia in vivo decreases peroxisome proliferator-activated receptor alpha-regulated gene expression in rat heart. Biochem Biophys Res Commun 287:5–10PubMed
69.
go back to reference Sharma S, Taegtmeyer H, Adrogue J, Razeghi P, Sen S, Ngumbela K, Essop MF (2004) Dynamic changes of gene expression in hypoxia-induced right ventricular hypertrophy. Am J Cardiol Heart Circ Physiol 286:H1185–H192 Sharma S, Taegtmeyer H, Adrogue J, Razeghi P, Sen S, Ngumbela K, Essop MF (2004) Dynamic changes of gene expression in hypoxia-induced right ventricular hypertrophy. Am J Cardiol Heart Circ Physiol 286:H1185–H192
70.
go back to reference Depre C, Young ME, Ying J, Ahuja HS, Han Q, Garza N, Davies PJ, Taegtmeyer H (2000) Streptozotocin-induced changes in cardiac gene expression in the absence of severe contractile dysfunction. J Mol Cell Cardiol 32:985–996PubMed Depre C, Young ME, Ying J, Ahuja HS, Han Q, Garza N, Davies PJ, Taegtmeyer H (2000) Streptozotocin-induced changes in cardiac gene expression in the absence of severe contractile dysfunction. J Mol Cell Cardiol 32:985–996PubMed
71.
go back to reference Young ME, Wilson CR, Razeghi P, Guthrie PH, Taegtmeyer H (2002) Alterations of the circadian clock in the heart by streptozotocin-induced diabetes. J Mol Cell Cardiol 34:223–231PubMed Young ME, Wilson CR, Razeghi P, Guthrie PH, Taegtmeyer H (2002) Alterations of the circadian clock in the heart by streptozotocin-induced diabetes. J Mol Cell Cardiol 34:223–231PubMed
72.
go back to reference Razeghi P, Young ME, Cockrill TC, Frazier OH, Taegtmeyer H (2002) Downregulation of myocardial myocyte enhancer factor 2C and myocyte enhancer factor 2C-regulated gene expression in diabetic patients with nonischemic heart failure. Circulation 106:407–411PubMed Razeghi P, Young ME, Cockrill TC, Frazier OH, Taegtmeyer H (2002) Downregulation of myocardial myocyte enhancer factor 2C and myocyte enhancer factor 2C-regulated gene expression in diabetic patients with nonischemic heart failure. Circulation 106:407–411PubMed
73.
go back to reference Sharma S, Adrogue JV, Golfman L, Uray I, Lemm J, Youker K, Noon GP, Frazier OH, Taegtmeyer H (2004) Intramyocardial lipid accumulation in the failing human heart resembles the lipotoxic rat heart. Faseb J 18:1692–1700PubMed Sharma S, Adrogue JV, Golfman L, Uray I, Lemm J, Youker K, Noon GP, Frazier OH, Taegtmeyer H (2004) Intramyocardial lipid accumulation in the failing human heart resembles the lipotoxic rat heart. Faseb J 18:1692–1700PubMed
74.
go back to reference Kurabayashi M, Tsuchimochi H, Komuro I, Takaku F, Yazaki Y (1988) Molecular cloning and characterization of human cardiac alpha- and beta-form myosin heavy chain complementary DNA clones. Regulation of expression during development and pressure overload in human atrium. J Clin Invest 82:524–531PubMed Kurabayashi M, Tsuchimochi H, Komuro I, Takaku F, Yazaki Y (1988) Molecular cloning and characterization of human cardiac alpha- and beta-form myosin heavy chain complementary DNA clones. Regulation of expression during development and pressure overload in human atrium. J Clin Invest 82:524–531PubMed
75.
go back to reference Reiser PJ, Portman MA, Ning XH, Schomisch Moravec C (2001) Human cardiac myosin heavy chain isoforms in fetal and failing adult atria and ventricles. Am J Physiol Heart Circ Physiol 280:H1814–H1820PubMed Reiser PJ, Portman MA, Ning XH, Schomisch Moravec C (2001) Human cardiac myosin heavy chain isoforms in fetal and failing adult atria and ventricles. Am J Physiol Heart Circ Physiol 280:H1814–H1820PubMed
76.
go back to reference Nakao K, Minobe W, Roden R, Bristow MR, Leinwand LA (1997) Myosin heavy chain gene expression in human heart failure. J Clin Invest 100:2362–2370PubMedCrossRef Nakao K, Minobe W, Roden R, Bristow MR, Leinwand LA (1997) Myosin heavy chain gene expression in human heart failure. J Clin Invest 100:2362–2370PubMedCrossRef
77.
go back to reference Kinugawa K, Minobe W, Wood W, Ridgway E, Baxter J, Ribeiro R, Tawadrous M, Lowes B, Long C, Bristow M (2001) Signaling pathways responsible for fetal gene induction in the failing human heart: evidence for altered thyroid hormone receptor gene expression. Circulation 103:1089–1094PubMed Kinugawa K, Minobe W, Wood W, Ridgway E, Baxter J, Ribeiro R, Tawadrous M, Lowes B, Long C, Bristow M (2001) Signaling pathways responsible for fetal gene induction in the failing human heart: evidence for altered thyroid hormone receptor gene expression. Circulation 103:1089–1094PubMed
78.
go back to reference Pantos C, Malliopoulou V, Varonos DD, Cokkinos DV (2004) Thyroid hormone and phenotypes of cardioprotection. Basic Res Cardiol 99:101–120PubMed Pantos C, Malliopoulou V, Varonos DD, Cokkinos DV (2004) Thyroid hormone and phenotypes of cardioprotection. Basic Res Cardiol 99:101–120PubMed
79.
go back to reference Pantos C, Mourouzis I, Saranteas T, Paizis I, Xinaris C, Malliopoulou V, Cokkinos DV (2005) Thyroid hormone receptors alpha1 and beta1 are downregulated in the post-infarcted rat heart: consequences on the response to ischaemia-reperfusion. Basic Res Cardiol 100:422–432PubMed Pantos C, Mourouzis I, Saranteas T, Paizis I, Xinaris C, Malliopoulou V, Cokkinos DV (2005) Thyroid hormone receptors alpha1 and beta1 are downregulated in the post-infarcted rat heart: consequences on the response to ischaemia-reperfusion. Basic Res Cardiol 100:422–432PubMed
80.
go back to reference Narula J, Haider N, Virmani R, DiSalvo TG, Kolodgie FD, Hajjar RJ, Schmidt U, Semigran MJ, Dec GW, Khaw BA (1996) Apoptosis in myocytes in end-stage heart failure. N Engl J Med 335:1182–1189PubMed Narula J, Haider N, Virmani R, DiSalvo TG, Kolodgie FD, Hajjar RJ, Schmidt U, Semigran MJ, Dec GW, Khaw BA (1996) Apoptosis in myocytes in end-stage heart failure. N Engl J Med 335:1182–1189PubMed
81.
go back to reference Kostin S, Pool L, Elsasser A, Hein S, Drexler HC, Arnon E, Hayakawa Y, Zimmermann R, Bauer E, Klovekorn WP, Schaper J (2003) Myocytes die by multiple mechanisms in failing human hearts. Circ Res 92:715–724PubMed Kostin S, Pool L, Elsasser A, Hein S, Drexler HC, Arnon E, Hayakawa Y, Zimmermann R, Bauer E, Klovekorn WP, Schaper J (2003) Myocytes die by multiple mechanisms in failing human hearts. Circ Res 92:715–724PubMed
82.
go back to reference Heusch G, Schulz R, Rahimtoola SH (2005) Myocardial hibernation: a delicate balance. Am J Physiol Heart Circ Physiol 288:H984–H999PubMed Heusch G, Schulz R, Rahimtoola SH (2005) Myocardial hibernation: a delicate balance. Am J Physiol Heart Circ Physiol 288:H984–H999PubMed
83.
go back to reference Gottlieb RA (1999) Mitochondria: ignition chamber for apoptosis. Mol Genet Metab 68:227–231PubMed Gottlieb RA (1999) Mitochondria: ignition chamber for apoptosis. Mol Genet Metab 68:227–231PubMed
84.
85.
go back to reference Depre C, Vatner SF (2005) Mechanisms of cell survival in myocardial hibernation. Trends Cardiovasc Med 15:101–110PubMed Depre C, Vatner SF (2005) Mechanisms of cell survival in myocardial hibernation. Trends Cardiovasc Med 15:101–110PubMed
86.
go back to reference Gradinac S, Coleman GM, Taegtmeyer H, Sweeney MS, Frazier OH (1989) Improved cardiac function with glucose-insulin-potassium after aortocoronary bypass grafting. Ann Thorac Surg 48:484–489PubMed Gradinac S, Coleman GM, Taegtmeyer H, Sweeney MS, Frazier OH (1989) Improved cardiac function with glucose-insulin-potassium after aortocoronary bypass grafting. Ann Thorac Surg 48:484–489PubMed
87.
go back to reference Lazar HL (1997) Enhanced preservation of acutely ischemic myocardium and improved clinical outcomes using glucose-insulin-potassium (GIK) solutions. Am J Cardiol 80:90A–93APubMed Lazar HL (1997) Enhanced preservation of acutely ischemic myocardium and improved clinical outcomes using glucose-insulin-potassium (GIK) solutions. Am J Cardiol 80:90A–93APubMed
88.
go back to reference Van den Berghe G, Wouters P, Weekers F, Verwaest C, Bruyninckx F, Schetz M, Vlasselaers D, Ferdinande P, Lauwers P, Bouillon R (2001) Intensive insulin therapy in critically ill patients. N Engl J Med 345:1359–1367PubMed Van den Berghe G, Wouters P, Weekers F, Verwaest C, Bruyninckx F, Schetz M, Vlasselaers D, Ferdinande P, Lauwers P, Bouillon R (2001) Intensive insulin therapy in critically ill patients. N Engl J Med 345:1359–1367PubMed
89.
go back to reference Van den Berghe G, Wilmer A, Hermans G, Meersseman W, Wouters PJ, Milants I, Van Wijngaerden E, Bobbaers H, Bouillon R (2006) Intensive insulin therapy in the medical ICU. N Engl J Med 354:449–461PubMed Van den Berghe G, Wilmer A, Hermans G, Meersseman W, Wouters PJ, Milants I, Van Wijngaerden E, Bobbaers H, Bouillon R (2006) Intensive insulin therapy in the medical ICU. N Engl J Med 354:449–461PubMed
90.
go back to reference Ranasinghe AM, Quinn DW, Pagano D, Edwards N, Faroqui M, Graham TR, Keogh BE, Mascaro J, Riddington DW, Rooney SJ, Townend JN, Wilson IC, Bonser RS (2006) Glucose-insulin-potassium and tri-iodothyronine individually improve hemodynamic performance and are associated with reduced troponin I release after on-pump coronary artery bypass grafting. Circulation 114:I245–I250PubMed Ranasinghe AM, Quinn DW, Pagano D, Edwards N, Faroqui M, Graham TR, Keogh BE, Mascaro J, Riddington DW, Rooney SJ, Townend JN, Wilson IC, Bonser RS (2006) Glucose-insulin-potassium and tri-iodothyronine individually improve hemodynamic performance and are associated with reduced troponin I release after on-pump coronary artery bypass grafting. Circulation 114:I245–I250PubMed
91.
go back to reference Sack MN, Yellon DM (2003) Insulin therapy as an adjunct to reperfusion after acute coronary ischemia. A proposed direct myocardial cell survival effect independent of metabolic modulation. J Am Coll Cardiol 41:1404–1407PubMed Sack MN, Yellon DM (2003) Insulin therapy as an adjunct to reperfusion after acute coronary ischemia. A proposed direct myocardial cell survival effect independent of metabolic modulation. J Am Coll Cardiol 41:1404–1407PubMed
92.
go back to reference Jonassen AK, Mjos OD, Sack MN (2004) p70s6 kinase is a functional target of insulin activated Akt cell-survival signaling. Biochem Biophys Res Commun 315:160–165PubMed Jonassen AK, Mjos OD, Sack MN (2004) p70s6 kinase is a functional target of insulin activated Akt cell-survival signaling. Biochem Biophys Res Commun 315:160–165PubMed
93.
go back to reference Matsui T, Nagoshi T, Rosenzweig A (2003) Akt and PI 3-kinase signaling in cardiomyocyte hypertrophy and survival. Cell Cycle 2:220–223PubMed Matsui T, Nagoshi T, Rosenzweig A (2003) Akt and PI 3-kinase signaling in cardiomyocyte hypertrophy and survival. Cell Cycle 2:220–223PubMed
94.
go back to reference Matsui T, Li L, Wu J, Cook S, Nagoshi T, Picard M, Liao R, Rosenzweig A (2002) Phenotypic spectrum caused by transgenic overexpression of activated Akt in the heart. J Biol Chem 277:22896–22901PubMed Matsui T, Li L, Wu J, Cook S, Nagoshi T, Picard M, Liao R, Rosenzweig A (2002) Phenotypic spectrum caused by transgenic overexpression of activated Akt in the heart. J Biol Chem 277:22896–22901PubMed
95.
go back to reference Whiteman E, Cho H, Birnbaum M (2002) Role of Akt/protein kinase B in metabolism. Trends Endocrinol Metab 13:444–451PubMed Whiteman E, Cho H, Birnbaum M (2002) Role of Akt/protein kinase B in metabolism. Trends Endocrinol Metab 13:444–451PubMed
96.
go back to reference Gottlob K, Majewski N, Kennedy S, Kandel E, Robey RB, Hay N (2001) Inhibition of early apoptotic events by Akt/PKB is dependent on the first committed step of glycolysis and mitochondrial hexokinase. Genes Dev 15:1406–1418PubMed Gottlob K, Majewski N, Kennedy S, Kandel E, Robey RB, Hay N (2001) Inhibition of early apoptotic events by Akt/PKB is dependent on the first committed step of glycolysis and mitochondrial hexokinase. Genes Dev 15:1406–1418PubMed
97.
go back to reference Majewski N, Nogueira V, Robey RB, Hay N (2004) Akt inhibits apoptosis downstream of BID cleavage via a glucose-dependent mechanism involving mitochondrial hexokinases. Mol Cell Biol 24:730–740PubMed Majewski N, Nogueira V, Robey RB, Hay N (2004) Akt inhibits apoptosis downstream of BID cleavage via a glucose-dependent mechanism involving mitochondrial hexokinases. Mol Cell Biol 24:730–740PubMed
98.
go back to reference Cook SA, Matsui T, Li L, Rosenzweig A (2002) Transcriptional effects of chronic Akt activation in the heart. J Biol Chem epub ahead of print Cook SA, Matsui T, Li L, Rosenzweig A (2002) Transcriptional effects of chronic Akt activation in the heart. J Biol Chem epub ahead of print
99.
go back to reference Huss JM, Kelly DP (2005) Mitochondrial energy metabolism in heart failure: a question of balance. J Clin Invest 115:547–555PubMed Huss JM, Kelly DP (2005) Mitochondrial energy metabolism in heart failure: a question of balance. J Clin Invest 115:547–555PubMed
100.
go back to reference Lewandowski ED, Kudej RK, White LT, O’Donnell JM, Vatner SF (2002) Mitochondrial preference for short chain fatty acid oxidation during coronary artery constriction. Circulation 105:367–372PubMed Lewandowski ED, Kudej RK, White LT, O’Donnell JM, Vatner SF (2002) Mitochondrial preference for short chain fatty acid oxidation during coronary artery constriction. Circulation 105:367–372PubMed
101.
go back to reference Dewald O, Sharma S, Adrogue J, Salazar R, Duerr GD, Crapo JD, Entman ML, Taegtmeyer H (2005) Downregulation of peroxisome proliferator-activated receptor-alpha gene expression in a mouse model of ischemic cardiomyopathy is dependent on reactive oxygen species and prevents lipotoxicity. Circulation 112:407–415PubMed Dewald O, Sharma S, Adrogue J, Salazar R, Duerr GD, Crapo JD, Entman ML, Taegtmeyer H (2005) Downregulation of peroxisome proliferator-activated receptor-alpha gene expression in a mouse model of ischemic cardiomyopathy is dependent on reactive oxygen species and prevents lipotoxicity. Circulation 112:407–415PubMed
102.
go back to reference Klionsky DJ, Emr SD (2000) Autophagy as a regulated pathway of cellular degradation. Science 290:1717–1721PubMed Klionsky DJ, Emr SD (2000) Autophagy as a regulated pathway of cellular degradation. Science 290:1717–1721PubMed
103.
go back to reference Hamacher-Brady A, Brady NR, Gottlieb RA (2006) Enhancing macroautophagy protects against ischemia/reperfusion injury in cardiac myocytes. J Biol Chem 281:29776–29787PubMed Hamacher-Brady A, Brady NR, Gottlieb RA (2006) Enhancing macroautophagy protects against ischemia/reperfusion injury in cardiac myocytes. J Biol Chem 281:29776–29787PubMed
104.
go back to reference Kuma A, Hatano M, Matsui M, Yamamoto A, Nakaya H, Yoshimori T, Ohsumi Y, Tokuhisa T, Mizushima N (2004) The role of autophagy during the early neonatal starvation period. Nature 432:1032–1036PubMed Kuma A, Hatano M, Matsui M, Yamamoto A, Nakaya H, Yoshimori T, Ohsumi Y, Tokuhisa T, Mizushima N (2004) The role of autophagy during the early neonatal starvation period. Nature 432:1032–1036PubMed
105.
go back to reference Mizushima N, Yamamoto A, Matsui M, Yoshimori T, Ohsumi Y (2004) In vivo analysis of autophagy in response to nutrient starvation using transgenic mice expressing a fluorescent autophagosome marker. Mol Biol Cell 15:1101–1111PubMed Mizushima N, Yamamoto A, Matsui M, Yoshimori T, Ohsumi Y (2004) In vivo analysis of autophagy in response to nutrient starvation using transgenic mice expressing a fluorescent autophagosome marker. Mol Biol Cell 15:1101–1111PubMed
106.
go back to reference Yan L, Vatner DE, Kim SJ, Ge H, Masurekar M, Massover WH, Yang G, Matsui Y, Sadoshima J, Vatner SF (2005) Autophagy in chronically ischemic myocardium. Proc Natl Acad Sci U S A 102:13807–13812PubMed Yan L, Vatner DE, Kim SJ, Ge H, Masurekar M, Massover WH, Yang G, Matsui Y, Sadoshima J, Vatner SF (2005) Autophagy in chronically ischemic myocardium. Proc Natl Acad Sci U S A 102:13807–13812PubMed
107.
go back to reference Lockshin RA, Zakeri Z (2004) Apoptosis, autophagy, and more. Int J Biochem Cell Biol 36:2405–2419PubMed Lockshin RA, Zakeri Z (2004) Apoptosis, autophagy, and more. Int J Biochem Cell Biol 36:2405–2419PubMed
108.
go back to reference Knaapen MW, Davies MJ, De Bie M, Haven AJ, Martinet W, Kockx MM (2001) Apoptotic versus autophagic cell death in heart failure. Cardiovasc Res 51:304–312PubMed Knaapen MW, Davies MJ, De Bie M, Haven AJ, Martinet W, Kockx MM (2001) Apoptotic versus autophagic cell death in heart failure. Cardiovasc Res 51:304–312PubMed
109.
go back to reference Mistiaen WP, Somers P, Knaapen MW, Kockx MM (2006) Autophagy as mechanism for cell death in degenerative aortic valve disease. Autophagy 2:221–223PubMed Mistiaen WP, Somers P, Knaapen MW, Kockx MM (2006) Autophagy as mechanism for cell death in degenerative aortic valve disease. Autophagy 2:221–223PubMed
110.
go back to reference Saijo M, Takemura G, Koda M, Okada H, Miyata S, Ohno Y, Kawasaki M, Tsuchiya K, Nishigaki K, Minatoguchi S, Goto K, Fujiwara H (2004) Cardiomyopathy with prominent autophagic degeneration, accompanied by an elevated plasma brain natriuretic peptide level despite the lack of overt heart failure. Intern Med 43:700–703PubMed Saijo M, Takemura G, Koda M, Okada H, Miyata S, Ohno Y, Kawasaki M, Tsuchiya K, Nishigaki K, Minatoguchi S, Goto K, Fujiwara H (2004) Cardiomyopathy with prominent autophagic degeneration, accompanied by an elevated plasma brain natriuretic peptide level despite the lack of overt heart failure. Intern Med 43:700–703PubMed
111.
go back to reference Belke DD, Betuing S, Tuttle MJ, Graveleau C, Young ME, Pham M, Zhang D, Cooksey RC, McClain DA, Litwin SE, Taegtmeyer H, Severson D, Kahn CR, Abel ED (2002) Insulin signaling coordinately regulates cardiac size, metabolism, and contractile protein isoform expression. J Clin Invest 109:629–639PubMed Belke DD, Betuing S, Tuttle MJ, Graveleau C, Young ME, Pham M, Zhang D, Cooksey RC, McClain DA, Litwin SE, Taegtmeyer H, Severson D, Kahn CR, Abel ED (2002) Insulin signaling coordinately regulates cardiac size, metabolism, and contractile protein isoform expression. J Clin Invest 109:629–639PubMed
112.
go back to reference Frazier OH, Benedict CR, Radovancevic B, Bick RJ, Capek P, Springer WE, Macris MP, Delgado R, Buja LM (1996) Improved left ventricular function after chronic left ventricular unloading. Ann Thorac Surg 62:1–8 Frazier OH, Benedict CR, Radovancevic B, Bick RJ, Capek P, Springer WE, Macris MP, Delgado R, Buja LM (1996) Improved left ventricular function after chronic left ventricular unloading. Ann Thorac Surg 62:1–8
113.
go back to reference Muller J, Wallukat G, Weng YG, Dandel M, Spiegelsberger S, Semrau S, Brandes K, Theodoridis V, Loebe M, Meyer R, Hetzer R (1997) Weaning from mechanical cardiac support in patients with idiopathic dilated cardiomyopathy. Circulation 96:542–549PubMed Muller J, Wallukat G, Weng YG, Dandel M, Spiegelsberger S, Semrau S, Brandes K, Theodoridis V, Loebe M, Meyer R, Hetzer R (1997) Weaning from mechanical cardiac support in patients with idiopathic dilated cardiomyopathy. Circulation 96:542–549PubMed
114.
go back to reference Barton PJ, Felkin LE, Birks EJ, Cullen ME, Banner NR, Grindle S, Hall JL, Miller LW, Yacoub MH (2005) Myocardial insulin-like growth factor-I gene expression during recovery from heart failure after combined left ventricular assist device and clenbuterol therapy. Circulation 112:I46–I50PubMed Barton PJ, Felkin LE, Birks EJ, Cullen ME, Banner NR, Grindle S, Hall JL, Miller LW, Yacoub MH (2005) Myocardial insulin-like growth factor-I gene expression during recovery from heart failure after combined left ventricular assist device and clenbuterol therapy. Circulation 112:I46–I50PubMed
115.
go back to reference Birks EJ, Tansley PD, Hardy J, George RS, Bowles CT, Burke M, Banner NR, Khaghani A, Yacoub MH (2006) Left ventricular assist device and drug therapy for the reversal of heart failure. N Engl J Med 355:1873–1884PubMed Birks EJ, Tansley PD, Hardy J, George RS, Bowles CT, Burke M, Banner NR, Khaghani A, Yacoub MH (2006) Left ventricular assist device and drug therapy for the reversal of heart failure. N Engl J Med 355:1873–1884PubMed
116.
go back to reference Razeghi P, Myers TJ, Frazier OH, Taegtmeyer H (2002) Reverse remodeling of the failing human heart with mechanical unloading. Emerging concepts and unanswered questions. Cardiology 98:167–174PubMed Razeghi P, Myers TJ, Frazier OH, Taegtmeyer H (2002) Reverse remodeling of the failing human heart with mechanical unloading. Emerging concepts and unanswered questions. Cardiology 98:167–174PubMed
117.
go back to reference Razeghi P, Taegtmeyer H (2006) Hypertrophy and atrophy of the heart: the other side of remodeling. Ann N Y Acad Sci 1080:110–119PubMed Razeghi P, Taegtmeyer H (2006) Hypertrophy and atrophy of the heart: the other side of remodeling. Ann N Y Acad Sci 1080:110–119PubMed
118.
go back to reference Sharma S, Ying J, Razeghi P, Stepkowski S, Taegtmeyer H (2006) Atrophic remodeling of the transplanted rat heart. Cardiology 105:128–136PubMed Sharma S, Ying J, Razeghi P, Stepkowski S, Taegtmeyer H (2006) Atrophic remodeling of the transplanted rat heart. Cardiology 105:128–136PubMed
119.
go back to reference Razeghi P, Young ME, Ying J, Depre C, Uray IP, Kolesar J, Shipley GL, Moravec CS, Davies PJ, Frazier OH, Taegtmeyer H (2002) Downregulation of metabolic gene expression in failing human heart before and after mechanical unloading. Cardiology 97:203–209PubMed Razeghi P, Young ME, Ying J, Depre C, Uray IP, Kolesar J, Shipley GL, Moravec CS, Davies PJ, Frazier OH, Taegtmeyer H (2002) Downregulation of metabolic gene expression in failing human heart before and after mechanical unloading. Cardiology 97:203–209PubMed
120.
go back to reference Razeghi P, Sharma S, Ying J, Li YP, Stepkowski S, Reid MB, Taegtmeyer H (2003) Atrophic remodeling of the heart in vivo simultaneously activates pathways of protein synthesis and degradation. Circulation 108:2536–2541PubMed Razeghi P, Sharma S, Ying J, Li YP, Stepkowski S, Reid MB, Taegtmeyer H (2003) Atrophic remodeling of the heart in vivo simultaneously activates pathways of protein synthesis and degradation. Circulation 108:2536–2541PubMed
121.
go back to reference Schaffer JE (2003) Lipotoxicity: when tissues overeat. Curr Opin Lipidol 14:281–287PubMed Schaffer JE (2003) Lipotoxicity: when tissues overeat. Curr Opin Lipidol 14:281–287PubMed
122.
go back to reference Sack MN, Rader TA, Park S, Bastin J, McCune SA, Kelly DP (1996) Fatty acid oxidation enzyme gene expression is downregulated in the failing heart. Circulation 94:2837–2842PubMed Sack MN, Rader TA, Park S, Bastin J, McCune SA, Kelly DP (1996) Fatty acid oxidation enzyme gene expression is downregulated in the failing heart. Circulation 94:2837–2842PubMed
123.
go back to reference Osorio JC, Stanley WC, Linke A, Castellari M, Diep QN, Panchal AR, Hintze TH, Lopaschuk GD, Recchia FA (2002) Impaired myocardial fatty acid oxidation and reduced protein expression of retinoid X receptor-alpha in pacing-induced heart failure. Circulation 106:606–612PubMed Osorio JC, Stanley WC, Linke A, Castellari M, Diep QN, Panchal AR, Hintze TH, Lopaschuk GD, Recchia FA (2002) Impaired myocardial fatty acid oxidation and reduced protein expression of retinoid X receptor-alpha in pacing-induced heart failure. Circulation 106:606–612PubMed
124.
go back to reference Davila-Roman VG, Vedala G, Herrero P, de las Fuentes L, Rogers JG, Kelly DP, Gropler RJ (2002) Altered myocardial fatty acid and glucose metabolism in idiopathic dilated cardiomyopathy. J Am Coll Cardiol 40:271–277PubMed Davila-Roman VG, Vedala G, Herrero P, de las Fuentes L, Rogers JG, Kelly DP, Gropler RJ (2002) Altered myocardial fatty acid and glucose metabolism in idiopathic dilated cardiomyopathy. J Am Coll Cardiol 40:271–277PubMed
125.
go back to reference Taylor M, Wallhaus T, DeGrado T, Russell D, Stanko P, Nickles R, Stone C (2001) An evaluation of myocardial fatty acid and glucose uptake using PET with [18F]fluoro–6-thia-heptadecanoic acid. J Nucl Med 42:55–62PubMed Taylor M, Wallhaus T, DeGrado T, Russell D, Stanko P, Nickles R, Stone C (2001) An evaluation of myocardial fatty acid and glucose uptake using PET with [18F]fluoro–6-thia-heptadecanoic acid. J Nucl Med 42:55–62PubMed
126.
go back to reference Wallhaus TR, Taylor M, DeGrado TR, Russel TC, Stanko P, Nickles RJ, Stone CK (2001) Myocardial free fatty acid and glucose use after carvedilol treatment in patients with congestive heart failure. Circulation 103:2441–2446PubMed Wallhaus TR, Taylor M, DeGrado TR, Russel TC, Stanko P, Nickles RJ, Stone CK (2001) Myocardial free fatty acid and glucose use after carvedilol treatment in patients with congestive heart failure. Circulation 103:2441–2446PubMed
127.
go back to reference Taegtmeyer H (2002) Switching metabolic genes to build a better heart. Circulation 106:2043–2045PubMed Taegtmeyer H (2002) Switching metabolic genes to build a better heart. Circulation 106:2043–2045PubMed
128.
go back to reference Sambandam N, Morabito D, Wagg C, Finck BN, Kelly DP, Lopaschuk GD (2006) Chronic activation of PPARalpha is detrimental to cardiac recovery after ischemia. Am J Physiol Heart Circ Physiol 290:H87–H95PubMed Sambandam N, Morabito D, Wagg C, Finck BN, Kelly DP, Lopaschuk GD (2006) Chronic activation of PPARalpha is detrimental to cardiac recovery after ischemia. Am J Physiol Heart Circ Physiol 290:H87–H95PubMed
129.
go back to reference Eichhorn EJ, Bristow MR (1996) Medical therapy can improve the biological properties of the chronically failing heart. A new era in the treatment of heart failure. Circulation 94:2285–2296PubMed Eichhorn EJ, Bristow MR (1996) Medical therapy can improve the biological properties of the chronically failing heart. A new era in the treatment of heart failure. Circulation 94:2285–2296PubMed
130.
go back to reference Katz AM (2001) Heart failure in 2001: a prophecy revisited. Am J Cardiol 87:1383–1386PubMed Katz AM (2001) Heart failure in 2001: a prophecy revisited. Am J Cardiol 87:1383–1386PubMed
Metadata
Title
Return to the fetal gene program protects the stressed heart: a strong hypothesis
Authors
Mitra Rajabi
Christos Kassiotis
Peter Razeghi
Heinrich Taegtmeyer
Publication date
01-12-2007
Published in
Heart Failure Reviews / Issue 3-4/2007
Print ISSN: 1382-4147
Electronic ISSN: 1573-7322
DOI
https://doi.org/10.1007/s10741-007-9034-1

Other articles of this Issue 3-4/2007

Heart Failure Reviews 3-4/2007 Go to the issue