Skip to main content
Top
Published in: BMC Cardiovascular Disorders 1/2020

Open Access 01-12-2020 | Angiography | Research article

The relationship of lipoprotein-associated phospholipase A2 activity with the seriousness of coronary artery disease

Authors: Hao Zhang, Yang Gao, Dan Wu, Dingguo Zhang

Published in: BMC Cardiovascular Disorders | Issue 1/2020

Login to get access

Abstract

Background

The level of lipoprotein-associated phospholipase A2 (LP-PLA2) in serum is independently correlated to coronary artery diseases (CAD). The aim of the study was to determine whether LP-PLA2 activity is positively associated with the seriousness of CAD.

Methods

Amount to 1056 patients suspected of having CAD underwent coronary angiography (CAG) to determine the seriousness of CAD. According to the amount of diseased coronary branches, the 1056 patients were split into three groups: single-vessel stenosis group, multiple-vessels stenosis group (> or = 2 diseased coronary branches),and control group (no diseased coronary branches). According to CAG results, electrocardiography, cardiac biomarker, and clinical presentation, all patients were split into four groups: acute myocardial infarction (AMI), unstable angina (UA), stable angina (SA), and control groups (excluding CAD). The activity of LP-PLA2 was compared statistically among the subgroups. Receiver operating characteristic analysis was applied to investigate the role of LP-PLA2 in evaluating the presence and seriousness of CAD.

Results

The level of LP-PLA2 increased in line with the number of diseased coronary branches. The levels of LP-PLA2 in the AMI and UA groups were observably higher when compared with the control and SA groups. LP-PLA2 had 75.6% sensitivity and 67.3% specificity for recognizing CAD, and 53.0% sensitivity and 80.3% specificity for recognizing severe coronary artery lesions.

Conclusion

The activity of LP-PLA2 is positively correlated to the seriousness of CAD.
Literature
1.
go back to reference Garcia de Tena J. Inflammation, atherosclerosis, and coronary artery disease. N Engl J Med. 2005;353(4):429–30 author reply 429-430.CrossRef Garcia de Tena J. Inflammation, atherosclerosis, and coronary artery disease. N Engl J Med. 2005;353(4):429–30 author reply 429-430.CrossRef
2.
go back to reference Ridker PM, Hennekens CH, Buring JE, Rifai N. C-reactive protein and other markers of inflammation in the prediction of cardiovascular disease in women. N Engl J Med. 2000;342(12):836–43.CrossRef Ridker PM, Hennekens CH, Buring JE, Rifai N. C-reactive protein and other markers of inflammation in the prediction of cardiovascular disease in women. N Engl J Med. 2000;342(12):836–43.CrossRef
3.
go back to reference Moutzouri E, Tsimihodimos V, Tselepis AD. Inflammatory biomarkers and cardiovascular risk assessment. Current knowledge and future perspectives. Curr Pharm Des. 2013;19(21):3827–40.CrossRef Moutzouri E, Tsimihodimos V, Tselepis AD. Inflammatory biomarkers and cardiovascular risk assessment. Current knowledge and future perspectives. Curr Pharm Des. 2013;19(21):3827–40.CrossRef
4.
go back to reference Macphee CH, Nelson J, Zalewski A. Role of lipoprotein-associated phospholipase A2 in atherosclerosis and its potential as a therapeutic target. Curr Opin Pharmacol. 2006;6(2):154–61.CrossRef Macphee CH, Nelson J, Zalewski A. Role of lipoprotein-associated phospholipase A2 in atherosclerosis and its potential as a therapeutic target. Curr Opin Pharmacol. 2006;6(2):154–61.CrossRef
5.
go back to reference Zalewski A, Macphee C. Role of lipoprotein-associated phospholipase A2 in atherosclerosis: biology, epidemiology, and possible therapeutic target. Arterioscler Thromb Vasc Biol. 2005;25(5):923–31.CrossRef Zalewski A, Macphee C. Role of lipoprotein-associated phospholipase A2 in atherosclerosis: biology, epidemiology, and possible therapeutic target. Arterioscler Thromb Vasc Biol. 2005;25(5):923–31.CrossRef
6.
go back to reference Tousoulis D, Papageorgiou N, Androulakis E, Stefanadis C. Lp-PLA2--a novel marker of atherosclerosis: to treat or not to treat? Int J Cardiol. 2013;165(2):213–6.CrossRef Tousoulis D, Papageorgiou N, Androulakis E, Stefanadis C. Lp-PLA2--a novel marker of atherosclerosis: to treat or not to treat? Int J Cardiol. 2013;165(2):213–6.CrossRef
7.
go back to reference Ballantyne CM, Hoogeveen RC, Bang H, Coresh J, Folsom AR, Heiss G, et al. Lipoprotein-associated phospholipase A2, high-sensitivity C-reactive protein, and risk for incident coronary heart disease in middle-aged men and women in the atherosclerosis risk in communities (ARIC) study. Circulation. 2004;109(7):837–42.CrossRef Ballantyne CM, Hoogeveen RC, Bang H, Coresh J, Folsom AR, Heiss G, et al. Lipoprotein-associated phospholipase A2, high-sensitivity C-reactive protein, and risk for incident coronary heart disease in middle-aged men and women in the atherosclerosis risk in communities (ARIC) study. Circulation. 2004;109(7):837–42.CrossRef
8.
go back to reference Lind L, Simon T, Johansson L, Kotti S, Hansen T, Machecourt J, Ninio E, et al. Circulating levels of secretory- and lipoprotein-associated phospholipase A2 activities: relation to atherosclerotic plaques and future all-cause mortality. Eur Heart J. 2012;33(23):2946–54.CrossRef Lind L, Simon T, Johansson L, Kotti S, Hansen T, Machecourt J, Ninio E, et al. Circulating levels of secretory- and lipoprotein-associated phospholipase A2 activities: relation to atherosclerotic plaques and future all-cause mortality. Eur Heart J. 2012;33(23):2946–54.CrossRef
9.
go back to reference Katan M, Moon YP, Paik MC, Wolfert RL, Sacco RL, Elkind MS. Lipoprotein-associated phospholipase A2 is associated with atherosclerotic stroke risk: the northern Manhattan study. PLoS One. 2014;9(1):e83393.CrossRef Katan M, Moon YP, Paik MC, Wolfert RL, Sacco RL, Elkind MS. Lipoprotein-associated phospholipase A2 is associated with atherosclerotic stroke risk: the northern Manhattan study. PLoS One. 2014;9(1):e83393.CrossRef
10.
go back to reference Investigators S, White HD, Held C, Stewart R, Tarka E, Brown R, et al. Darapladib for preventing ischemic events in stable coronary heart disease. N Engl J Med. 2014;370(18):1702–11.CrossRef Investigators S, White HD, Held C, Stewart R, Tarka E, Brown R, et al. Darapladib for preventing ischemic events in stable coronary heart disease. N Engl J Med. 2014;370(18):1702–11.CrossRef
11.
go back to reference O'Donoghue ML, Braunwald E, White HD, Lukas MA, Tarka E, Steg PG, et al. Effect of darapladib on major coronary events after an acute coronary syndrome: the SOLID-TIMI 52 randomized clinical trial. Jama. 2014;312(10):1006–15..CrossRef O'Donoghue ML, Braunwald E, White HD, Lukas MA, Tarka E, Steg PG, et al. Effect of darapladib on major coronary events after an acute coronary syndrome: the SOLID-TIMI 52 randomized clinical trial. Jama. 2014;312(10):1006–15..CrossRef
12.
go back to reference Silber S. ESC guidelines 2019 on chronic coronary syndrome (CCS, previously "stable coronary artery disease") : What is new? What is particularly important? Herz. 2019;44(8):676–83.CrossRef Silber S. ESC guidelines 2019 on chronic coronary syndrome (CCS, previously "stable coronary artery disease") : What is new? What is particularly important? Herz. 2019;44(8):676–83.CrossRef
13.
go back to reference Cai A, Li G, Chen J, Li X, Li L, Zhou Y. Increased serum level of Lp-PLA2 is independently associated with the severity of coronary artery diseases: a cross-sectional study of Chinese population. BMC Cardiovasc Disord. 2015;15(1):14.CrossRef Cai A, Li G, Chen J, Li X, Li L, Zhou Y. Increased serum level of Lp-PLA2 is independently associated with the severity of coronary artery diseases: a cross-sectional study of Chinese population. BMC Cardiovasc Disord. 2015;15(1):14.CrossRef
14.
go back to reference Wilensky RL, Macphee CH. Lipoprotein-associated phospholipase a (2) and atherosclerosis. Curr Opin Lipidol. 2009;20(5):415–20.CrossRef Wilensky RL, Macphee CH. Lipoprotein-associated phospholipase a (2) and atherosclerosis. Curr Opin Lipidol. 2009;20(5):415–20.CrossRef
15.
go back to reference Cai A, Zheng D, Qiu R, Mai W, Zhou Y. Lipoprotein-associated phospholipase A2 (Lp-PLA (2)): a novel and promising biomarker for cardiovascular risks assessment. Dis Markers. 2013;34(5):323–31.CrossRef Cai A, Zheng D, Qiu R, Mai W, Zhou Y. Lipoprotein-associated phospholipase A2 (Lp-PLA (2)): a novel and promising biomarker for cardiovascular risks assessment. Dis Markers. 2013;34(5):323–31.CrossRef
16.
go back to reference Mohler ER 3rd, Ballantyne CM, Davidson MH, Hanefeld M, Ruilope LM, et al. The effect of darapladib on plasma lipoprotein-associated phospholipase A2 activity and cardiovascular biomarkers in patients with stable coronary heart disease or coronary heart disease risk equivalent: the results of a multicenter, randomized, double-blind, placebo-controlled study. J Am Coll Cardiol. 2008;51(17):1632–41.CrossRef Mohler ER 3rd, Ballantyne CM, Davidson MH, Hanefeld M, Ruilope LM, et al. The effect of darapladib on plasma lipoprotein-associated phospholipase A2 activity and cardiovascular biomarkers in patients with stable coronary heart disease or coronary heart disease risk equivalent: the results of a multicenter, randomized, double-blind, placebo-controlled study. J Am Coll Cardiol. 2008;51(17):1632–41.CrossRef
17.
go back to reference Daida H, Iwase T, Yagi S, Ando H, Nakajima H. Effect of darapladib on plasma lipoprotein-associated phospholipase A2 activity in Japanese dyslipidemic patients, with exploratory analysis of a PLA2G7 gene polymorphism of Val279Phe. Circ J. 2013;77(6):1518–25.CrossRef Daida H, Iwase T, Yagi S, Ando H, Nakajima H. Effect of darapladib on plasma lipoprotein-associated phospholipase A2 activity in Japanese dyslipidemic patients, with exploratory analysis of a PLA2G7 gene polymorphism of Val279Phe. Circ J. 2013;77(6):1518–25.CrossRef
18.
go back to reference Lp PLASC, Thompson A, Gao P, Orfei L, Watson S, Di Angelantonio E, et al. Lipoprotein-associated phospholipase a (2) and risk of coronary disease, stroke, and mortality: collaborative analysis of 32 prospective studies. Lancet. 2010;375(9725):1536–44.CrossRef Lp PLASC, Thompson A, Gao P, Orfei L, Watson S, Di Angelantonio E, et al. Lipoprotein-associated phospholipase a (2) and risk of coronary disease, stroke, and mortality: collaborative analysis of 32 prospective studies. Lancet. 2010;375(9725):1536–44.CrossRef
19.
go back to reference May HT, Horne BD, Anderson JL, Wolfert RL, Muhlestein JB, Renlund DG, Clarke JL, Kolek MJ, Bair TL, Pearson RR, et al. Lipoprotein-associated phospholipase A2 independently predicts the angiographic diagnosis of coronary artery disease and coronary death. Am Heart J. 2006;152(5):997–1003.CrossRef May HT, Horne BD, Anderson JL, Wolfert RL, Muhlestein JB, Renlund DG, Clarke JL, Kolek MJ, Bair TL, Pearson RR, et al. Lipoprotein-associated phospholipase A2 independently predicts the angiographic diagnosis of coronary artery disease and coronary death. Am Heart J. 2006;152(5):997–1003.CrossRef
20.
go back to reference Lavi S, Mcconnell JP, Rihal CS, Prasad A, Mathew V, Lerman LO, et al. Local production of lipoprotein-associated phospholipase A2 and Lysophosphatidylcholine in the coronary circulation association with early coronary atherosclerosis and endothelial dysfunction in humans. Circulation. 2007;115(21):2715–21.CrossRef Lavi S, Mcconnell JP, Rihal CS, Prasad A, Mathew V, Lerman LO, et al. Local production of lipoprotein-associated phospholipase A2 and Lysophosphatidylcholine in the coronary circulation association with early coronary atherosclerosis and endothelial dysfunction in humans. Circulation. 2007;115(21):2715–21.CrossRef
21.
go back to reference Iwase M, Sonoki K, Sasaki N, Ohdo S, Higuchi S, Hattori H, et al. Lysophosphatidylcholine contents in plasma LDL in patients with type 2 diabetes mellitus: relation with lipoprotein-associated phospholipase A2 and effects of simvastatin treatment. Atherosclerosis. 2008;196(2):931–6.CrossRef Iwase M, Sonoki K, Sasaki N, Ohdo S, Higuchi S, Hattori H, et al. Lysophosphatidylcholine contents in plasma LDL in patients with type 2 diabetes mellitus: relation with lipoprotein-associated phospholipase A2 and effects of simvastatin treatment. Atherosclerosis. 2008;196(2):931–6.CrossRef
22.
go back to reference Berger JS, Ballantyne CM, Davidson MH, Johnson JL, Tarka EA, Lawrence D, et al. Peripheral artery disease, biomarkers, and darapladib. Am Heart J. 2011;161(5):972–8.CrossRef Berger JS, Ballantyne CM, Davidson MH, Johnson JL, Tarka EA, Lawrence D, et al. Peripheral artery disease, biomarkers, and darapladib. Am Heart J. 2011;161(5):972–8.CrossRef
23.
go back to reference Buszman P. Darapladib for preventing ischemic events in stable coronary heart disease — NEJM. New Eng J Med. 2014;370(18):1702–11.CrossRef Buszman P. Darapladib for preventing ischemic events in stable coronary heart disease — NEJM. New Eng J Med. 2014;370(18):1702–11.CrossRef
24.
go back to reference Blankenberg S, Stengel D, Rupprecht HJ, Bickel C, Meyer J, Cambien F, et al. Plasma PAF-acetylhydrolase in patients with coronary artery disease results of a cross-sectional analysis. J Lipid Res. 2003;44(7):1381–6.CrossRef Blankenberg S, Stengel D, Rupprecht HJ, Bickel C, Meyer J, Cambien F, et al. Plasma PAF-acetylhydrolase in patients with coronary artery disease results of a cross-sectional analysis. J Lipid Res. 2003;44(7):1381–6.CrossRef
Metadata
Title
The relationship of lipoprotein-associated phospholipase A2 activity with the seriousness of coronary artery disease
Authors
Hao Zhang
Yang Gao
Dan Wu
Dingguo Zhang
Publication date
01-12-2020
Publisher
BioMed Central
Published in
BMC Cardiovascular Disorders / Issue 1/2020
Electronic ISSN: 1471-2261
DOI
https://doi.org/10.1186/s12872-020-01580-4

Other articles of this Issue 1/2020

BMC Cardiovascular Disorders 1/2020 Go to the issue