Skip to main content
Top
Published in: BMC Cardiovascular Disorders 1/2020

Open Access 01-12-2020 | Iron Deficiency | Research article

Total iron binding capacity (TIBC) is a potential biomarker of left ventricular remodelling for patients with iron deficiency anaemia

Authors: Yan Chen, Jing Wan, Haidan Xia, Ya Li, Yufeng Xu, Haiyan Lin, Hassah Iftikhar

Published in: BMC Cardiovascular Disorders | Issue 1/2020

Login to get access

Abstract

Background

Preclinical studies indicate iron deficiency (ID) plays an important role in cardiac remodelling. However, the relationship between ID and cardiac remodelling remains unknown in clinical setting. This retrospective study aims to identify a potential biomarker for the myocardial remodelling in patients with ID. Due to limited patients with ID are identified without iron deficiency anaemia (IDA), we analyse the relationship of total iron binding capacity (TIBC) and the left ventricular mass index (LVMI) in patients with iron deficiency anaemia.

Methods

A total of 82 patients with IDA exhibiting the diagnostic criteria for IDA were enrolled in the study. Among the patients, 65 had reported LVMI values. Subsequently, these patients were divided into two groups according to abnormal LVMI (> 115 g/m2 in men and > 95 g/m2 in women). Linear bivariate analysis was performed to detect the associations of haemoglobin or TIBC with clinical and echocardiographic characteristics. Simple linear regression analysis was used to evaluate the correlation between LVMI and the parameters of IDA, while multivariable linear analysis was used to assess the association of LVMI with age, TIBC and haemoglobin. Logistic regression analysis was utilized to determine the relationship of LV remodelling with anaemia severity and TIBC.

Results

As compared with control group, the levels of TIBC in abnormal LVMI group are increased. Using log transformed LVMI as the dependent variable, simultaneously introducing age, TIBC, and haemoglobin into the simple linear regression or multivariable linear regression analysis confirmed the positive association among these factors. Bivariate correlation analysis reveals the irrelevance between haemoglobin and TIBC. In logistic regression analysis, TIBC is associated with the risk of LV remodelling.

Conclusions

Results of study indicate that TIBC exhibit an explicit association with LVMI in patients with iron deficiency anaemia. Logistic analysis further confirms the contribution of TIBC to abnormal LVMI incidence among this population with IDA.
Literature
1.
go back to reference McLean E, Cogswell M, Egli I, Wojdyla D, de Benoist B. Worldwide prevalence of anaemia, WHO vitamin and mineral nutrition information system, 1993-2005. Public Health Nutr. 2009;12(4):444–54.CrossRef McLean E, Cogswell M, Egli I, Wojdyla D, de Benoist B. Worldwide prevalence of anaemia, WHO vitamin and mineral nutrition information system, 1993-2005. Public Health Nutr. 2009;12(4):444–54.CrossRef
2.
go back to reference Camaschella C. Iron-deficiency anemia. N Engl J Med. 2015;372(19):1832–43.CrossRef Camaschella C. Iron-deficiency anemia. N Engl J Med. 2015;372(19):1832–43.CrossRef
3.
go back to reference Zhou Q, Shen J, Liu Y, Luo R, Tan B, Li G. Assessment of left ventricular systolic function in patients with iron deficiency anemia by three-dimensional speckle-tracking echocardiography. Anatol J Cardiol. 2017;18(3):194–9.PubMedPubMedCentral Zhou Q, Shen J, Liu Y, Luo R, Tan B, Li G. Assessment of left ventricular systolic function in patients with iron deficiency anemia by three-dimensional speckle-tracking echocardiography. Anatol J Cardiol. 2017;18(3):194–9.PubMedPubMedCentral
4.
go back to reference Voskaridou E, Christoulas D, Terpos E. Sickle-cell disease and the heart: review of the current literature. Br J Haematol. 2012;157(6):664–73.CrossRef Voskaridou E, Christoulas D, Terpos E. Sickle-cell disease and the heart: review of the current literature. Br J Haematol. 2012;157(6):664–73.CrossRef
5.
go back to reference Hayashi R, Ogawa S, Watanabe Z, Yamamoto M. Cardiovascular function before and after iron therapy by echocardiography in patients with iron deficiency anemia. Pediatr Int. 1999;41(1):13–7.CrossRef Hayashi R, Ogawa S, Watanabe Z, Yamamoto M. Cardiovascular function before and after iron therapy by echocardiography in patients with iron deficiency anemia. Pediatr Int. 1999;41(1):13–7.CrossRef
6.
go back to reference Hentze MW, Muckenthaler MU, Galy B, Camaschella C. Two to tango: regulation of mammalian iron metabolism. Cell. 2010;142(1):24–38.CrossRef Hentze MW, Muckenthaler MU, Galy B, Camaschella C. Two to tango: regulation of mammalian iron metabolism. Cell. 2010;142(1):24–38.CrossRef
7.
go back to reference Wijarnpreecha K, Kumfu S, Chattipakorn SC, Chattipakorn N. Cardiomyopathy associated with iron overload: how does iron enter myocytes and what are the implications for pharmacological therapy? Hemoglobin. 2015;39(1):9–17.CrossRef Wijarnpreecha K, Kumfu S, Chattipakorn SC, Chattipakorn N. Cardiomyopathy associated with iron overload: how does iron enter myocytes and what are the implications for pharmacological therapy? Hemoglobin. 2015;39(1):9–17.CrossRef
8.
go back to reference Gammella E, Recalcati S, Rybinska I, Buratti P, Cairo G. Iron-induced damage in cardiomyopathy: oxidative-dependent and independent mechanisms. Oxidative Med Cell Longev. 2015;2015:230182.CrossRef Gammella E, Recalcati S, Rybinska I, Buratti P, Cairo G. Iron-induced damage in cardiomyopathy: oxidative-dependent and independent mechanisms. Oxidative Med Cell Longev. 2015;2015:230182.CrossRef
9.
go back to reference Petering DH, Stemmer KL, Lyman S, Krezoski S, Petering HG. Iron deficiency in growing male rats: a cause of development of cardiomyopathy. Ann Nutr Metab. 1990;34(4):232–43.CrossRef Petering DH, Stemmer KL, Lyman S, Krezoski S, Petering HG. Iron deficiency in growing male rats: a cause of development of cardiomyopathy. Ann Nutr Metab. 1990;34(4):232–43.CrossRef
10.
go back to reference Xu W, Barrientos T, Mao L, Rockman HA, Sauve AA, Andrews NC. Lethal cardiomyopathy in mice lacking transferrin receptor in the heart. Cell Rep. 2015;13(3):533–45.CrossRef Xu W, Barrientos T, Mao L, Rockman HA, Sauve AA, Andrews NC. Lethal cardiomyopathy in mice lacking transferrin receptor in the heart. Cell Rep. 2015;13(3):533–45.CrossRef
11.
go back to reference Lakhal-Littleton S, Wolna M, Chung YJ, Christian HC, Heather LC, Brescia M, et al. An essential cell-autonomous role for hepcidin in cardiac iron homeostasis. Elife. 2016;5. Lakhal-Littleton S, Wolna M, Chung YJ, Christian HC, Heather LC, Brescia M, et al. An essential cell-autonomous role for hepcidin in cardiac iron homeostasis. Elife. 2016;5.
12.
go back to reference Alioglu B, Cetin II, Emeksiz ZS, Dindar N, Tapci E, Dallar Y. Iron deficiency anemia in infants: does it really affect the myocardial functions? Pediatr Hematol Oncol. 2013;30(3):239–45.CrossRef Alioglu B, Cetin II, Emeksiz ZS, Dindar N, Tapci E, Dallar Y. Iron deficiency anemia in infants: does it really affect the myocardial functions? Pediatr Hematol Oncol. 2013;30(3):239–45.CrossRef
13.
go back to reference Odemis E, Catal F, Karadag A, Turkay S. Assessment of cardiac function in iron-deficient children without anemia. J Pediatr Hematol Oncol. 2006;28(2):88–90.CrossRef Odemis E, Catal F, Karadag A, Turkay S. Assessment of cardiac function in iron-deficient children without anemia. J Pediatr Hematol Oncol. 2006;28(2):88–90.CrossRef
14.
go back to reference Jankowska EA, Ponikowski P. Molecular changes in myocardium in the course of anemia or iron deficiency. Heart Fail Clin. 2010;6(3):295–304.CrossRef Jankowska EA, Ponikowski P. Molecular changes in myocardium in the course of anemia or iron deficiency. Heart Fail Clin. 2010;6(3):295–304.CrossRef
15.
go back to reference Blayney L, Bailey-Wood R, Jacobs A, Henderson A, Muir J. The effects of iron deficiency on the respiratory function and cytochrome content of rat heart mitochondria. Circ Res. 1976;39(5):744–8.CrossRef Blayney L, Bailey-Wood R, Jacobs A, Henderson A, Muir J. The effects of iron deficiency on the respiratory function and cytochrome content of rat heart mitochondria. Circ Res. 1976;39(5):744–8.CrossRef
16.
go back to reference Ponikowski P, van Veldhuisen DJ, Comin-Colet J, Ertl G, Komajda M, Mareev V, et al. Beneficial effects of long-term intravenous iron therapy with ferric carboxymaltose in patients with symptomatic heart failure and iron deficiencydagger. Eur Heart J. 2015;36(11):657–68.CrossRef Ponikowski P, van Veldhuisen DJ, Comin-Colet J, Ertl G, Komajda M, Mareev V, et al. Beneficial effects of long-term intravenous iron therapy with ferric carboxymaltose in patients with symptomatic heart failure and iron deficiencydagger. Eur Heart J. 2015;36(11):657–68.CrossRef
17.
go back to reference IV. NKF-K/DOQI clinical practice guidelines for Anemia of chronic kidney disease: update 2000. Am J Kidney Dis 2001;37(1 Suppl 1):S182–S238. IV. NKF-K/DOQI clinical practice guidelines for Anemia of chronic kidney disease: update 2000. Am J Kidney Dis 2001;37(1 Suppl 1):S182–S238.
18.
go back to reference Coyne D. Iron indices: what do they really mean? Kidney Int Suppl. 2006;101:S4–8.CrossRef Coyne D. Iron indices: what do they really mean? Kidney Int Suppl. 2006;101:S4–8.CrossRef
19.
go back to reference Lang RM, Bierig M, Devereux RB, Flachskampf FA, Foster E, Pellikka PA, et al. Recommendations for chamber quantification. Eur J Echocardiogr. 2006;7(2):79–108.CrossRef Lang RM, Bierig M, Devereux RB, Flachskampf FA, Foster E, Pellikka PA, et al. Recommendations for chamber quantification. Eur J Echocardiogr. 2006;7(2):79–108.CrossRef
20.
go back to reference Luck AN, Mason AB. Transferrin-mediated cellular iron delivery. Curr Top Membr. 2012;69:3–35.CrossRef Luck AN, Mason AB. Transferrin-mediated cellular iron delivery. Curr Top Membr. 2012;69:3–35.CrossRef
21.
go back to reference Organization WH. Nutrition - publications - micronutrients - Anaemia/iron deficiency - assessing the iron status of populations - second edition, including literature reviews. 2007. Organization WH. Nutrition - publications - micronutrients - Anaemia/iron deficiency - assessing the iron status of populations - second edition, including literature reviews. 2007.
22.
go back to reference Borel MJ, Smith SM, Derr J, Beard JL. Day-to-day variation in iron-status indices in healthy men and women. Am J Clin Nutr. 1991;54(4):729–35.CrossRef Borel MJ, Smith SM, Derr J, Beard JL. Day-to-day variation in iron-status indices in healthy men and women. Am J Clin Nutr. 1991;54(4):729–35.CrossRef
23.
go back to reference Gebhard C, Stahli BE, Gebhard CE, Tasnady H, Zihler D, Wischnewsky MB, et al. Age- and gender-dependent left ventricular remodeling. Echocardiography. 2013;30(10):1143–50.CrossRef Gebhard C, Stahli BE, Gebhard CE, Tasnady H, Zihler D, Wischnewsky MB, et al. Age- and gender-dependent left ventricular remodeling. Echocardiography. 2013;30(10):1143–50.CrossRef
24.
go back to reference Horn MA. Cardiac physiology of aging: extracellular considerations. Comprehensive Physiology. 2015;5(3):1069–121.CrossRef Horn MA. Cardiac physiology of aging: extracellular considerations. Comprehensive Physiology. 2015;5(3):1069–121.CrossRef
25.
go back to reference Salmasi AM, Alimo A, Jepson E, Dancy M. Age-associated changes in left ventricular diastolic function are related to increasing left ventricular mass. Am J Hypertens. 2003;16(6):473–7.CrossRef Salmasi AM, Alimo A, Jepson E, Dancy M. Age-associated changes in left ventricular diastolic function are related to increasing left ventricular mass. Am J Hypertens. 2003;16(6):473–7.CrossRef
26.
go back to reference Kalantar-Zadeh K, Kleiner M, Dunne E, Ahern K, Nelson M, Koslowe R, et al. Total iron-binding capacity-estimated transferrin correlates with the nutritional subjective global assessment in hemodialysis patients. Am J Kidney Dis. 1998;31(2):263–72.CrossRef Kalantar-Zadeh K, Kleiner M, Dunne E, Ahern K, Nelson M, Koslowe R, et al. Total iron-binding capacity-estimated transferrin correlates with the nutritional subjective global assessment in hemodialysis patients. Am J Kidney Dis. 1998;31(2):263–72.CrossRef
27.
go back to reference Seres DS. Surrogate nutrition markers, malnutrition, and adequacy of nutrition support. Nutr Clin Pract. 2005;20(3):308–13.CrossRef Seres DS. Surrogate nutrition markers, malnutrition, and adequacy of nutrition support. Nutr Clin Pract. 2005;20(3):308–13.CrossRef
28.
go back to reference Bross R, Zitterkoph J, Pithia J, Benner D, Rambod M, Kovesdy CP, et al. Association of serum total iron-binding capacity and its changes over time with nutritional and clinical outcomes in hemodialysis patients. Am J Nephrol. 2009;29(6):571–81.CrossRef Bross R, Zitterkoph J, Pithia J, Benner D, Rambod M, Kovesdy CP, et al. Association of serum total iron-binding capacity and its changes over time with nutritional and clinical outcomes in hemodialysis patients. Am J Nephrol. 2009;29(6):571–81.CrossRef
29.
go back to reference Sawayama H, Iwatsuki M, Kuroda D, Toihata T, Uchihara T, Koga Y, et al. Total iron-binding capacity is a novel prognostic marker after curative gastrectomy for gastric cancer. Int J Clin Oncol. 2018;23(4):671–80.CrossRef Sawayama H, Iwatsuki M, Kuroda D, Toihata T, Uchihara T, Koga Y, et al. Total iron-binding capacity is a novel prognostic marker after curative gastrectomy for gastric cancer. Int J Clin Oncol. 2018;23(4):671–80.CrossRef
30.
go back to reference Casabellata G, Di Santolo M, Banfi G, Stel G, Gonano F, Cauci S. Evaluation of iron deficiency in young women in relation to oral contraceptive use. Contraception. 2007;76(3):200–7.CrossRef Casabellata G, Di Santolo M, Banfi G, Stel G, Gonano F, Cauci S. Evaluation of iron deficiency in young women in relation to oral contraceptive use. Contraception. 2007;76(3):200–7.CrossRef
31.
go back to reference Beguin Y. Soluble transferrin receptor for the evaluation of erythropoiesis and iron status. Clin Chim Acta. 2003;329(1–2):9–22.CrossRef Beguin Y. Soluble transferrin receptor for the evaluation of erythropoiesis and iron status. Clin Chim Acta. 2003;329(1–2):9–22.CrossRef
32.
go back to reference Kautz L, Nemeth E. Molecular liaisons between erythropoiesis and iron metabolism. Blood. 2014;124(4):479–82.CrossRef Kautz L, Nemeth E. Molecular liaisons between erythropoiesis and iron metabolism. Blood. 2014;124(4):479–82.CrossRef
33.
go back to reference El Gendy FM, El-Hawy MA, Shehata AMF, Osheba HE. Erythroferrone and iron status parameters levels in pediatric patients with iron deficiency anemia. Eur J Haematol. 2018;100(4):356–60.CrossRef El Gendy FM, El-Hawy MA, Shehata AMF, Osheba HE. Erythroferrone and iron status parameters levels in pediatric patients with iron deficiency anemia. Eur J Haematol. 2018;100(4):356–60.CrossRef
34.
go back to reference Carretti NG, Eremita GA, Porcelli B, Paternoster D, Grella P. Erythropoietin and transferrin concentrations during pregnancy in relation to hemoglobin levels. Biomed Pharmacother. 1993;47(4):161–5.CrossRef Carretti NG, Eremita GA, Porcelli B, Paternoster D, Grella P. Erythropoietin and transferrin concentrations during pregnancy in relation to hemoglobin levels. Biomed Pharmacother. 1993;47(4):161–5.CrossRef
Metadata
Title
Total iron binding capacity (TIBC) is a potential biomarker of left ventricular remodelling for patients with iron deficiency anaemia
Authors
Yan Chen
Jing Wan
Haidan Xia
Ya Li
Yufeng Xu
Haiyan Lin
Hassah Iftikhar
Publication date
01-12-2020
Publisher
BioMed Central
Published in
BMC Cardiovascular Disorders / Issue 1/2020
Electronic ISSN: 1471-2261
DOI
https://doi.org/10.1186/s12872-019-01320-3

Other articles of this Issue 1/2020

BMC Cardiovascular Disorders 1/2020 Go to the issue