Skip to main content
Top
Published in: BMC Cardiovascular Disorders 1/2019

Open Access 01-12-2019 | Myocardial Infarction | Research article

Clinical results of bioresorbable drug-eluting scaffolds in short and long coronary artery lesions using the PSP technique

Authors: Christine Reichart, Jochen Wöhrle, Sinisa Markovic, Wolfgang Rottbauer, Julia Seeger

Published in: BMC Cardiovascular Disorders | Issue 1/2019

Login to get access

Abstract

Background

Data on bioresorbable vascular scaffolds (BVS) for the treatment of long lesions are limited. We studied the use of BVS-Absorb in routine clinical practice and compared the outcome of long lesions with short lesions. Implantation of drug-eluting scaffolds without PSP-technique (predilation, proper sizing and postdilation) is associated with an increased thrombotic risk. We compared the long-term outcome up to 36 months of patients with short (< 20 mm) and long (≥20 mm) coronary artery lesions after implantation of bioresorbable vascular scaffolds (BVS) via PSP-technique.

Methods

Three hundred twenty-six patients with 424 lesions were enrolled in this prospective study and underwent percutaneous coronary intervention with the Absorb BVS. Clinical follow-up was scheduled after 12, 24 and 36 months. In all lesions the PSP-technique was used. The device oriented composite endpoint (DOCE) was defined as cardiac death, myocardial infarction (MI) not clearly related to a non-target vessel and target lesion revascularization (TLR).

Results

Kaplan-Meier estimates for DOCE after 12 months were 2.63% for short lesions and 8.09% for long lesions (p = 0.0131), 5.51% vs. 11.35% (p = 0.0503) after 24 months and 8.00% vs. 18.00% (p = 0.0264) after 36 months of clinical follow-up. Kaplan-Meier estimates for TLR after 12 months were 1.46% for short and 7.69% for long lesions (p = 0.0012), 2.06% vs. 8.75% after 24 months (p = 0.0027) and 4.96% vs. 9.59% after 36 months of follow-up (p = 0.0109). Scaffold thrombosis rates were low.

Conclusions

In long lesions compared to short ones the bioresorbable scaffold Absorb implanted with the proper PSP technique Absorb has significant higher rates of DOCE.

The Level of Evidence

Is 3 (non-random sample).
Literature
1.
go back to reference Serruys PW, Chevalier B, Sotomi Y, et al. Comparison of an everolimus-eluting bioresorbable scaffold with an everolimus-eluting metallic stent for the treatment of coronary artery stenosis (ABSORB II): a 3 year, randomised, controlled, single-blind, multicentre clinical trial. Lancet. 2016;388(10059):2479–91.CrossRef Serruys PW, Chevalier B, Sotomi Y, et al. Comparison of an everolimus-eluting bioresorbable scaffold with an everolimus-eluting metallic stent for the treatment of coronary artery stenosis (ABSORB II): a 3 year, randomised, controlled, single-blind, multicentre clinical trial. Lancet. 2016;388(10059):2479–91.CrossRef
2.
go back to reference Ellis SG, Kereiakes DJ, Metzger DC, et al. Everolimus-eluting Bioresorbable scaffolds for coronary artery disease. N Engl J Med. 2015;373(20). Ellis SG, Kereiakes DJ, Metzger DC, et al. Everolimus-eluting Bioresorbable scaffolds for coronary artery disease. N Engl J Med. 2015;373(20).
3.
go back to reference Wykrzykowska JJ, Kraak RP, Hofma SH, et al. AIDA investigators. Bioresorbable scaffolds versus metallic stents in routine PCI. N Engl J Med. 2017;376(24):2319–28.CrossRef Wykrzykowska JJ, Kraak RP, Hofma SH, et al. AIDA investigators. Bioresorbable scaffolds versus metallic stents in routine PCI. N Engl J Med. 2017;376(24):2319–28.CrossRef
4.
go back to reference Puricel S, Cuculi F, Weissner M, et al. Bioresorbable coronary scaffold thrombosis. Multicenter Comprehensive Analysis of Clinical Presentation, Mechanisms, and Predictors J Am Coll Cardiol. 2016;67(8):921–31.PubMed Puricel S, Cuculi F, Weissner M, et al. Bioresorbable coronary scaffold thrombosis. Multicenter Comprehensive Analysis of Clinical Presentation, Mechanisms, and Predictors J Am Coll Cardiol. 2016;67(8):921–31.PubMed
5.
go back to reference Kugler C, Markovic S, Rottbauer W, et al. Bioresorbable scaffolds compared with everolimus-eluting stents for the treatment of chronic coronary total occlusion: clinical and angiographic results of a matched paired comparison. Coron Artery Dis. 2017;28(2):120–5.CrossRef Kugler C, Markovic S, Rottbauer W, et al. Bioresorbable scaffolds compared with everolimus-eluting stents for the treatment of chronic coronary total occlusion: clinical and angiographic results of a matched paired comparison. Coron Artery Dis. 2017;28(2):120–5.CrossRef
6.
go back to reference Cortese B, Ielasi A, Moscarella E, et al. RAI investigators. Thirty-day outcomes after unrestricted implantation of Bioresorbable vascular scaffold (from the prospective RAI registry). Am J Cardiol. 2017;119(12):1924–30.CrossRef Cortese B, Ielasi A, Moscarella E, et al. RAI investigators. Thirty-day outcomes after unrestricted implantation of Bioresorbable vascular scaffold (from the prospective RAI registry). Am J Cardiol. 2017;119(12):1924–30.CrossRef
7.
10.
11.
go back to reference Morino Y, Abe M, Morimoto T, et al. Predicting successful guidewire crossing through chronic total occlusion of native coronary lesions within 30 minutes: the J-CTO (multicenter CTO registry in Japan) score as a difficulty grading and time assessment tool. JACC Cardiovasc Interv. 2011;4(2):213–21.CrossRef Morino Y, Abe M, Morimoto T, et al. Predicting successful guidewire crossing through chronic total occlusion of native coronary lesions within 30 minutes: the J-CTO (multicenter CTO registry in Japan) score as a difficulty grading and time assessment tool. JACC Cardiovasc Interv. 2011;4(2):213–21.CrossRef
12.
go back to reference Smith SC Jr, Dove JT, Jacobs AK, et al. ACC/AHA guidelines for percutaneous coronary intervention (revision of the 1993 PTCA guidelines) - executive summary: a report of the American College of Cardiology/American Heart Association task force on practice guide-lines (committee to revise the 1993 guidelines for percutaneous transluminal coronary angioplasty) endorsed by the society for cardiac angiography and interventions. J Am Coll Cardiol. 2001;37(8):2215–39.CrossRef Smith SC Jr, Dove JT, Jacobs AK, et al. ACC/AHA guidelines for percutaneous coronary intervention (revision of the 1993 PTCA guidelines) - executive summary: a report of the American College of Cardiology/American Heart Association task force on practice guide-lines (committee to revise the 1993 guidelines for percutaneous transluminal coronary angioplasty) endorsed by the society for cardiac angiography and interventions. J Am Coll Cardiol. 2001;37(8):2215–39.CrossRef
13.
go back to reference Farooq V, Serruys PW, Heo JH, et al. Intracoronary optical coherence tomography and histology of overlapping everolimus-eluting bioresorbable vascular scaffolds in a porcine coronary artery model the potential implications for clinical practice. JACC Cardiovasc Interv. 2013;6(5):523–32.CrossRef Farooq V, Serruys PW, Heo JH, et al. Intracoronary optical coherence tomography and histology of overlapping everolimus-eluting bioresorbable vascular scaffolds in a porcine coronary artery model the potential implications for clinical practice. JACC Cardiovasc Interv. 2013;6(5):523–32.CrossRef
14.
go back to reference Cutlip DE, Windecker S, Mehran R, et al. Academic research consortium. Clinical end points in coronary stent trials: a case for standardized definitions. Circulation. 2007;115(17):2344–51.CrossRef Cutlip DE, Windecker S, Mehran R, et al. Academic research consortium. Clinical end points in coronary stent trials: a case for standardized definitions. Circulation. 2007;115(17):2344–51.CrossRef
15.
go back to reference Serruys PW, Chevalier B, Dudek D, et al. A bioresorbable everolimus-eluting scaffold versus a metallic everolimus-eluting stent for ischaemic heart disease caused by de-novo native coronary artery lesions (ABSORB II): an interim 1-year analysis of clinical and procedural secondary outcomes from a randomised controlled trial. Lancet. 2015;385(9962):43–54.CrossRef Serruys PW, Chevalier B, Dudek D, et al. A bioresorbable everolimus-eluting scaffold versus a metallic everolimus-eluting stent for ischaemic heart disease caused by de-novo native coronary artery lesions (ABSORB II): an interim 1-year analysis of clinical and procedural secondary outcomes from a randomised controlled trial. Lancet. 2015;385(9962):43–54.CrossRef
16.
go back to reference Gao R, Yang Y, Han Y, et al. Bioresorbable vascular scaffolds versus metallic stents in patients with coronary artery disease. ABSORB China trial J Am Coll Cardiol. 2015;66(21):2298–309.CrossRef Gao R, Yang Y, Han Y, et al. Bioresorbable vascular scaffolds versus metallic stents in patients with coronary artery disease. ABSORB China trial J Am Coll Cardiol. 2015;66(21):2298–309.CrossRef
17.
go back to reference Kimura T, Kozuma K, Tanabe K, et al. A randomized trial evaluating everolimus-eluting Absorb bioresorbable scaffolds vs. everolimus-eluting metallic stents in patients with coronary artery disease: ABSORB Japan. Eur Heart J. 2015;36(47):3332–42.CrossRef Kimura T, Kozuma K, Tanabe K, et al. A randomized trial evaluating everolimus-eluting Absorb bioresorbable scaffolds vs. everolimus-eluting metallic stents in patients with coronary artery disease: ABSORB Japan. Eur Heart J. 2015;36(47):3332–42.CrossRef
18.
go back to reference Costa JR Jr, Abizaid A, Whitbourn R, ABSORB EXTEND investigators et al. three-year clinical outcomes of patients treated with everolimus-eluting bioresorbable vascular scaffolds: final results of the ABSORB EXTEND trial. Catheter Cardiovasc Interv 2018. https://doi.org/10.1002/ccd.27715. [Epub ahead of print]. Costa JR Jr, Abizaid A, Whitbourn R, ABSORB EXTEND investigators et al. three-year clinical outcomes of patients treated with everolimus-eluting bioresorbable vascular scaffolds: final results of the ABSORB EXTEND trial. Catheter Cardiovasc Interv 2018. https://​doi.​org/​10.​1002/​ccd.​27715. [Epub ahead of print].
19.
go back to reference Capodanno D, Gori T, Nef H, et al. Percutaneous coronary intervention with everolimus-eluting bioresorbable vascular scaffolds in routine clinical practice: early and midterm outcomes from the European multicentre GHOST-EU registry. EuroIntervention. 2015;10(10):1144–53.CrossRef Capodanno D, Gori T, Nef H, et al. Percutaneous coronary intervention with everolimus-eluting bioresorbable vascular scaffolds in routine clinical practice: early and midterm outcomes from the European multicentre GHOST-EU registry. EuroIntervention. 2015;10(10):1144–53.CrossRef
20.
go back to reference Yamaji K, Räber L, Windecker S. What determines long-term outcomes using fully bioresorbable scaffolds - the device, the operator or the lesion? EuroIntervention. 2017;12(14):1684–7.CrossRef Yamaji K, Räber L, Windecker S. What determines long-term outcomes using fully bioresorbable scaffolds - the device, the operator or the lesion? EuroIntervention. 2017;12(14):1684–7.CrossRef
21.
go back to reference Cassese S, Byrne RA, Ndrepepa G, et al. Everolimus-eluting bioresorbable vascular scaffolds versus everolimus-eluting metallic stents: a meta-analysis of randomised controlled trials. Lancet. 2016;387(10018):537–44.CrossRef Cassese S, Byrne RA, Ndrepepa G, et al. Everolimus-eluting bioresorbable vascular scaffolds versus everolimus-eluting metallic stents: a meta-analysis of randomised controlled trials. Lancet. 2016;387(10018):537–44.CrossRef
22.
go back to reference Stone GW, Gao R, Kimura T, et al. 1-year outcomes with the Absorb bioresorbable scaffold in patients with coronary artery disease: a patient-level, pooled meta-analysis. Lancet. 2016;387(10025):1277–89.CrossRef Stone GW, Gao R, Kimura T, et al. 1-year outcomes with the Absorb bioresorbable scaffold in patients with coronary artery disease: a patient-level, pooled meta-analysis. Lancet. 2016;387(10025):1277–89.CrossRef
23.
go back to reference Lipinski MJ, Escarcega RO, Baker NC, et al. Scaffold thrombosis after percutaneous coronary intervention with ABSORB Bioresorbable vascular scaffold. A Systematic Review and Meta-Analysis JACC Cardiovasc Interv. 2016;9(1):12–24.CrossRef Lipinski MJ, Escarcega RO, Baker NC, et al. Scaffold thrombosis after percutaneous coronary intervention with ABSORB Bioresorbable vascular scaffold. A Systematic Review and Meta-Analysis JACC Cardiovasc Interv. 2016;9(1):12–24.CrossRef
25.
go back to reference Wöhrle J, Nef HM, Naber C, et al. For the GABI-R study group. Predictors of early scaffold thrombosis: results from the multicenter prospective German-Austrian ABSORB RegIstRy. Coron Artery Dis. 2018;29(5):389–96.CrossRef Wöhrle J, Nef HM, Naber C, et al. For the GABI-R study group. Predictors of early scaffold thrombosis: results from the multicenter prospective German-Austrian ABSORB RegIstRy. Coron Artery Dis. 2018;29(5):389–96.CrossRef
26.
go back to reference Tanaka A, Latib A, Kawamoto H, et al. Clinical outcomes of a real world cohort following bioresorbable vascular scaffold implantation utilising an optimized implantation strategy. EuroIntervention. 2017;12(14):1730–7.CrossRef Tanaka A, Latib A, Kawamoto H, et al. Clinical outcomes of a real world cohort following bioresorbable vascular scaffold implantation utilising an optimized implantation strategy. EuroIntervention. 2017;12(14):1730–7.CrossRef
27.
go back to reference Sotomi Y, Suwannasom P, Serruys PW, et al. Possible mechanical causes of scaffold thrombosis: insights from case reports with intracoronary imaging. EuroIntervention. 2017;12(14):1747–56.CrossRef Sotomi Y, Suwannasom P, Serruys PW, et al. Possible mechanical causes of scaffold thrombosis: insights from case reports with intracoronary imaging. EuroIntervention. 2017;12(14):1747–56.CrossRef
38.
go back to reference Biscaglia S, Ugo F, Ielasi A, et al. Bioresorbable scaffold vs. second generation drug eluting stent in long coronary lesions requiring overlap: a propensity-matched comparison (the UNDERDOGS study). Int J Cardiol. 2016;208:40–5.CrossRef Biscaglia S, Ugo F, Ielasi A, et al. Bioresorbable scaffold vs. second generation drug eluting stent in long coronary lesions requiring overlap: a propensity-matched comparison (the UNDERDOGS study). Int J Cardiol. 2016;208:40–5.CrossRef
Metadata
Title
Clinical results of bioresorbable drug-eluting scaffolds in short and long coronary artery lesions using the PSP technique
Authors
Christine Reichart
Jochen Wöhrle
Sinisa Markovic
Wolfgang Rottbauer
Julia Seeger
Publication date
01-12-2019
Publisher
BioMed Central
Published in
BMC Cardiovascular Disorders / Issue 1/2019
Electronic ISSN: 1471-2261
DOI
https://doi.org/10.1186/s12872-018-0994-y

Other articles of this Issue 1/2019

BMC Cardiovascular Disorders 1/2019 Go to the issue