Skip to main content
Top
Published in: BMC Cardiovascular Disorders 1/2017

Open Access 01-12-2017 | Case report

Optimization of pressure settings during adaptive servo-ventilation support using real-time heart rate variability assessment: initial case report

Authors: Teruhiko Imamura, Daisuke Nitta, Koichiro Kinugawa

Published in: BMC Cardiovascular Disorders | Issue 1/2017

Login to get access

Abstract

Background

Adaptive servo-ventilation (ASV) therapy is a recent non-invasive positive pressure ventilation therapy that was developed for patients with heart failure (HF) refractory to optimal medical therapy. However, it is likely that ASV therapy at relatively higher pressure setting worsens some of the patients’ prognosis compared with optimal medical therapy. Therefore, identification of optimal pressure settings of ASV therapy is warranted.

Case presentation

We present the case of a 42-year-old male with HF, which was caused by dilated cardiomyopathy, who was admitted to our institution for evaluating his eligibility for heart transplantation. To identify the optimal pressure setting [peak end-expiratory pressure (PEEP) ramp test], we performed an ASV support test, during which the PEEP settings were set at levels ranging from 4 to 8 mmHg, and a heart rate variability (HRV) analysis using the MemCalc power spectral density method. Clinical parameters varied dramatically during the PEEP ramp test. Over incremental PEEP levels, pulmonary capillary wedge pressure, cardiac index and high-frequency level (reflecting parasympathetic activity) decreased; however, the low-frequency level increased along with increase in plasma noradrenaline concentrations.

Conclusions

An inappropriately high PEEP setting may stimulate sympathetic nerve activity accompanied by decreased cardiac output. This was the first report on the PEEP ramp test during ASV therapy. Further research is warranted to determine whether use of optimal pressure settings using HRV analyses may improve the long-term prognosis of such patients.
Literature
1.
go back to reference Yancy CW, Jessup M, Bozkurt B, Butler J, Casey Jr DE, Drazner MH, et al. 2013 ACCF/AHA guideline for the management of heart failure: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol. 2013;62(16):e147–239.CrossRefPubMed Yancy CW, Jessup M, Bozkurt B, Butler J, Casey Jr DE, Drazner MH, et al. 2013 ACCF/AHA guideline for the management of heart failure: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol. 2013;62(16):e147–239.CrossRefPubMed
2.
go back to reference Momomura S, Seino Y, Kihara Y, Adachi H, Yasumura Y, Yokoyama H, et al. Adaptive servo-ventilation therapy for patients with chronic heart failure in a confirmatory, multicenter, randomized, controlled study. Circ J. 2015;79(5):981–90.CrossRefPubMed Momomura S, Seino Y, Kihara Y, Adachi H, Yasumura Y, Yokoyama H, et al. Adaptive servo-ventilation therapy for patients with chronic heart failure in a confirmatory, multicenter, randomized, controlled study. Circ J. 2015;79(5):981–90.CrossRefPubMed
3.
go back to reference Koyama T, Watanabe H, Tamura Y, Oguma Y, Kosaka T, Ito H. Adaptive servo-ventilation therapy improves cardiac sympathetic nerve activity in patients with heart failure. Eur J Heart Fail. 2013;15(8):902–9.CrossRefPubMed Koyama T, Watanabe H, Tamura Y, Oguma Y, Kosaka T, Ito H. Adaptive servo-ventilation therapy improves cardiac sympathetic nerve activity in patients with heart failure. Eur J Heart Fail. 2013;15(8):902–9.CrossRefPubMed
4.
go back to reference Iwaya S, Yoshihisa A, Nodera M, Owada T, Yamada S, Sato T, et al. Suppressive effects of adaptive servo-ventilation on ventricular premature complexes with attenuation of sympathetic nervous activity in heart failure patients with sleep-disordered breathing. Heart Vessels. 2014;29(4):470–7.CrossRefPubMed Iwaya S, Yoshihisa A, Nodera M, Owada T, Yamada S, Sato T, et al. Suppressive effects of adaptive servo-ventilation on ventricular premature complexes with attenuation of sympathetic nervous activity in heart failure patients with sleep-disordered breathing. Heart Vessels. 2014;29(4):470–7.CrossRefPubMed
5.
go back to reference Yoshihisa A, Suzuki S, Miyata M, Yamaki T, Sugimoto K, Kunii H, et al. ‘A single night’ beneficial effects of adaptive servo-ventilation on cardiac overload, sympathetic nervous activity, and myocardial damage in patients with chronic heart failure and sleep-disordered breathing. Circ J. 2012;76(9):2153–8.CrossRefPubMed Yoshihisa A, Suzuki S, Miyata M, Yamaki T, Sugimoto K, Kunii H, et al. ‘A single night’ beneficial effects of adaptive servo-ventilation on cardiac overload, sympathetic nervous activity, and myocardial damage in patients with chronic heart failure and sleep-disordered breathing. Circ J. 2012;76(9):2153–8.CrossRefPubMed
6.
go back to reference Harada D, Joho S, Oda Y, Hirai T, Asanoi H, Inoue H. Short term effect of adaptive servo-ventilation on muscle sympathetic nerve activity in patients with heart failure. Auton Neurosci. 2011;161(1–2):95–102.CrossRefPubMed Harada D, Joho S, Oda Y, Hirai T, Asanoi H, Inoue H. Short term effect of adaptive servo-ventilation on muscle sympathetic nerve activity in patients with heart failure. Auton Neurosci. 2011;161(1–2):95–102.CrossRefPubMed
7.
go back to reference Kuwahata S, Miyata M, Fujita S, Kubozono T, Shinsato T, Ikeda Y, et al. Improvement of autonomic nervous activity by Waon therapy in patients with chronic heart failure. J Cardiol. 2011;57(1):100–6.CrossRefPubMed Kuwahata S, Miyata M, Fujita S, Kubozono T, Shinsato T, Ikeda Y, et al. Improvement of autonomic nervous activity by Waon therapy in patients with chronic heart failure. J Cardiol. 2011;57(1):100–6.CrossRefPubMed
8.
go back to reference Imamura T, Kinugawa K, Nitta D, Komuro I. Long-Term Adaptive Servo-Ventilator Treatment Prevents Cardiac Death and Improves Clinical Outcome. Int Heart J. 2016;57(1):47–52.CrossRefPubMed Imamura T, Kinugawa K, Nitta D, Komuro I. Long-Term Adaptive Servo-Ventilator Treatment Prevents Cardiac Death and Improves Clinical Outcome. Int Heart J. 2016;57(1):47–52.CrossRefPubMed
9.
go back to reference Momomura S, Seino Y, Kihara Y, Adachi H, Yasumura Y, Yokoyama H. Adaptive servo-ventilation therapy using an innovative ventilator for patients with chronic heart failure: a real-world, multicenter, retrospective, observational study (SAVIOR-R). Heart Vessels. 2015;30(6):805–17.CrossRefPubMed Momomura S, Seino Y, Kihara Y, Adachi H, Yasumura Y, Yokoyama H. Adaptive servo-ventilation therapy using an innovative ventilator for patients with chronic heart failure: a real-world, multicenter, retrospective, observational study (SAVIOR-R). Heart Vessels. 2015;30(6):805–17.CrossRefPubMed
10.
go back to reference Cowie MR, Woehrle H, Wegscheider K, Angermann C, d’Ortho MP, Erdmann E, et al. Adaptive Servo-Ventilation for Central Sleep Apnea in Systolic Heart Failure. N Engl J Med. 2015;373(12):1095–105.CrossRefPubMedPubMedCentral Cowie MR, Woehrle H, Wegscheider K, Angermann C, d’Ortho MP, Erdmann E, et al. Adaptive Servo-Ventilation for Central Sleep Apnea in Systolic Heart Failure. N Engl J Med. 2015;373(12):1095–105.CrossRefPubMedPubMedCentral
11.
go back to reference Sawada Y, Ohtomo N, Tanaka Y, Tanaka G, Yamakoshi K, Terachi S, et al. New technique for time series analysis combining the maximum entropy method and non-linear least squares method: its value in heart rate variability analysis. Med Biol Eng Comput. 1997;35(4):318–22.CrossRefPubMed Sawada Y, Ohtomo N, Tanaka Y, Tanaka G, Yamakoshi K, Terachi S, et al. New technique for time series analysis combining the maximum entropy method and non-linear least squares method: its value in heart rate variability analysis. Med Biol Eng Comput. 1997;35(4):318–22.CrossRefPubMed
12.
go back to reference Imamura T, Kinugawa K, Okada I, Kato N, Fujino T, Inaba T, et al. Parasympathetic reinnervation accompanied by improved post-exercise heart rate recovery and quality of life in heart transplant recipients. Int Heart J. 2015;56(2):180–5.CrossRefPubMed Imamura T, Kinugawa K, Okada I, Kato N, Fujino T, Inaba T, et al. Parasympathetic reinnervation accompanied by improved post-exercise heart rate recovery and quality of life in heart transplant recipients. Int Heart J. 2015;56(2):180–5.CrossRefPubMed
13.
go back to reference Imamura T, Kinugawa K, Nitta D, Fujino T, Inaba T, Maki H, et al. Lower rotation speed stimulates sympathetic activation during continuous-flow left ventricular assist device treatment. J Artif Organs. 2015;18(1):20–6.CrossRefPubMed Imamura T, Kinugawa K, Nitta D, Fujino T, Inaba T, Maki H, et al. Lower rotation speed stimulates sympathetic activation during continuous-flow left ventricular assist device treatment. J Artif Organs. 2015;18(1):20–6.CrossRefPubMed
14.
go back to reference Imamura T, Kinugawa K, Fujino T, Inaba T, Maki H, Hatano M, et al. Recipients with shorter cardiopulmonary bypass time achieve improvement of parasympathetic reinnervation within 6 months after heart transplantation. Int Heart J. 2014;55(5):440–4.CrossRefPubMed Imamura T, Kinugawa K, Fujino T, Inaba T, Maki H, Hatano M, et al. Recipients with shorter cardiopulmonary bypass time achieve improvement of parasympathetic reinnervation within 6 months after heart transplantation. Int Heart J. 2014;55(5):440–4.CrossRefPubMed
15.
go back to reference Yamada S, Sakakibara M, Yokota T, Kamiya K, Asakawa N, Iwano H, Yamada S, Oba K, Tsutsui H. Avute hemodynamic effects of adaptive servo-ventilation in patients with heart failure. Circ J. 2013;77(5):1214–20.CrossRefPubMed Yamada S, Sakakibara M, Yokota T, Kamiya K, Asakawa N, Iwano H, Yamada S, Oba K, Tsutsui H. Avute hemodynamic effects of adaptive servo-ventilation in patients with heart failure. Circ J. 2013;77(5):1214–20.CrossRefPubMed
16.
go back to reference Imamura T, Kinugawa K, Nitta D, Komuro I. Shorter Heart Failure Duration is a Predcitor of Left Ventricular Reverse Remodeling during Adaptive Servo-Ventilator Treatment in Patients with Advanced Heart Failure. Int Heart J. 2016. In Press Imamura T, Kinugawa K, Nitta D, Komuro I. Shorter Heart Failure Duration is a Predcitor of Left Ventricular Reverse Remodeling during Adaptive Servo-Ventilator Treatment in Patients with Advanced Heart Failure. Int Heart J. 2016. In Press
17.
go back to reference Imamura T, Kinugawa K, Nitta D, Komuro I. Real-time Assessment of Autonomic Nerve Activity during Adaptive Servo-ventilation Support of Waon Therapy. Int Heart J. 2016. In Press Imamura T, Kinugawa K, Nitta D, Komuro I. Real-time Assessment of Autonomic Nerve Activity during Adaptive Servo-ventilation Support of Waon Therapy. Int Heart J. 2016. In Press
Metadata
Title
Optimization of pressure settings during adaptive servo-ventilation support using real-time heart rate variability assessment: initial case report
Authors
Teruhiko Imamura
Daisuke Nitta
Koichiro Kinugawa
Publication date
01-12-2017
Publisher
BioMed Central
Published in
BMC Cardiovascular Disorders / Issue 1/2017
Electronic ISSN: 1471-2261
DOI
https://doi.org/10.1186/s12872-016-0455-4

Other articles of this Issue 1/2017

BMC Cardiovascular Disorders 1/2017 Go to the issue