Skip to main content
Top
Published in: BMC Cardiovascular Disorders 1/2015

Open Access 01-12-2015 | Research article

Exercise training restores the cardiac microRNA-1 and −214 levels regulating Ca2+ handling after myocardial infarction

Authors: Stéphano Freitas Soares Melo, Valério Garrone Barauna, Vander José Neves, Tiago Fernandes, Lucienne da Silva Lara, Diego Robles Mazzotti, Edilamar Menezes Oliveira

Published in: BMC Cardiovascular Disorders | Issue 1/2015

Login to get access

Abstract

Background

Impaired cardiomyocyte contractility and calcium handling are hallmarks of left ventricular contractile dysfunction. Exercise training has been used as a remarkable strategy in the treatment of heart disease. The microRNA-1, which targets sodium/calcium exchanger 1 (NCX), and microRNA-214, which targets sarcoplasmic reticulum calcium ATPase-2a (Serca2a), are involved in cardiac function regulation. Thus, the aim of this study was to evaluate the effect of exercise training on cardiac microRNA-1 and −214 expression after myocardial infarction.

Methods

Wistar rats were randomized into four groups: sedentary sham (S-SHAM), sedentary infarction (S-INF), trained sham (T-SHAM), and trained infarction (T-INF). Exercise training consisted of 60 min/days, 5 days/week for 10 weeks with 3 % of body weight as overload beginning four weeks after myocardial infarction.

Results

MicroRNA-1 and −214 expressions were, respectively, decreased (52 %) and increased (54 %) in the S-INF compared to the S-SHAM, while exercise training normalized the expression of these microRNAs. The microRNA targets NCX and Serca-2a protein expression were, respectively, decreased (55 %) and increased (34 %) in the T-INF group compared to the S-INF group.

Conclusions

These results suggest that exercise training restores microRNA-1 and −214 expression levels and prevents change in both NCX and Serca-2a protein and gene expressions. Altogether, our data suggest a molecular mechanism to restore ventricular function after exercise training in myocardial infarction rats.
Literature
1.
go back to reference Wisløff U, Loennechen JP, Currie S, Smith GL, Ellingsen Ø. Aerobic exercise reduces cardiomyocyte hypertrophy and increases contractility, Ca 2 1 sensitivity and SERCA-2 in rat after myocardial infarction. Cardiovasc Res. 2002;54:162–74.CrossRefPubMed Wisløff U, Loennechen JP, Currie S, Smith GL, Ellingsen Ø. Aerobic exercise reduces cardiomyocyte hypertrophy and increases contractility, Ca 2 1 sensitivity and SERCA-2 in rat after myocardial infarction. Cardiovasc Res. 2002;54:162–74.CrossRefPubMed
2.
go back to reference Lawler PR, Filion KB, Eisenberg MJ. Efficacy of exercise-based cardiac rehabilitation post-myocardial infarction: a systematic review and meta-analysis of randomized controlled trials. Am Heart J [Internet]. Mosby, Inc.; 2011 Oct [cited 2014 Oct 3];162(4):571–84.e2. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21982647 Lawler PR, Filion KB, Eisenberg MJ. Efficacy of exercise-based cardiac rehabilitation post-myocardial infarction: a systematic review and meta-analysis of randomized controlled trials. Am Heart J [Internet]. Mosby, Inc.; 2011 Oct [cited 2014 Oct 3];162(4):571–84.e2. Available from: http://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​21982647
7.
go back to reference Van Rooij E, Olson EN. MicroRNA therapeutics for cardiovascular disease: opportunities and obstacles. Nat Rev Drug Discov. 2012. Van Rooij E, Olson EN. MicroRNA therapeutics for cardiovascular disease: opportunities and obstacles. Nat Rev Drug Discov. 2012.
13.
go back to reference Giallauria F, Acampa W, Ricci F, Vitelli A, Torella G, Lucci R, et al. Exercise training early after acute myocardial infarction reduces stress-induced hypoperfusion and improves left ventricular function. Eur J Nucl Med Mol Imaging. 2013;40:315–24.CrossRefPubMed Giallauria F, Acampa W, Ricci F, Vitelli A, Torella G, Lucci R, et al. Exercise training early after acute myocardial infarction reduces stress-induced hypoperfusion and improves left ventricular function. Eur J Nucl Med Mol Imaging. 2013;40:315–24.CrossRefPubMed
15.
go back to reference Ellison GM, Waring CD, Vicinanza C, Torella D. Physiological cardiac remodelling in response to endurance exercise training: cellular and molecular mechanisms. Heart. 2012;98(1):5–10. doi:10.1136/heartjnl-2011-300639 Epub 2011 Aug 31. Ellison GM, Waring CD, Vicinanza C, Torella D. Physiological cardiac remodelling in response to endurance exercise training: cellular and molecular mechanisms. Heart. 2012;98(1):5–10. doi:10.​1136/​heartjnl-2011-300639 Epub 2011 Aug 31.
16.
go back to reference Fernandes T, Magalhães FC, Roque FR, Phillips MI, Oliveira EM. Exercise training prevents the microvascular rarefaction in hypertension balancing angiogenic and apoptotic factors: Role of microRNAs-16, −21, and −126. Hypertension. 2012;59(2)513–20. doi:10.1161/HYPERTENSIONAHA.111.185801 Epub 2012 Jan 3. Fernandes T, Magalhães FC, Roque FR, Phillips MI, Oliveira EM. Exercise training prevents the microvascular rarefaction in hypertension balancing angiogenic and apoptotic factors: Role of microRNAs-16, −21, and −126. Hypertension. 2012;59(2)513–20. doi:10.​1161/​HYPERTENSIONAHA.​111.​185801 Epub 2012 Jan 3.
19.
go back to reference Yang T, Gu H, Chen X, Fu S, Wang C, Xu H, et al. Cardiac hypertrophy and dysfunction induced by overexpression of miR-214 in vivo. Journal of Surgical Research. 2014;192(2):317-25. doi:10.1016/j.jss.2014.06.044. Epub 2014 Jul 2. Yang T, Gu H, Chen X, Fu S, Wang C, Xu H, et al. Cardiac hypertrophy and dysfunction induced by overexpression of miR-214 in vivo. Journal of Surgical Research. 2014;192(2):317-25. doi:10.​1016/​j.​jss.​2014.​06.​044. Epub 2014 Jul 2.
20.
go back to reference Kemi OJ, Ellingsen Ø, Ceci M, Grimaldi S, Smith GL, Condorelli G, et al. Aerobic interval training enhances cardiomyocyte contractility and Ca2+ cycling by phosphorylation of CaMKII and Thr-17 of phospholamban. J Mol Cell Cardiol. 2007;43:354–61.PubMedCentralCrossRefPubMed Kemi OJ, Ellingsen Ø, Ceci M, Grimaldi S, Smith GL, Condorelli G, et al. Aerobic interval training enhances cardiomyocyte contractility and Ca2+ cycling by phosphorylation of CaMKII and Thr-17 of phospholamban. J Mol Cell Cardiol. 2007;43:354–61.PubMedCentralCrossRefPubMed
21.
go back to reference Kemi OJ, MacQuaide N, Hoydal M A, Ellingsen O, Smith GL, Wisloff U. Exercise training corrects control of spontaneous calcium waves in hearts from myocardial infarction heart failure rats. J Cell Physiol [Internet]. 2012 Jan [cited 2014 Nov 6];227(1):20–6. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21465470. Kemi OJ, MacQuaide N, Hoydal M A, Ellingsen O, Smith GL, Wisloff U. Exercise training corrects control of spontaneous calcium waves in hearts from myocardial infarction heart failure rats. J Cell Physiol [Internet]. 2012 Jan [cited 2014 Nov 6];227(1):20–6. Available from: http://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​21465470.
22.
go back to reference Zhang L, Zhang X, Ng Y, Rothblum LI, Musch TI, Moore RL, et al. Sprint training normalizes Ca 2 + transients and SR function in postinfarction rat myocytes Sprint training normalizes Ca 2 ϩ transients and SR function in postinfarction rat myocytes. J Appl Physiol. 2014;89(1):38–46. Zhang L, Zhang X, Ng Y, Rothblum LI, Musch TI, Moore RL, et al. Sprint training normalizes Ca 2 + transients and SR function in postinfarction rat myocytes Sprint training normalizes Ca 2 ϩ transients and SR function in postinfarction rat myocytes. J Appl Physiol. 2014;89(1):38–46.
23.
go back to reference Cury AF, Bonilha A, Saraiva R, Campos O, Carvalho ACC, De Paola AA V, et al. Myocardial performance index in female rats with myocardial infarction: relationship with ventricular function parameters by Doppler echocardiography. J Am Soc Echocardiogr [Internet]. 2005 May [cited 2014 Nov 5];18(5):454–60. Available from: http://www.ncbi.nlm.nih.gov/pubmed/15891755 Cury AF, Bonilha A, Saraiva R, Campos O, Carvalho ACC, De Paola AA V, et al. Myocardial performance index in female rats with myocardial infarction: relationship with ventricular function parameters by Doppler echocardiography. J Am Soc Echocardiogr [Internet]. 2005 May [cited 2014 Nov 5];18(5):454–60. Available from: http://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​15891755
24.
go back to reference Musch TI, Moore RL, Leathers DJ, Bruno A, Zelis R. Endurance training in rats with chronic heart failure induced by myocardial infarction. Circulation. 1986;74(2):431–41.CrossRefPubMed Musch TI, Moore RL, Leathers DJ, Bruno A, Zelis R. Endurance training in rats with chronic heart failure induced by myocardial infarction. Circulation. 1986;74(2):431–41.CrossRefPubMed
25.
go back to reference Sorenson MM, Coelho HS, Reuben JP. Caffeine inhibition of calcium accumulation by the sarcoplasmic reticulum in mammalian skinned fibers. J Membr Biol. 1986;90:219–30.CrossRefPubMed Sorenson MM, Coelho HS, Reuben JP. Caffeine inhibition of calcium accumulation by the sarcoplasmic reticulum in mammalian skinned fibers. J Membr Biol. 1986;90:219–30.CrossRefPubMed
26.
27.
28.
go back to reference Lipskaia L, Chemaly ER, Hadri L, Lompre A-M, Hajjar RJ. Sarcoplasmic reticulum Ca(2+) ATPase as a therapeutic target for heart failure. Expert Opin Biol Ther. 2010;10:29–41.PubMedCentralCrossRefPubMed Lipskaia L, Chemaly ER, Hadri L, Lompre A-M, Hajjar RJ. Sarcoplasmic reticulum Ca(2+) ATPase as a therapeutic target for heart failure. Expert Opin Biol Ther. 2010;10:29–41.PubMedCentralCrossRefPubMed
33.
go back to reference Kemi OJ, Macquaide N, Hoydal MA, Ellingsen O, Smith GL, Wisloff U. Exercise training corrects control of spontaneous calcium waves in hearts from myocardial infarction heart failure rats. J Cell Physiol. 2012. p. 20–6 Kemi OJ, Macquaide N, Hoydal MA, Ellingsen O, Smith GL, Wisloff U. Exercise training corrects control of spontaneous calcium waves in hearts from myocardial infarction heart failure rats. J Cell Physiol. 2012. p. 20–6
34.
go back to reference Lagos-Quintana M, Rauhut R, Yalcin A, Meyer J, Lendeckel W, Tuschl T. Identification of tissue-specific MicroRNAs from mouse. Curr Biol. 2002;12:735–9.CrossRefPubMed Lagos-Quintana M, Rauhut R, Yalcin A, Meyer J, Lendeckel W, Tuschl T. Identification of tissue-specific MicroRNAs from mouse. Curr Biol. 2002;12:735–9.CrossRefPubMed
35.
go back to reference Kumarswamy R, Lyon AR, Volkmann I, Mills AM, Bretthauer J, Pahuja A, et al. SERCA2a gene therapy restores microRNA-1 expression in heart failure via an Akt/FoxO3A-dependent pathway. Eur Heart J. 2012;33(9):1067–75.PubMedCentralCrossRefPubMed Kumarswamy R, Lyon AR, Volkmann I, Mills AM, Bretthauer J, Pahuja A, et al. SERCA2a gene therapy restores microRNA-1 expression in heart failure via an Akt/FoxO3A-dependent pathway. Eur Heart J. 2012;33(9):1067–75.PubMedCentralCrossRefPubMed
36.
go back to reference Aurora AB, Mahmoud AI, Luo X, Johnson BA, Van Rooij E, Matsuzaki S, et al. MicroRNA-214 protects the mouse heart from ischemic injury by controlling Ca 2 + overload and cell death. J Clin Invest. 2012;122(4):1223–32. Aurora AB, Mahmoud AI, Luo X, Johnson BA, Van Rooij E, Matsuzaki S, et al. MicroRNA-214 protects the mouse heart from ischemic injury by controlling Ca 2 + overload and cell death. J Clin Invest. 2012;122(4):1223–32.
Metadata
Title
Exercise training restores the cardiac microRNA-1 and −214 levels regulating Ca2+ handling after myocardial infarction
Authors
Stéphano Freitas Soares Melo
Valério Garrone Barauna
Vander José Neves
Tiago Fernandes
Lucienne da Silva Lara
Diego Robles Mazzotti
Edilamar Menezes Oliveira
Publication date
01-12-2015
Publisher
BioMed Central
Published in
BMC Cardiovascular Disorders / Issue 1/2015
Electronic ISSN: 1471-2261
DOI
https://doi.org/10.1186/s12872-015-0156-4

Other articles of this Issue 1/2015

BMC Cardiovascular Disorders 1/2015 Go to the issue