Skip to main content
Log in

Caffeine inhibition of calcium accumulation by the sarcoplasmic reticulum in mammalian skinned fibers

  • Articles
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

Oxalate-supported Ca accumulation by the sarcoplasmic reticulum (SR) of chemically skinned mammalian skeletal muscle fibers is activated by MgATP and Ca2+ and partially inhibited by caffeine. Inhibition by caffeine is greatest when Ca2+ exceeds 0.3 to 0.4 μm, when free ATP exceeds 0.8 to 1mm, and when the inhibitor is present from the beginning of the loading period rather than when it is added after Ca oxalate has already begun to precipitate within the SR. Under the most favorable combination of these conditions, this effect of caffeine is maximal at 2.5 to 5mm and is half-maximal at approximately 0.5mm. For a given concentration of caffeine, inhibition decreases to one-half of its maximum value when free ATP is reduced to 0.2 to 0.3mm. Varying free Mg2+ (0.1 to 2mm) or MgATP (0.03 to 10mm) has no effect on inhibition. Average residual uptake rates in the presence of 5mm caffeine atpCa 6.4 range from 32 to 70% of the control rates in fibers from different animals. The extent of inhibition in whole-muscle homogenates is similar to that observed in skinned fibers, but further purification of SR membranes by differential centrifugation reduces their ability to respond to caffeine. In skinned fibers, caffeine does not alter the Ca2+ concentration dependence of Ca uptake (K 0.5, 0.5 to 0.8 μm; Hilln, 1.5 to 2.1). Reductions in rate due to caffeine are accompanied by proportional reductions in maximum capacity of the fibers, and this configuration can be mimicked by treating fibers with the ionophore A23187. Caffeine induces a sustained release of Ca from fibers loaded with Ca oxalate. However, caffeine-induced Ca release is transient when fibers are loaded without oxalate. The effects of caffeine on rate and capacity of Ca uptake as well as the sustained and transient effects on uptake and release observed under different conditions can be accounted for by a single mode of action of caffeine: it increases Ca permeability in a limited population of SR membranes, and these membranes coexist with a population of caffeine-insensitive membranes within the same fiber.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Brandt, P.W., Cox, R.N., Kawai, M. 1980. Can the binding of Ca2+ to the regulatory sites on troponin-C determine the steep pCa/tension relationship of skeletal muscle?Proc. Natl. Acad. Sci. USA 77:4717–4720

    PubMed  Google Scholar 

  2. Briggs, F.N., Poland, J.L., Solaro, R.J. 1977. Relative capabilities of sarcoplasmic reticulum in fast and slow mammalian skeletal muscles.J. Physiol. (London) 266:587–594

    Google Scholar 

  3. Chapman, R.A., Miller, D.J. 1974. Structure-activity relations for caffeine: A comparative study of the inotropic effects of the methylxanthines, imidazoles and related compounds on the frog's heart.J. Physiol. (London) 242:615–634

    Google Scholar 

  4. Chiarandini, D.J., Reuben, J.P., Brandt, P.W., Grundfest, H. 1970. Effects of caffeine on crayfish muscle fibers. I. Activation of contraction and induction of Ca spike electrogenesis.J. Gen. Physiol. 55:640–664

    Google Scholar 

  5. Chiarandini, D.J., Reuben, J.P., Girardier, L., Katz, G.M., Grundfest, H. 1970. Effects of caffeine on crayfish muscle fibers. II. Refractoriness and factors influencing recovery (repriming) of contractile responses.J. Gen. Physiol. 55:665–687

    Google Scholar 

  6. Chiesi, M., Wen, Y.S. 1983. A phosphorylated conformational state of the (Ca2+−Mg2+)-ATPase of fast skeletal muscle sarcoplasmic reticulum can mediate rapid Ca2+ release.J. Biol. Chem. 258:6078–6085

    PubMed  Google Scholar 

  7. De Meis, L., Hasselbach, W. 1971. Acetylphosphate as substrate for Ca2+ uptake in skeletal muscle microsomes.J. Biol. Chem. 246:4759–4763

    Google Scholar 

  8. De Meis, L., Vianna, A.L. 1979. Energy interconversion by the Ca2+-dependent ATPase of the sarcoplasmic reticulum.Annu. Rev. Biochem. 48:275–292

    PubMed  Google Scholar 

  9. Eastwood, A.B., Wood, D.S., Bock, K.L., Sorenson, M.M. 1979. Chemically skinned mammalian skeletal muscle. I. The structure of skinned rabbit psoas.Tissue Cell 11:553–566

    PubMed  Google Scholar 

  10. Endo, M. 1975. Mechanism of action of caffeine on the sarcoplasmic reticulum of skeletal muscle.Proc. Jpn. Acad. 51:479–484

    Google Scholar 

  11. Endo, M., Kitazawa, T. 1976. The effect of ATP on calcium release mechanisms in the sarcoplasmic reticulum of skinned muscle fibers.Proc. Jpn. Acad. 52:595–598

    Google Scholar 

  12. Endo, M., Tanaka, M., Ogawa, Y. 1970. Calcium-induced release of calcium from the sarcoplasmic reticulum of skinned skeletal muscle fibres.Nature (London) 228:34–36

    Google Scholar 

  13. Fabiato, A., Fabiato, F. 1979. Calculator programs for computing the concentrations of the solutions containing multiple metals and ligands used for experiments in skinned muscle cells.J. Physiol. (Paris) 75:463–505

    Google Scholar 

  14. Fairhurst, A.S. 1974. A ryanodine-caffeine sensitive membrane fraction of skeletal muscle.Am. J. Physiol. 227:1124–1131

    PubMed  Google Scholar 

  15. Fairhurst, A.S., Hasselbach, W. 1970. Calcium efflux from a heavy sarcotubular fraction: Effects of ryanodine, caffeine and magnesium.Eur. J. Biochem. 13:504–509

    PubMed  Google Scholar 

  16. Feher, J.J., Briggs, N. 1980. The effect of calcium oxalate crystallization kinetics on the kinetics of calcium uptake and calcium ATPase activity of sarcoplasmic reticulum vesicles.Cell Calcium 1:105–118

    Google Scholar 

  17. Frank, G.B. 1962. Utilization of bound calcium in the action of caffeine and certain multivalent cations on skeletal muscle.J. Physiol. (London) 163:254–268

    Google Scholar 

  18. Fuchs, F. 1969. Inhibition of sarcotubular calcium transport by caffeine: Species and temperature dependence.Biochim. Biophys. Acta 172:566–570

    PubMed  Google Scholar 

  19. Hasselbach, W. 1966. Structural and enzymatic properties of the calcium transporting membranes of the sarcoplasmic reticulum.Ann. N.Y. Acad. Sci. 137:1041–1048

    PubMed  Google Scholar 

  20. Johnson, P.N., Inesi, G. 1969. The effect of methylxanthines and local anesthetics on fragmented sarcoplasmic reticulum.J. Pharmacol. Exp. Ther. 169:308–314

    PubMed  Google Scholar 

  21. Katz, A.M., Repke, D.I., Hasselbach, W. 1977. Dependence of ionophore- and caffeine-induced calcium release from sarcoplasmic reticulum vesicles on external and internal calcium ion concentrations.J. Biol. Chem. 252:1938–1949

    PubMed  Google Scholar 

  22. Kim, D.H., Ohnishi, S.T., Ikemoto, N. 1983. Kinetic studies of calcium release from sarcoplasmic reticulumin vitro.J. Biol. Chem. 258:9662–9668

    PubMed  Google Scholar 

  23. Kirino, Y., Osakabe, M., Shimizu, H. 1983. Ca2+-induced Ca2+ release from fragmented sarcoplasmic reticulum: Ca2+-dependent passive Ca2+ efflux.J. Biochem. 94:1111–1118

    PubMed  Google Scholar 

  24. Kirino, Y., Shimizu, H. 1982. Ca2+-induced Ca2+ release from fragmented sarcoplasmic reticulum: A comparison with skinned muscle fiber studies.J. Biochem. 92:1287–1296

    PubMed  Google Scholar 

  25. Kitazawa, T., Endo, M. 1976. Increase in passive calcium influx into the sarcoplasmic reticulum by “depolarization” and caffeine.Proc. Jpn. Acad. 52:599–602

    Google Scholar 

  26. Koeppe, P., Hamann, C. 1980. A program for non-linear regression analysis to be used on desk-top computers.Comput. Prog. Biomed. 12:121–128

    Google Scholar 

  27. Lowry, O.H., Rosebrough, N.J., Farr, A.L., Randall, R.J. 1951. Protein measurement with the Folin phenol reagent.J. Biol. Chem. 193:265–275

    PubMed  Google Scholar 

  28. Lüttgau, H.C., Oetliker, H. 1968. The action of caffeine on the activation of the contractile mechanism in striated muscle fibers.J. Physiol. (London) 194:51–74

    Google Scholar 

  29. Meissner, G. 1975. Isolation and characterization of two types of sarcoplasmic reticulum vesicles.Biochim. Biophys. Acta 389:51–68

    PubMed  Google Scholar 

  30. Meissner, G. 1984. Adenine nucleotide stimulation of Ca2+-induced Ca2+ release in sarcoplasmic reticulum.J. Biol. Chem. 259:2365–2374

    PubMed  Google Scholar 

  31. Meissner, G., Conner, G.E., Fleischer, S. 1973. Isolation of sarcoplasmic reticulum by zonal centrifugation and purification of Ca2+-pump protein and Ca2+-binding proteins.Biochim. Biophys. Acta 298:246–269

    PubMed  Google Scholar 

  32. Miledi, R., Stefani, E. 1969. Non-selective re-innervation of slow and fast muscle fibres in the rat.Nature (London) 222:569–571

    Google Scholar 

  33. Millman, M., Azari, J. 1977. Adenosine-triphosphate-induced rapid calcium release from fragmented sarcoplasmic reticulum.Biochem. Biophys. Res. Commun. 78:60–66

    PubMed  Google Scholar 

  34. Miyamoto, H., Racker, E. 1982. Mechanism of calcium release from skeletal sarcoplasmic reticulum.J. Membrane Biol. 66:193–201

    Google Scholar 

  35. Nagasaki, K., Kasai, M. 1981. Calcium-induced calcium release from sarcoplasmic reticulum vesicles.J. Biochem. 90:749–755

    PubMed  Google Scholar 

  36. Nagasaki, K., Kasai, M. 1983. Fast release of calcium from sarcoplasmic reticulum vesicles monitored by chlortetracycline fluorescence.J. Biochem. 94:1104–1109

    Google Scholar 

  37. Ogawa, Y. 1970. Some properties of fragmented frog sarcoplasmic reticulum with particular reference to its response to caffeine.J. Biochem. 67:667–683

    PubMed  Google Scholar 

  38. Ogawa, Y., Ebashi, S. 1973. Ca2+ uptake and release by fragmented sarcoplasmic reticulum with special reference to the effect of β,γ-methylene adenosine triphosphate.In: Organization of Energy-transducing Membranes. M. Nakao and L. Packer, editors. pp. 127–140. University Park Press, Tokyo

    Google Scholar 

  39. Ohnishi, S.T. 1979. Calcium-induced calcium release from fragmented sarcoplasmic reticulum.J. Biochem. 86:1147–1150

    PubMed  Google Scholar 

  40. Solaro, R.J., Briggs, F.N. 1974. Estimating the functional capabilities of sarcoplasmic reticulum in cardiac muscle.Circ. Res. 34:531–540

    PubMed  Google Scholar 

  41. Somlyo, A.V., Gonzales-Serratos, H., Shuman, H., McClellan, G., Somlyo, A.P. 1982. Calcium release and ionic changes in the sarcoplasmic reticulum of tetanized muscle: An electron-probe study.J. Cell Biol. 90:577–594

    Google Scholar 

  42. Sorenson, M., Coelho, H.S.L. 1984. Caffeine inhibition of calcium accumulation by the sarcoplasmic reticulum in mammalian skeletal muscle fibers.Braz. J. Med. Biol. Res. 17:398

    Google Scholar 

  43. Sorenson, M., Coelho, H.S.L. 1985. Caffeine inhibition of Ca++ accumulation in skinned fibers.Biophys. J. 47:452a

    Google Scholar 

  44. Sorenson, M., Eastwood, A.B., Reuben, J.P. 1978. Caffeine sensitivity of the sarcoplasmic reticulum: Heterogeneous distribution within sarcomeres of skinned fibers.VIth Intl. Congr. Biophys., Kyoto, p. 234

  45. Sorenson, M.M., Reuben, J.P., Eastwood, A.B., Orentlicher, M., Katz, G.M. 1980. Functional heterogeneity of the sarcoplasmic reticulum within sarcomeres of skinned muscle fibers.J. Membrane Biol. 53:1–17

    Google Scholar 

  46. Stephenson, E.W. 1981. Ca2+ dependence of stimulated45Ca efflux in skinned muscle fibers.J. Gen. Physiol. 77:419–443

    PubMed  Google Scholar 

  47. Su, J.Y., Hasselbach, W. 1984. Caffeine-induced calcium release from isolated sarcoplasmic reticulum of rabbit skeletal muscle.Pfluegers Arch. 400:14–21

    Google Scholar 

  48. Verjovski-Almeida, S., Inesi, G. 1979. Fast-kinetic evidence for an activating effect of ATP on the Ca2+ transport of sarcoplasmic reticulum ATPase.J. Biol. Chem. 254:18–21

    Google Scholar 

  49. Vianna, A.L. 1975. Interaction of calcium and magnesium in activating and inhibiting the nucleoside triphosphatase of sarcoplasmic reticulum vesicles.Biochim. Biophys. Acta 410:389–406

    Google Scholar 

  50. Volpe, P., Mrak, R.E., Costello, B., Fleischer, S. 1984. Calcium release from sarcoplasmic reticulum of normal and dystrophic mice.Biochim. Biophys. Acta 769:67–78

    PubMed  Google Scholar 

  51. Weber, A. 1968. The mechanism of action of caffeine on sarcoplasmic reticulum.J. Gen. Physiol. 52:760–772

    PubMed  Google Scholar 

  52. Weber, A., Herz, R. 1968. The relationship between caffeine contracture of intact muscle and the effect of caffeine on reticulum.J. Gen. Physiol. 52:750–759

    Google Scholar 

  53. Winegrad, S. 1968. Intracellular calcium movements of frog skeletal muscle during recovery from a tetanus.J. Gen. Physiol. 51:65–83

    PubMed  Google Scholar 

  54. Wood, D.S. 1978. Human skeletal muscle: Analysis of Ca2+ regulation in skinned fibers using caffeine.Exp. Neurol. 58:218–230

    PubMed  Google Scholar 

  55. Wood, D.S., Kahn, D.A., Selinger, S., Reuben, J.P. 1977. Regulation of Ca++ efflux from the SR by ATP, Mg++ and Pi in the absence of substrate in skinned mammalian skeletal muscle.Biophys. J. 17:201

    Google Scholar 

  56. Wood, D.S., Zollman, J., Reuben, J.P., Brandt, P.W. 1975. Human skeletal muscle: Properties of the “chemically skinned” fiber.Science 187:1075–1076

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sorenson, M.M., Coelho, H.S.L. & Reuben, J.P. Caffeine inhibition of calcium accumulation by the sarcoplasmic reticulum in mammalian skinned fibers. J. Membrain Biol. 90, 219–230 (1986). https://doi.org/10.1007/BF01870128

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01870128

Key Words

Navigation