Skip to main content
Top
Published in: BMC Anesthesiology 1/2019

Open Access 01-12-2019 | Anemia | Research article

Continuous noninvasive hemoglobin monitoring estimates timing for detecting anemia better than clinicians: a randomized controlled trial

Authors: Bo Tang, Xuerong Yu, Li Xu, Afang Zhu, Yuelun Zhang, Yuguang Huang

Published in: BMC Anesthesiology | Issue 1/2019

Login to get access

Abstract

Background

Hemoglobin measurement is important for transfusion decision-making. Pulse CO-Oximetry provides real-time continuous hemoglobin (SpHb) monitoring. The triage role of SpHb trends based on hemoglobin measurements was investigated.

Methods

In this diagnostic randomized controlled trial, 69 patients undergoing spine or cytoreductive surgery were randomly enrolled into SpHb-monitoring and standard-care groups. Diagnostic blood samples were drawn for CO-oximetry Hb (CoOxHb) when the SpHb decreased by 1 g/dl or at the clinician’s discretion in the standard-care group. The positive predictive value (PPV) was defined as the ability to detect a decrease in CoOxHb > 1 g/dl or a CoOxHb < 10 g/dl; the PPVs were compared using Fisher’s exact test. The SpHb and trend accuracies were calculated. The transfusion units and postoperative hemoglobin levels were compared.

Results

The PPV of a decrease in CoOxHb > 1 g/dl was 93.3% in the SpHb group vs 54.5% without SpHb monitoring (p = 0.002). The PPV of CoOxHb < 10 g/dl was 86.7% vs. 50.0% for these groups (p = 0.015). The CoOxHb was never < 7 g/dl with SpHb monitoring. Sixty SpHb–CoOxHb data pairs and 28 delta pairs (ΔSpHb-ΔCoOxHb) were collected. The bias, precision and limits of agreement were − 0.29, 1.03 and − 2.30 to 1.72 g/dl, respectively. When ΔSpHb and ΔCoOxHb were > 1 g/dl, the concordance rate for changes in hemoglobin reached 100%. The delta pairs revealed a positive correlation [ΔSpHb = 0.49 * ΔCoOxHb - 0.13; r = 0.69, 95% confidence interval (0.53, 0.82)]. No significant differences were found in the transfusion volume or postoperative anemia state.

Conclusions

The SpHb trend tracked changes in hemoglobin satisfactorily during surgery and more accurately estimated the appropriate timing for invasive hemoglobin measurements than the clinicians.

Trial registration

ChiCTR1800016290​ (Prospective registered). Initial registration date was 24/05/2018.
Literature
1.
go back to reference Zhu C, Gao Y, Li Z, Li Q, Gao Z, Liao Y, Deng Z. A systematic review and meta-analysis of the clinical appropriateness of blood transfusion in China. Medicine (Baltimore). 2015;94(50):e2164.CrossRef Zhu C, Gao Y, Li Z, Li Q, Gao Z, Liao Y, Deng Z. A systematic review and meta-analysis of the clinical appropriateness of blood transfusion in China. Medicine (Baltimore). 2015;94(50):e2164.CrossRef
2.
go back to reference Yu X, Pang H, Xu Z, Yan H, Xu L, Du J, Ma L, Yan M, Yao Y, Jiang J, et al. Multicentre evaluation of perioperative red blood cells transfusions in China. Br J Anaesth. 2014;113(6):1055–6.CrossRef Yu X, Pang H, Xu Z, Yan H, Xu L, Du J, Ma L, Yan M, Yao Y, Jiang J, et al. Multicentre evaluation of perioperative red blood cells transfusions in China. Br J Anaesth. 2014;113(6):1055–6.CrossRef
3.
go back to reference Barker SJ, Shander A, Ramsay MA. Continuous noninvasive hemoglobin monitoring: a measured response to a critical review. Anesth Analg. 2016;122(2):565–72.CrossRef Barker SJ, Shander A, Ramsay MA. Continuous noninvasive hemoglobin monitoring: a measured response to a critical review. Anesth Analg. 2016;122(2):565–72.CrossRef
4.
go back to reference Kim SH, Lilot M, Murphy LS, Sidhu KS, Yu Z, Rinehart J, Cannesson M. Accuracy of continuous noninvasive hemoglobin monitoring: a systematic review and meta-analysis. Anesth Analg. 2014;119(2):332–46.CrossRef Kim SH, Lilot M, Murphy LS, Sidhu KS, Yu Z, Rinehart J, Cannesson M. Accuracy of continuous noninvasive hemoglobin monitoring: a systematic review and meta-analysis. Anesth Analg. 2014;119(2):332–46.CrossRef
5.
go back to reference Yamada H, Saeki M, Ito J, Kawada K, Higurashi A, Funakoshi H, Takeda K. The relative trending accuracy of noninvasive continuous hemoglobin monitoring during hemodialysis in critically ill patients. J Clin Monit Comput. 2015;29(1):107–12.CrossRef Yamada H, Saeki M, Ito J, Kawada K, Higurashi A, Funakoshi H, Takeda K. The relative trending accuracy of noninvasive continuous hemoglobin monitoring during hemodialysis in critically ill patients. J Clin Monit Comput. 2015;29(1):107–12.CrossRef
6.
go back to reference Marques NR, Kramer GC, Voigt RB, Salter MG, Kinsky MP. Trending, accuracy, and precision of noninvasive hemoglobin monitoring during human hemorrhage and fixed crystalloid bolus. Shock. 2015;44(Suppl 1):45–9.CrossRef Marques NR, Kramer GC, Voigt RB, Salter MG, Kinsky MP. Trending, accuracy, and precision of noninvasive hemoglobin monitoring during human hemorrhage and fixed crystalloid bolus. Shock. 2015;44(Suppl 1):45–9.CrossRef
7.
go back to reference Patino M, Schultz L, Hossain M, Moeller J, Mahmoud M, Gunter J, Kurth CD. Trending and accuracy of noninvasive hemoglobin monitoring in pediatric perioperative patients. Anesth Analg. 2014;119(4):920–5.CrossRef Patino M, Schultz L, Hossain M, Moeller J, Mahmoud M, Gunter J, Kurth CD. Trending and accuracy of noninvasive hemoglobin monitoring in pediatric perioperative patients. Anesth Analg. 2014;119(4):920–5.CrossRef
8.
go back to reference Gamal M, Abdelhamid B, Zakaria D, Dayem OAE, Rady A, Fawzy M, Hasanin A. Evaluation of noninvasive hemoglobin monitoring in trauma patients with low hemoglobin levels. Shock. 2018;49(2):150–3.CrossRef Gamal M, Abdelhamid B, Zakaria D, Dayem OAE, Rady A, Fawzy M, Hasanin A. Evaluation of noninvasive hemoglobin monitoring in trauma patients with low hemoglobin levels. Shock. 2018;49(2):150–3.CrossRef
9.
go back to reference Ryan ML, Maxwell AC, Manning L, Jacobs JD, Bachier-Rodriguez M, Feliz A, Williams RF. Noninvasive hemoglobin measurement in pediatric trauma patients. J Trauma Acute Care Surg. 2016;81(6):1162–6.CrossRef Ryan ML, Maxwell AC, Manning L, Jacobs JD, Bachier-Rodriguez M, Feliz A, Williams RF. Noninvasive hemoglobin measurement in pediatric trauma patients. J Trauma Acute Care Surg. 2016;81(6):1162–6.CrossRef
10.
go back to reference Baulig W, Seifert B, Spahn DR, Theusinger OM. Accuracy of non-invasive continuous total hemoglobin measurement by pulse CO-oximetry in severe traumatized and surgical bleeding patients. J Clin Monit Comput. 2017;31(1):177–85.CrossRef Baulig W, Seifert B, Spahn DR, Theusinger OM. Accuracy of non-invasive continuous total hemoglobin measurement by pulse CO-oximetry in severe traumatized and surgical bleeding patients. J Clin Monit Comput. 2017;31(1):177–85.CrossRef
11.
go back to reference Akyildiz B. Noninvasive measurement of hemoglobin using spectrophotometry: is it useful for the critically ill child? J Pediatr Hematol Oncol. 2018;40(1):e19–22.PubMed Akyildiz B. Noninvasive measurement of hemoglobin using spectrophotometry: is it useful for the critically ill child? J Pediatr Hematol Oncol. 2018;40(1):e19–22.PubMed
12.
go back to reference Saito J, Kitayama M, Amanai E, Toyooka K, Hirota K. Impact of acute changes in perfusion index and blood pressure on the accuracy of non-invasive continuous hemoglobin concentration measurements during induction of anesthesia. J Anesth. 2017;31(2):193–7.CrossRef Saito J, Kitayama M, Amanai E, Toyooka K, Hirota K. Impact of acute changes in perfusion index and blood pressure on the accuracy of non-invasive continuous hemoglobin concentration measurements during induction of anesthesia. J Anesth. 2017;31(2):193–7.CrossRef
13.
go back to reference Yang S, Hu PF, Anazodo A, Gao C, Chen H, Wade C, Hartsky L, Miller C, Imle C, Fang R, et al. Trends of hemoglobin oximetry: do they help predict blood transfusion during trauma patient resuscitation? Anesth Analg. 2016;122(1):115–25.CrossRef Yang S, Hu PF, Anazodo A, Gao C, Chen H, Wade C, Hartsky L, Miller C, Imle C, Fang R, et al. Trends of hemoglobin oximetry: do they help predict blood transfusion during trauma patient resuscitation? Anesth Analg. 2016;122(1):115–25.CrossRef
14.
go back to reference Xu T, Yang T, Kim JB, Romig MC, Sapirstein A, Winters BD. Evaluation of noninvasive hemoglobin monitoring in surgical critical care patients. Crit Care Med. 2016;44(6):e344–52.CrossRef Xu T, Yang T, Kim JB, Romig MC, Sapirstein A, Winters BD. Evaluation of noninvasive hemoglobin monitoring in surgical critical care patients. Crit Care Med. 2016;44(6):e344–52.CrossRef
15.
go back to reference Joseph B, Hadjizacharia P, Aziz H, Snyder K, Wynne J, Kulvatunyou N, Tang A, O'Keeffe T, Latifi R, Friese R, et al. Continuous noninvasive hemoglobin monitor from pulse ox: ready for prime time? World J Surg. 2013;37(3):525–9.CrossRef Joseph B, Hadjizacharia P, Aziz H, Snyder K, Wynne J, Kulvatunyou N, Tang A, O'Keeffe T, Latifi R, Friese R, et al. Continuous noninvasive hemoglobin monitor from pulse ox: ready for prime time? World J Surg. 2013;37(3):525–9.CrossRef
16.
go back to reference Saito J, Kitayama M, Oishi M, Kudo T, Sawada M, Hashimoto H, Hirota K. The accuracy of non-invasively continuous total hemoglobin measurement by pulse CO-oximetry undergoing acute normovolemic hemodilution and reinfusion of autologous blood. J Anesth. 2015;29(1):29–34.CrossRef Saito J, Kitayama M, Oishi M, Kudo T, Sawada M, Hashimoto H, Hirota K. The accuracy of non-invasively continuous total hemoglobin measurement by pulse CO-oximetry undergoing acute normovolemic hemodilution and reinfusion of autologous blood. J Anesth. 2015;29(1):29–34.CrossRef
17.
go back to reference Berkow L, Rotolo S, Mirski E. Continuous noninvasive hemoglobin monitoring during complex spine surgery. Anesth Analg. 2011;113(6):1396–402.CrossRef Berkow L, Rotolo S, Mirski E. Continuous noninvasive hemoglobin monitoring during complex spine surgery. Anesth Analg. 2011;113(6):1396–402.CrossRef
18.
go back to reference Colquhoun DA, Forkin KT, Durieux ME, Thiele RH. Ability of the Masimo pulse CO-oximeter to detect changes in hemoglobin. J Clin Monit Comput. 2012;26(2):69–73.CrossRef Colquhoun DA, Forkin KT, Durieux ME, Thiele RH. Ability of the Masimo pulse CO-oximeter to detect changes in hemoglobin. J Clin Monit Comput. 2012;26(2):69–73.CrossRef
19.
go back to reference Bridges E, Hatzfeld JJ. Noninvasive continuous hemoglobin monitoring in combat casualties: a pilot study. Shock. 2016;46(3 Suppl 1):55–60.CrossRef Bridges E, Hatzfeld JJ. Noninvasive continuous hemoglobin monitoring in combat casualties: a pilot study. Shock. 2016;46(3 Suppl 1):55–60.CrossRef
20.
go back to reference Ribed-Sanchez B, Gonzalez-Gaya C, Varea-Diaz S, Corbacho-Fabregat C, Perez-Oteyza J, Belda-Iniesta C. Economic analysis of the reduction of blood transfusions during surgical procedures while continuous hemoglobin monitoring is used. Sensors (Basel). 2018;18(5).CrossRef Ribed-Sanchez B, Gonzalez-Gaya C, Varea-Diaz S, Corbacho-Fabregat C, Perez-Oteyza J, Belda-Iniesta C. Economic analysis of the reduction of blood transfusions during surgical procedures while continuous hemoglobin monitoring is used. Sensors (Basel). 2018;18(5).CrossRef
Metadata
Title
Continuous noninvasive hemoglobin monitoring estimates timing for detecting anemia better than clinicians: a randomized controlled trial
Authors
Bo Tang
Xuerong Yu
Li Xu
Afang Zhu
Yuelun Zhang
Yuguang Huang
Publication date
01-12-2019
Publisher
BioMed Central
Keyword
Anemia
Published in
BMC Anesthesiology / Issue 1/2019
Electronic ISSN: 1471-2253
DOI
https://doi.org/10.1186/s12871-019-0755-1

Other articles of this Issue 1/2019

BMC Anesthesiology 1/2019 Go to the issue