Skip to main content
Top
Published in: Respiratory Research 5/2001

Open Access 01-10-2001 | Commentary

Tumor necrosis factor-α and muscle wasting: a cellular perspective

Authors: Michael B Reid, Yi-Ping Li

Published in: Respiratory Research | Issue 5/2001

Login to get access

Abstract

Tumor necrosis factor-α (TNF-α) is a polypeptide cytokine that has been associated with muscle wasting and weakness in inflammatory disease. Despite its potential importance in muscle pathology, the direct effects of TNF-α on skeletal muscle have remained undefined until recently. Studies of cultured muscle cells indicate that TNF-α disrupts the differentiation process and can promote catabolism in mature cells. The latter response appears to be mediated by reactive oxygen species and nuclear factor-κB which upregulate ubiquitin/proteasome activity. This commentary outlines our current understanding of TNF-α effects on skeletal muscle and the mechanism of TNF-α action.
Literature
1.
go back to reference Schutze S, Machleidt T, Kronke M: Mechanisms of tumor necrosis factor action. Semin Oncol. 1992, 2: 16-24.CrossRef Schutze S, Machleidt T, Kronke M: Mechanisms of tumor necrosis factor action. Semin Oncol. 1992, 2: 16-24.CrossRef
2.
go back to reference Buck M, Chojkier M: Muscle wasting and dedifferentiation induced by oxidative stress in a murine model of cachexia is prevented by inhibitors of nitric oxide synthesis and antioxi-dants. EMBO J. 1996, 15: 1753-1765.PubMedPubMedCentral Buck M, Chojkier M: Muscle wasting and dedifferentiation induced by oxidative stress in a murine model of cachexia is prevented by inhibitors of nitric oxide synthesis and antioxi-dants. EMBO J. 1996, 15: 1753-1765.PubMedPubMedCentral
3.
go back to reference Garcia-Martinez C, Lopez-Soriano FJ, Argiles JM: Acute treatment with tumour necrosis factor-alpha induces changes in protein metabolism in rat skeletal muscle. Mol Cell Biochem. 1993, 125: 11-18.PubMedCrossRef Garcia-Martinez C, Lopez-Soriano FJ, Argiles JM: Acute treatment with tumour necrosis factor-alpha induces changes in protein metabolism in rat skeletal muscle. Mol Cell Biochem. 1993, 125: 11-18.PubMedCrossRef
4.
5.
go back to reference Anker SD, Rauchaus M: Insights into the pathogenesis of chronic heart failure: immune activation and cachexia. Curr Opin Cardiol. 1999, 14: 211-216. 10.1097/00001573-199905000-00004.PubMedCrossRef Anker SD, Rauchaus M: Insights into the pathogenesis of chronic heart failure: immune activation and cachexia. Curr Opin Cardiol. 1999, 14: 211-216. 10.1097/00001573-199905000-00004.PubMedCrossRef
6.
go back to reference Moldawer LL, Sattler FR: Human immunodifficency virus-associated wasting and mechanisms associated with inflammation. Semin Oncol. 1998, 25: 73-81.PubMed Moldawer LL, Sattler FR: Human immunodifficency virus-associated wasting and mechanisms associated with inflammation. Semin Oncol. 1998, 25: 73-81.PubMed
7.
go back to reference Farber MO, Mannix ET: Tissue wasting in patients with chronic obstructive pulmonary disease. Neurol Clin. 2000, 18: 245-262.PubMedCrossRef Farber MO, Mannix ET: Tissue wasting in patients with chronic obstructive pulmonary disease. Neurol Clin. 2000, 18: 245-262.PubMedCrossRef
8.
go back to reference Di Francia M, Barbier D, Mege JL, Orehek J: Tumor necrosis factor-α levels and weight loss in chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 1994, 150: 1453-1455.PubMedCrossRef Di Francia M, Barbier D, Mege JL, Orehek J: Tumor necrosis factor-α levels and weight loss in chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 1994, 150: 1453-1455.PubMedCrossRef
9.
go back to reference de Godoy I, Donahoe M, Calhoun WJ, Mancino J, Rogers RM: Elevated TNF-α production by peripheral blood monocytes of weight-losing COPD patients. Am J Respir Crit Care Med. 1996, 153: 633-638.PubMedCrossRef de Godoy I, Donahoe M, Calhoun WJ, Mancino J, Rogers RM: Elevated TNF-α production by peripheral blood monocytes of weight-losing COPD patients. Am J Respir Crit Care Med. 1996, 153: 633-638.PubMedCrossRef
10.
go back to reference Guttridge DC, Mayo MW, Madrid LV, Wang CY, Baldwin AS: NF-κB-induced loss of MyoD messenger RNA: possible role in muscle decay and cachexia. Science. 2000, 289: 2363-2366. 10.1126/science.289.5488.2363.PubMedCrossRef Guttridge DC, Mayo MW, Madrid LV, Wang CY, Baldwin AS: NF-κB-induced loss of MyoD messenger RNA: possible role in muscle decay and cachexia. Science. 2000, 289: 2363-2366. 10.1126/science.289.5488.2363.PubMedCrossRef
11.
go back to reference Layne MD, Farmer SR: Tumor necrosis factor-alpha and basic fibroblast growth factor differentially inhibit the insulin-like growth factor-I induced expression of myogenin in C2C12 myoblasts. Exp Cell Res. 1999, 249: 177-187. 10.1006/excr.1999.4465.PubMedCrossRef Layne MD, Farmer SR: Tumor necrosis factor-alpha and basic fibroblast growth factor differentially inhibit the insulin-like growth factor-I induced expression of myogenin in C2C12 myoblasts. Exp Cell Res. 1999, 249: 177-187. 10.1006/excr.1999.4465.PubMedCrossRef
12.
go back to reference Thaloor D, Miller KJ, Gephart J, Mitchell PO, Pavlath GK: Systemic administration of the NF-κB inhibitor curcumin stimulates muscle regenerations after traumatic injury. Am J Physiol. 1999, 277: C320-C329.PubMed Thaloor D, Miller KJ, Gephart J, Mitchell PO, Pavlath GK: Systemic administration of the NF-κB inhibitor curcumin stimulates muscle regenerations after traumatic injury. Am J Physiol. 1999, 277: C320-C329.PubMed
13.
go back to reference Li Y-P, Schwartz RJ, Waddell ID, Holloway BR, Reid MB: Skeletal muscle myocytes undergo protein loss and reactive oxygen-mediated NF-κB activation in response to tumor necrosis factor α. FASEB J. 1998, 12: 871-880.PubMed Li Y-P, Schwartz RJ, Waddell ID, Holloway BR, Reid MB: Skeletal muscle myocytes undergo protein loss and reactive oxygen-mediated NF-κB activation in response to tumor necrosis factor α. FASEB J. 1998, 12: 871-880.PubMed
14.
go back to reference Li Y-P, Reid MB: NF-κB mediates the protein loss induced by TNF-α in differentiated skeletal muscle myotubes. Am J Physiol Regul Integr Comp Physiol. 2000, 279: R1165-R1170.PubMed Li Y-P, Reid MB: NF-κB mediates the protein loss induced by TNF-α in differentiated skeletal muscle myotubes. Am J Physiol Regul Integr Comp Physiol. 2000, 279: R1165-R1170.PubMed
15.
go back to reference Rofe AM, Conyers RAJ, Bais R, Gamble JR, Vadas MA: The effects of recombinant tumour necrosis factor (cachectin) on metabolism in isolated rat adipocyte, hepatocyte and muscle preparations. Biochem J. 1987, 247: 789-792.PubMedPubMedCentralCrossRef Rofe AM, Conyers RAJ, Bais R, Gamble JR, Vadas MA: The effects of recombinant tumour necrosis factor (cachectin) on metabolism in isolated rat adipocyte, hepatocyte and muscle preparations. Biochem J. 1987, 247: 789-792.PubMedPubMedCentralCrossRef
16.
go back to reference Goodman MN: Tumor necrosis factor induces skeletal muscle protein breakdown in rats. Am J Physiol. 1991, 260: E727-E730.PubMed Goodman MN: Tumor necrosis factor induces skeletal muscle protein breakdown in rats. Am J Physiol. 1991, 260: E727-E730.PubMed
17.
go back to reference Langen RCJ, Schols AMWJ, Kelders MCJM, Wouters EFM, Janssen-Heininger YMW: Inflammatory cytokines inhibit myo-genic differentiation through activation of nuclear factor-κB. FASEB J. 2001, 15: 1169-1180. 10.1096/fj.00-0463.PubMedCrossRef Langen RCJ, Schols AMWJ, Kelders MCJM, Wouters EFM, Janssen-Heininger YMW: Inflammatory cytokines inhibit myo-genic differentiation through activation of nuclear factor-κB. FASEB J. 2001, 15: 1169-1180. 10.1096/fj.00-0463.PubMedCrossRef
18.
go back to reference Li Y-P, Atkins CM, Sweatt JD, Reid MB: Mitochondria mediate tumor necrosis factor-α/NF-κB signaling in skeletal muscle myotubes. Antioxid Redox Signal. 1999, 1: 97-104.PubMedCrossRef Li Y-P, Atkins CM, Sweatt JD, Reid MB: Mitochondria mediate tumor necrosis factor-α/NF-κB signaling in skeletal muscle myotubes. Antioxid Redox Signal. 1999, 1: 97-104.PubMedCrossRef
19.
go back to reference Li Y-P, Schwartz RJ: TNF-α regulates early dfferentiation of C2C12 myoblasts in an autocrine fashion [abstract]. FASEB J. 2001, 15: A1080- Li Y-P, Schwartz RJ: TNF-α regulates early dfferentiation of C2C12 myoblasts in an autocrine fashion [abstract]. FASEB J. 2001, 15: A1080-
20.
go back to reference Sen CK, Khanna S, Resznick AZ, Roy S, Packer L: Glutathione regulation of tumor necrosis factor-α-induced NF-κB activation in skeletal muscle-derived L6 cells. Biochem Biophys Res Comm. 1997, 237: 645-649. 10.1006/bbrc.1997.7206.PubMedCrossRef Sen CK, Khanna S, Resznick AZ, Roy S, Packer L: Glutathione regulation of tumor necrosis factor-α-induced NF-κB activation in skeletal muscle-derived L6 cells. Biochem Biophys Res Comm. 1997, 237: 645-649. 10.1006/bbrc.1997.7206.PubMedCrossRef
21.
go back to reference Tartaglia LA, Goeddel DV: Two TNF receptors. Immunol Today. 1992, 13: 151-153. 10.1016/0167-5699(92)90116-O.PubMedCrossRef Tartaglia LA, Goeddel DV: Two TNF receptors. Immunol Today. 1992, 13: 151-153. 10.1016/0167-5699(92)90116-O.PubMedCrossRef
22.
go back to reference Llovera M, Garcia-Martinez C, Lopez-Soriano J, Carbo N, Agell M, Lopez-Soriano FJ, Argiles JM: Role of TNF receptor 1 in protein turnover during cancer cachexia using gene knockout mice. Mol Cell Endocrinol. 1998, 142: 183-189. 10.1016/S0303-7207(98)00105-1.PubMedCrossRef Llovera M, Garcia-Martinez C, Lopez-Soriano J, Carbo N, Agell M, Lopez-Soriano FJ, Argiles JM: Role of TNF receptor 1 in protein turnover during cancer cachexia using gene knockout mice. Mol Cell Endocrinol. 1998, 142: 183-189. 10.1016/S0303-7207(98)00105-1.PubMedCrossRef
23.
go back to reference Llovera M, Garcia-Martinez C, Lopez-Soriano J, Agell M, Lopez-Soriano FJ, Garcia I, Argiles JM: Protein turnover in skeletal muscle of tumour-bearing mice overexpressing the soluble TNF receptor-1. Cancer Lett. 1998, 130: 19-27. 10.1016/S0304-3835(98)00137-2.PubMedCrossRef Llovera M, Garcia-Martinez C, Lopez-Soriano J, Agell M, Lopez-Soriano FJ, Garcia I, Argiles JM: Protein turnover in skeletal muscle of tumour-bearing mice overexpressing the soluble TNF receptor-1. Cancer Lett. 1998, 130: 19-27. 10.1016/S0304-3835(98)00137-2.PubMedCrossRef
24.
go back to reference Garcia-Martinez C, Agell N, Llovera M, Lopez-Soriano FJ, Argiles JM: Tumour necrosis factor-α increases the ubiquitinization of rat skeletal muscle proteins. FEBS Lett. 1993, 323: 211-214. 10.1016/0014-5793(93)81341-V.PubMedCrossRef Garcia-Martinez C, Agell N, Llovera M, Lopez-Soriano FJ, Argiles JM: Tumour necrosis factor-α increases the ubiquitinization of rat skeletal muscle proteins. FEBS Lett. 1993, 323: 211-214. 10.1016/0014-5793(93)81341-V.PubMedCrossRef
25.
go back to reference Garcia-Martinez C, Llovera M, Agell N, Lopez-Soriano FJ, Argiles JM: Ubiquitin gene expession in skeletal muscle is increased during sepsis: involvement of TNF-α but not IL-1. Biochem Biophys Res Comm. 1995, 217: 839-844. 10.1006/bbrc.1995.2848.PubMedCrossRef Garcia-Martinez C, Llovera M, Agell N, Lopez-Soriano FJ, Argiles JM: Ubiquitin gene expession in skeletal muscle is increased during sepsis: involvement of TNF-α but not IL-1. Biochem Biophys Res Comm. 1995, 217: 839-844. 10.1006/bbrc.1995.2848.PubMedCrossRef
26.
go back to reference Llovera M, Garcia-Martinez C, Lopez-Soriano FJ, Argiles JM: TNF can directly induce the expression of ubiquitin-dependent proteolytic system in rat soleus muscles. Biochem Biophys Res Comm. 1997, 230: 238-241. 10.1006/bbrc.1996.5827.PubMedCrossRef Llovera M, Garcia-Martinez C, Lopez-Soriano FJ, Argiles JM: TNF can directly induce the expression of ubiquitin-dependent proteolytic system in rat soleus muscles. Biochem Biophys Res Comm. 1997, 230: 238-241. 10.1006/bbrc.1996.5827.PubMedCrossRef
27.
go back to reference Lecker SH, Solomon V, Mitch WE, Goldberg AL: Muscle protein breakdown and the critical role of the ubiquitin-proteasome pathway in normal and disease states. J Nutr. 1999, 129: 227S-237S.PubMed Lecker SH, Solomon V, Mitch WE, Goldberg AL: Muscle protein breakdown and the critical role of the ubiquitin-proteasome pathway in normal and disease states. J Nutr. 1999, 129: 227S-237S.PubMed
28.
go back to reference Hasselgren PO, Fischer JE: Muscle cachexia: current concepts of intracellular mechanisms and molecular regulation. Ann Surg. 2001, 233: 9-17. 10.1097/00000658-200101000-00003.PubMedPubMedCentralCrossRef Hasselgren PO, Fischer JE: Muscle cachexia: current concepts of intracellular mechanisms and molecular regulation. Ann Surg. 2001, 233: 9-17. 10.1097/00000658-200101000-00003.PubMedPubMedCentralCrossRef
29.
go back to reference Li Y-P, Reid MB: TNF-α and H2O2 stimulate ubiquitin conjugation of proteins in skeletal muscle myotubes [abstract]. FASEB J. 2001, 15: A1080- Li Y-P, Reid MB: TNF-α and H2O2 stimulate ubiquitin conjugation of proteins in skeletal muscle myotubes [abstract]. FASEB J. 2001, 15: A1080-
Metadata
Title
Tumor necrosis factor-α and muscle wasting: a cellular perspective
Authors
Michael B Reid
Yi-Ping Li
Publication date
01-10-2001
Publisher
BioMed Central
Published in
Respiratory Research / Issue 5/2001
Electronic ISSN: 1465-993X
DOI
https://doi.org/10.1186/rr67

Other articles of this Issue 5/2001

Respiratory Research 5/2001 Go to the issue
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discuss last year's major advances in heart failure and cardiomyopathies.