Skip to main content
Top
Published in: Vascular Cell 1/2013

Open Access 01-12-2013 | Research

Notch and VEGF pathways play distinct but complementary roles in tumor angiogenesis

Authors: Sonia L Hernandez, Debarshi Banerjee, Alejandro Garcia, Thaned Kangsamaksin, Wei-Yi Cheng, Dimitris Anastassiou, Yasuhiro Funahashi, Angela Kadenhe-Chiweshe, Carrie J Shawber, Jan K Kitajewski, Jessica J Kandel, Darrell J Yamashiro

Published in: Vascular Cell | Issue 1/2013

Login to get access

Abstract

Background

Anti-angiogenesis is a validated strategy to treat cancer, with efficacy in controlling both primary tumor growth and metastasis. The role of the Notch family of proteins in tumor angiogenesis is still emerging, but recent data suggest that Notch signaling may function in the physiologic response to loss of VEGF signaling, and thus participate in tumor adaptation to VEGF inhibitors.

Methods

We asked whether combining Notch and VEGF blockade would enhance suppression of tumor angiogenesis and growth, using the NGP neuroblastoma model. NGP tumors were engineered to express a Notch1 decoy construct, which restricts Notch signaling, and then treated with either the anti-VEGF antibody bevacizumab or vehicle.

Results

Combining Notch and VEGF blockade led to blood vessel regression, increasing endothelial cell apoptosis and disrupting pericyte coverage of endothelial cells. Combined Notch and VEGF blockade did not affect tumor weight, but did additively reduce tumor viability.

Conclusions

Our results indicate that Notch and VEGF pathways play distinct but complementary roles in tumor angiogenesis, and show that concurrent blockade disrupts primary tumor vasculature and viability further than inhibition of either pathway alone.
Appendix
Available only for authorised users
Literature
1.
go back to reference Glade Bender JL, Adamson PC, Reid JM, Xu L, Baruchel S, Shaked Y, Kerbel RS, Cooney-Qualter EM, Stempak D, Chen HX, et al: Phase I trial and pharmacokinetic study of bevacizumab in pediatric patients with refractory solid tumors: a Children’s Oncology Group Study. J Clin Oncol. 2008, 26: 399-405. 10.1200/JCO.2007.11.9230.CrossRefPubMed Glade Bender JL, Adamson PC, Reid JM, Xu L, Baruchel S, Shaked Y, Kerbel RS, Cooney-Qualter EM, Stempak D, Chen HX, et al: Phase I trial and pharmacokinetic study of bevacizumab in pediatric patients with refractory solid tumors: a Children’s Oncology Group Study. J Clin Oncol. 2008, 26: 399-405. 10.1200/JCO.2007.11.9230.CrossRefPubMed
2.
go back to reference Kim ES, Serur A, Huang J, Manley CA, McCrudden KW, Frischer JS, Soffer SZ, Ring L, New T, Zabski S, et al: Potent VEGF blockade causes regression of coopted vessels in a model of neuroblastoma. Proc Natl Acad Sci USA. 2002, 99: 11399-11404. 10.1073/pnas.172398399.PubMedCentralCrossRefPubMed Kim ES, Serur A, Huang J, Manley CA, McCrudden KW, Frischer JS, Soffer SZ, Ring L, New T, Zabski S, et al: Potent VEGF blockade causes regression of coopted vessels in a model of neuroblastoma. Proc Natl Acad Sci USA. 2002, 99: 11399-11404. 10.1073/pnas.172398399.PubMedCentralCrossRefPubMed
3.
go back to reference Zaghloul N, Hernandez SL, Bae JO, Huang J, Fisher JC, Lee A, Kadenhe-Chiweshe A, Kandel JJ, Yamashiro DJ: Vascular endothelial growth factor blockade rapidly elicits alternative proangiogenic pathways in neuroblastoma. Int J Oncol. 2009, 34: 401-407.PubMedCentralPubMed Zaghloul N, Hernandez SL, Bae JO, Huang J, Fisher JC, Lee A, Kadenhe-Chiweshe A, Kandel JJ, Yamashiro DJ: Vascular endothelial growth factor blockade rapidly elicits alternative proangiogenic pathways in neuroblastoma. Int J Oncol. 2009, 34: 401-407.PubMedCentralPubMed
4.
go back to reference Kim KJ, Li B, Winer J, Armanini M, Gillett N, Phillips HS, Ferrara N: Inhibition of vascular endothelial growth factor-induced angiogenesis suppresses tumour growth in vivo. Nature. 1993, 362: 841-844. 10.1038/362841a0.CrossRefPubMed Kim KJ, Li B, Winer J, Armanini M, Gillett N, Phillips HS, Ferrara N: Inhibition of vascular endothelial growth factor-induced angiogenesis suppresses tumour growth in vivo. Nature. 1993, 362: 841-844. 10.1038/362841a0.CrossRefPubMed
5.
go back to reference Funahashi Y, Hernandez SL, Das I, Ahn A, Huang J, Vorontchikhina M, Sharma A, Kanamaru E, Borisenko V, Desilva DM, et al: A notch1 ectodomain construct inhibits endothelial notch signaling, tumor growth, and angiogenesis. Cancer Res. 2008, 68: 4727-4735. 10.1158/0008-5472.CAN-07-6499.PubMedCentralCrossRefPubMed Funahashi Y, Hernandez SL, Das I, Ahn A, Huang J, Vorontchikhina M, Sharma A, Kanamaru E, Borisenko V, Desilva DM, et al: A notch1 ectodomain construct inhibits endothelial notch signaling, tumor growth, and angiogenesis. Cancer Res. 2008, 68: 4727-4735. 10.1158/0008-5472.CAN-07-6499.PubMedCentralCrossRefPubMed
6.
go back to reference Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, Paulovich A, Pomeroy SL, Golub TR, Lander ES, Mesirov JP: Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA. 2005, 102: 15545-15550. 10.1073/pnas.0506580102.PubMedCentralCrossRefPubMed Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, Paulovich A, Pomeroy SL, Golub TR, Lander ES, Mesirov JP: Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA. 2005, 102: 15545-15550. 10.1073/pnas.0506580102.PubMedCentralCrossRefPubMed
7.
go back to reference Baluk P, Morikawa S, Haskell A, Mancuso M, McDonald DM: Abnormalities of basement membrane on blood vessels and endothelial sprouts in tumors. Am J Pathol. 2003, 163: 1801-1815. 10.1016/S0002-9440(10)63540-7.PubMedCentralCrossRefPubMed Baluk P, Morikawa S, Haskell A, Mancuso M, McDonald DM: Abnormalities of basement membrane on blood vessels and endothelial sprouts in tumors. Am J Pathol. 2003, 163: 1801-1815. 10.1016/S0002-9440(10)63540-7.PubMedCentralCrossRefPubMed
8.
go back to reference Ridgway J, Zhang G, Wu Y, Stawicki S, Liang WC, Chanthery Y, Kowalski J, Watts RJ, Callahan C, Kasman I, et al: Inhibition of Dll4 signalling inhibits tumour growth by deregulating angiogenesis. Nature. 2006, 444: 1083-1087. 10.1038/nature05313.CrossRefPubMed Ridgway J, Zhang G, Wu Y, Stawicki S, Liang WC, Chanthery Y, Kowalski J, Watts RJ, Callahan C, Kasman I, et al: Inhibition of Dll4 signalling inhibits tumour growth by deregulating angiogenesis. Nature. 2006, 444: 1083-1087. 10.1038/nature05313.CrossRefPubMed
9.
go back to reference Noseda M, Chang L, McLean G, Grim JE, Clurman BE, Smith LL, Karsan A: Notch activation induces endothelial cell cycle arrest and participates in contact inhibition: role of p21Cip1 repression. Mol Cell Biol. 2004, 24: 8813-8822. 10.1128/MCB.24.20.8813-8822.2004.PubMedCentralCrossRefPubMed Noseda M, Chang L, McLean G, Grim JE, Clurman BE, Smith LL, Karsan A: Notch activation induces endothelial cell cycle arrest and participates in contact inhibition: role of p21Cip1 repression. Mol Cell Biol. 2004, 24: 8813-8822. 10.1128/MCB.24.20.8813-8822.2004.PubMedCentralCrossRefPubMed
10.
go back to reference Liu ZJ, Shirakawa T, Li Y, Soma A, Oka M, Dotto GP, Fairman RM, Velazquez OC, Herlyn M: Regulation of Notch1 and Dll4 by vascular endothelial growth factor in arterial endothelial cells: implications for modulating arteriogenesis and angiogenesis. Mol Cell Biol. 2003, 23: 14-25. 10.1128/MCB.23.1.14-25.2003.PubMedCentralCrossRefPubMed Liu ZJ, Shirakawa T, Li Y, Soma A, Oka M, Dotto GP, Fairman RM, Velazquez OC, Herlyn M: Regulation of Notch1 and Dll4 by vascular endothelial growth factor in arterial endothelial cells: implications for modulating arteriogenesis and angiogenesis. Mol Cell Biol. 2003, 23: 14-25. 10.1128/MCB.23.1.14-25.2003.PubMedCentralCrossRefPubMed
11.
go back to reference Funahashi Y, Shawber CJ, Vorontchikhina M, Sharma A, Outtz HH, Kitajewski J: Notch regulates the angiogenic response via induction of VEGFR-1. J Angiogenes Res. 2010, 2: 3-10.1186/2040-2384-2-3.PubMedCentralCrossRefPubMed Funahashi Y, Shawber CJ, Vorontchikhina M, Sharma A, Outtz HH, Kitajewski J: Notch regulates the angiogenic response via induction of VEGFR-1. J Angiogenes Res. 2010, 2: 3-10.1186/2040-2384-2-3.PubMedCentralCrossRefPubMed
12.
go back to reference Shawber CJ, Funahashi Y, Francisco E, Vorontchikhina M, Kitamura Y, Stowell SA, Borisenko V, Feirt N, Podgrabinska S, Shiraishi K, et al: Notch alters VEGF responsiveness in human and murine endothelial cells by direct regulation of VEGFR-3 expression. J Clin Invest. 2007, 117: 3369-3382. 10.1172/JCI24311.PubMedCentralCrossRefPubMed Shawber CJ, Funahashi Y, Francisco E, Vorontchikhina M, Kitamura Y, Stowell SA, Borisenko V, Feirt N, Podgrabinska S, Shiraishi K, et al: Notch alters VEGF responsiveness in human and murine endothelial cells by direct regulation of VEGFR-3 expression. J Clin Invest. 2007, 117: 3369-3382. 10.1172/JCI24311.PubMedCentralCrossRefPubMed
13.
go back to reference Taylor KL, Henderson AM, Hughes CC: Notch activation during endothelial cell network formation in vitro targets the basic HLH transcription factor HESR-1 and downregulates VEGFR-2/KDR expression. Microvasc Res. 2002, 64: 372-383. 10.1006/mvre.2002.2443.CrossRefPubMed Taylor KL, Henderson AM, Hughes CC: Notch activation during endothelial cell network formation in vitro targets the basic HLH transcription factor HESR-1 and downregulates VEGFR-2/KDR expression. Microvasc Res. 2002, 64: 372-383. 10.1006/mvre.2002.2443.CrossRefPubMed
14.
go back to reference Noguera-Troise I, Daly C, Papadopoulos NJ, Coetzee S, Boland P, Gale NW, Lin HC, Yancopoulos GD, Thurston G: Blockade of Dll4 inhibits tumour growth by promoting non-productive angiogenesis. Nature. 2006, 444: 1032-1037. 10.1038/nature05355.CrossRefPubMed Noguera-Troise I, Daly C, Papadopoulos NJ, Coetzee S, Boland P, Gale NW, Lin HC, Yancopoulos GD, Thurston G: Blockade of Dll4 inhibits tumour growth by promoting non-productive angiogenesis. Nature. 2006, 444: 1032-1037. 10.1038/nature05355.CrossRefPubMed
15.
go back to reference Wu Y, Cain-Hom C, Choy L, Hagenbeek TJ, de Leon GP, Chen Y, Finkle D, Venook R, Wu X, Ridgway J, et al: Therapeutic antibody targeting of individual Notch receptors. Nature. 2010, 464: 1052-1057. 10.1038/nature08878.CrossRefPubMed Wu Y, Cain-Hom C, Choy L, Hagenbeek TJ, de Leon GP, Chen Y, Finkle D, Venook R, Wu X, Ridgway J, et al: Therapeutic antibody targeting of individual Notch receptors. Nature. 2010, 464: 1052-1057. 10.1038/nature08878.CrossRefPubMed
16.
go back to reference Soffer SZ, Moore JT, Kim E, Huang J, Yokoi A, Manley C, O’Toole K, Stolar C, Middlesworth W, Yamashiro DJ, Kandel JJ: Combination antiangiogenic therapy: increased efficacy in a murine model of Wilms tumor. Journal of pediatric surgery. 2001, 36: 1177-1181. 10.1053/jpsu.2001.25747.CrossRefPubMed Soffer SZ, Moore JT, Kim E, Huang J, Yokoi A, Manley C, O’Toole K, Stolar C, Middlesworth W, Yamashiro DJ, Kandel JJ: Combination antiangiogenic therapy: increased efficacy in a murine model of Wilms tumor. Journal of pediatric surgery. 2001, 36: 1177-1181. 10.1053/jpsu.2001.25747.CrossRefPubMed
18.
go back to reference Benedito R, Roca C, Sorensen I, Adams S, Gossler A, Fruttiger M, Adams RH: The notch ligands Dll4 and Jagged1 have opposing effects on angiogenesis. Cell. 2009, 137: 1124-1135. 10.1016/j.cell.2009.03.025.CrossRefPubMed Benedito R, Roca C, Sorensen I, Adams S, Gossler A, Fruttiger M, Adams RH: The notch ligands Dll4 and Jagged1 have opposing effects on angiogenesis. Cell. 2009, 137: 1124-1135. 10.1016/j.cell.2009.03.025.CrossRefPubMed
Metadata
Title
Notch and VEGF pathways play distinct but complementary roles in tumor angiogenesis
Authors
Sonia L Hernandez
Debarshi Banerjee
Alejandro Garcia
Thaned Kangsamaksin
Wei-Yi Cheng
Dimitris Anastassiou
Yasuhiro Funahashi
Angela Kadenhe-Chiweshe
Carrie J Shawber
Jan K Kitajewski
Jessica J Kandel
Darrell J Yamashiro
Publication date
01-12-2013
Publisher
BioMed Central
Published in
Vascular Cell / Issue 1/2013
Electronic ISSN: 2045-824X
DOI
https://doi.org/10.1186/2045-824X-5-17

Other articles of this Issue 1/2013

Vascular Cell 1/2013 Go to the issue