Skip to main content
Top
Published in: Vascular Cell 1/2013

Open Access 01-12-2013 | Review

The importance of microglia in the development of the vasculature in the central nervous system

Authors: Tom Arnold, Christer Betsholtz

Published in: Vascular Cell | Issue 1/2013

Login to get access

Abstract

The body’s vascular system is thought to have developed in order to supply oxygen and nutrients to cells beyond the reach of simple diffusion. Hence, relative hypoxia in the growing central nervous system (CNS) is a major driving force for the ingression and refinement of the complex vascular bed that serves it. However, even before the establishment of this CNS vascular system, CNS-specific macrophages (microglia) migrate into the brain. Recent studies in mice point to the fundamental importance of microglia in shaping CNS vasculature during development, and re-shaping these vessels during pathological insults. In this review, we discuss the origin of CNS microglia and their localization within the brain based on data obtained in mice. We then review evidence supporting a functional role of these microglia in developmental angiogenesis. Although pathologic processes such as CNS ischemia may subvert the developmental functions of microglia/macrophages with significant effects on brain neo-angiogenesis, we have left this topic to other recent reviews (Nat Rev Immunol 9:259–270, 2009 and Trends Mol Med 17:743–752, 2011).
Appendix
Available only for authorised users
Literature
1.
go back to reference Kettenmann H, Hanisch U-K, Noda M, Verkhratsky A: Physiology of microglia. Physiol Rev. 2011, 91: 461-553. 10.1152/physrev.00011.2010.CrossRefPubMed Kettenmann H, Hanisch U-K, Noda M, Verkhratsky A: Physiology of microglia. Physiol Rev. 2011, 91: 461-553. 10.1152/physrev.00011.2010.CrossRefPubMed
2.
go back to reference Van Furth R, Cohn ZA, Hirsch JG, Humphrey JH, Spector WG, Langevoort HL: The mononuclear phagocyte system: A new classification of macrophages, monocytes, and their precursor cells. Bull World Health Organ. 1972, 46: 845-PubMedCentralPubMed Van Furth R, Cohn ZA, Hirsch JG, Humphrey JH, Spector WG, Langevoort HL: The mononuclear phagocyte system: A new classification of macrophages, monocytes, and their precursor cells. Bull World Health Organ. 1972, 46: 845-PubMedCentralPubMed
4.
go back to reference Hanisch U-K, Kettenmann H: Microglia: Active sensor and versatile effector cells in the normal and pathologic brain. Nat Neurosci. 2007, 10: 1387-1394. 10.1038/nn1997.CrossRefPubMed Hanisch U-K, Kettenmann H: Microglia: Active sensor and versatile effector cells in the normal and pathologic brain. Nat Neurosci. 2007, 10: 1387-1394. 10.1038/nn1997.CrossRefPubMed
5.
go back to reference Peri F, Nüsslein-Volhard C: Live imaging of neuronal degradation by microglia reveals a role for v0-atpase a1 in phagosomal fusion in vivo. Cell. 2008, 133: 916-927. 10.1016/j.cell.2008.04.037.CrossRefPubMed Peri F, Nüsslein-Volhard C: Live imaging of neuronal degradation by microglia reveals a role for v0-atpase a1 in phagosomal fusion in vivo. Cell. 2008, 133: 916-927. 10.1016/j.cell.2008.04.037.CrossRefPubMed
6.
go back to reference Sieger D, Moritz C, Ziegenhals T, Prykhozhij S, Peri F: Long-range ca2+ waves transmit brain-damage signals to microglia. Dev Cell. 2012, 22: 1138-1148. 10.1016/j.devcel.2012.04.012.CrossRefPubMed Sieger D, Moritz C, Ziegenhals T, Prykhozhij S, Peri F: Long-range ca2+ waves transmit brain-damage signals to microglia. Dev Cell. 2012, 22: 1138-1148. 10.1016/j.devcel.2012.04.012.CrossRefPubMed
7.
go back to reference Samokhvalov IM, Samokhvalova NI, Nishikawa S-I: Cell tracing shows the contribution of the yolk sac to adult haematopoiesis. Nature. 2007, 446: 1056-1061. 10.1038/nature05725.CrossRefPubMed Samokhvalov IM, Samokhvalova NI, Nishikawa S-I: Cell tracing shows the contribution of the yolk sac to adult haematopoiesis. Nature. 2007, 446: 1056-1061. 10.1038/nature05725.CrossRefPubMed
8.
go back to reference Kissa K, Herbomel P: Blood stem cells emerge from aortic endothelium by a novel type of cell transition. Nature. 2010, 464: 112-115. 10.1038/nature08761.CrossRefPubMed Kissa K, Herbomel P: Blood stem cells emerge from aortic endothelium by a novel type of cell transition. Nature. 2010, 464: 112-115. 10.1038/nature08761.CrossRefPubMed
9.
go back to reference Boisset J-C, van Cappellen W, Andrieu-Soler C, Galjart N, Dzierzak E, Robin C: In vivo imaging of haematopoietic cells emerging from the mouse aortic endothelium. Nature. 2010, 464: 116-120. 10.1038/nature08764.CrossRefPubMed Boisset J-C, van Cappellen W, Andrieu-Soler C, Galjart N, Dzierzak E, Robin C: In vivo imaging of haematopoietic cells emerging from the mouse aortic endothelium. Nature. 2010, 464: 116-120. 10.1038/nature08764.CrossRefPubMed
10.
go back to reference Bertrand JY, Chi NC, Santoso B, Teng S, Stainier DYR, Traver D: Haematopoietic stem cells derive directly from aortic endothelium during development. Nature. 2010, 464: 108-111. 10.1038/nature08738.PubMedCentralCrossRefPubMed Bertrand JY, Chi NC, Santoso B, Teng S, Stainier DYR, Traver D: Haematopoietic stem cells derive directly from aortic endothelium during development. Nature. 2010, 464: 108-111. 10.1038/nature08738.PubMedCentralCrossRefPubMed
11.
go back to reference Perry VH, Hume DA, Gordon S: Immunohistochemical localization of macrophages and microglia in the adult and developing mouse brain. Neuroscience. 1985, 15: 313-326. 10.1016/0306-4522(85)90215-5.CrossRefPubMed Perry VH, Hume DA, Gordon S: Immunohistochemical localization of macrophages and microglia in the adult and developing mouse brain. Neuroscience. 1985, 15: 313-326. 10.1016/0306-4522(85)90215-5.CrossRefPubMed
12.
go back to reference Chan WY, Kohsaka S, Rezaie P: The origin and cell lineage of microglia: New concepts. Brain Res Rev. 2007, 53: 344-354. 10.1016/j.brainresrev.2006.11.002.CrossRefPubMed Chan WY, Kohsaka S, Rezaie P: The origin and cell lineage of microglia: New concepts. Brain Res Rev. 2007, 53: 344-354. 10.1016/j.brainresrev.2006.11.002.CrossRefPubMed
13.
go back to reference Kurz H, Christ B: Embryonic CNS macrophages and microglia do not stem from circulating, but from extravascular precursors. GLIA. 1998, 22: 98-102. 10.1002/(SICI)1098-1136(199801)22:1<98::AID-GLIA10>3.0.CO;2-V.CrossRefPubMed Kurz H, Christ B: Embryonic CNS macrophages and microglia do not stem from circulating, but from extravascular precursors. GLIA. 1998, 22: 98-102. 10.1002/(SICI)1098-1136(199801)22:1<98::AID-GLIA10>3.0.CO;2-V.CrossRefPubMed
14.
go back to reference Cuadros MA, Martin C, Coltey P, Almendros A, Navascués J: First appearance, distribution, and origin of macrophages in the early development of the avian central nervous system. J Comp Neurol. 1993, 330: 113-129. 10.1002/cne.903300110.CrossRefPubMed Cuadros MA, Martin C, Coltey P, Almendros A, Navascués J: First appearance, distribution, and origin of macrophages in the early development of the avian central nervous system. J Comp Neurol. 1993, 330: 113-129. 10.1002/cne.903300110.CrossRefPubMed
15.
go back to reference Herbomel P, Thisse B, Thisse C: Zebrafish early macrophages colonize cephalic mesenchyme and developing brain, retina, and epidermis through a M-CSF receptor-dependent invasive process. Dev Biol. 2001, 238: 274-288. 10.1006/dbio.2001.0393.CrossRefPubMed Herbomel P, Thisse B, Thisse C: Zebrafish early macrophages colonize cephalic mesenchyme and developing brain, retina, and epidermis through a M-CSF receptor-dependent invasive process. Dev Biol. 2001, 238: 274-288. 10.1006/dbio.2001.0393.CrossRefPubMed
16.
go back to reference Ginhoux F, Greter M, Leboeuf M, Nandi S, See P, Gokhan S: Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science. 2010, 330: 841-845. 10.1126/science.1194637.PubMedCentralCrossRefPubMed Ginhoux F, Greter M, Leboeuf M, Nandi S, See P, Gokhan S: Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science. 2010, 330: 841-845. 10.1126/science.1194637.PubMedCentralCrossRefPubMed
17.
go back to reference Schulz C, Gomez Perdiguero E, Chorro L, Szabo-Rogers H, Cagnard N, Kierdorf K: A lineage of myeloid cells independent of myb and hematopoietic stem cells. Science. 2012, 336: 86-90. 10.1126/science.1219179.CrossRefPubMed Schulz C, Gomez Perdiguero E, Chorro L, Szabo-Rogers H, Cagnard N, Kierdorf K: A lineage of myeloid cells independent of myb and hematopoietic stem cells. Science. 2012, 336: 86-90. 10.1126/science.1219179.CrossRefPubMed
18.
go back to reference Fantin A, Vieira JM, Gestri G, Denti L, Schwarz Q, Prykhozhij S: Tissue macrophages act as cellular chaperones for vascular anastomosis downstream of vegf-mediated endothelial tip cell induction. Blood. 2010, 116 (5): 829-840. 10.1182/blood-2009-12-257832.PubMedCentralCrossRefPubMed Fantin A, Vieira JM, Gestri G, Denti L, Schwarz Q, Prykhozhij S: Tissue macrophages act as cellular chaperones for vascular anastomosis downstream of vegf-mediated endothelial tip cell induction. Blood. 2010, 116 (5): 829-840. 10.1182/blood-2009-12-257832.PubMedCentralCrossRefPubMed
19.
go back to reference Ovchinnikov DA, van Zuylen WJM, DeBats CEE, Alexander KA, Kellie S, Hume DA: Expression of gal4-dependent transgenes in cells of the mononuclear phagocyte system labeled with enhanced cyan fluorescent protein using csf1r-gal4vp16/UAS-ECFP double-transgenic mice. J Leukoc Biol. 2008, 83: 430-433.CrossRefPubMed Ovchinnikov DA, van Zuylen WJM, DeBats CEE, Alexander KA, Kellie S, Hume DA: Expression of gal4-dependent transgenes in cells of the mononuclear phagocyte system labeled with enhanced cyan fluorescent protein using csf1r-gal4vp16/UAS-ECFP double-transgenic mice. J Leukoc Biol. 2008, 83: 430-433.CrossRefPubMed
20.
go back to reference Ajami B, Bennett JL, Krieger C, McNagny KM, Rossi FMV: Infiltrating monocytes trigger EAE progression, but do not contribute to the resident microglia pool. Nat Neurosci. 2011, 14: 1142-1149. 10.1038/nn.2887.CrossRefPubMed Ajami B, Bennett JL, Krieger C, McNagny KM, Rossi FMV: Infiltrating monocytes trigger EAE progression, but do not contribute to the resident microglia pool. Nat Neurosci. 2011, 14: 1142-1149. 10.1038/nn.2887.CrossRefPubMed
21.
go back to reference Ransohoff RM: Microglia and monocytes: Tis plain the twain meet in the brain. Nat Neurosci. 2011, 14: 1098-1100. 10.1038/nn.2917.CrossRefPubMed Ransohoff RM: Microglia and monocytes: Tis plain the twain meet in the brain. Nat Neurosci. 2011, 14: 1098-1100. 10.1038/nn.2917.CrossRefPubMed
22.
go back to reference Dakic A, Metcalf D, Di Rago L, Mifsud S, Wu L, Nutt SL: PU.1 regulates the commitment of adult hematopoietic progenitors and restricts granulopoiesis. J Exp Med. 2005, 201: 1487-1502. 10.1084/jem.20050075.PubMedCentralCrossRefPubMed Dakic A, Metcalf D, Di Rago L, Mifsud S, Wu L, Nutt SL: PU.1 regulates the commitment of adult hematopoietic progenitors and restricts granulopoiesis. J Exp Med. 2005, 201: 1487-1502. 10.1084/jem.20050075.PubMedCentralCrossRefPubMed
23.
go back to reference McKercher SR, Torbett BE, Anderson KL, Henkel GW, Vestal DJ, Baribault H: Targeted disruption of the PU.1 gene results in multiple hematopoietic abnormalities. EMBO J. 1996, 15: 5647-5658.PubMedCentralPubMed McKercher SR, Torbett BE, Anderson KL, Henkel GW, Vestal DJ, Baribault H: Targeted disruption of the PU.1 gene results in multiple hematopoietic abnormalities. EMBO J. 1996, 15: 5647-5658.PubMedCentralPubMed
24.
go back to reference Nerlov C, Graf T: PU.1 induces myeloid lineage commitment in multipotent hematopoietic progenitors. Genes Dev. 1998, 12: 2403-2412. 10.1101/gad.12.15.2403.PubMedCentralCrossRefPubMed Nerlov C, Graf T: PU.1 induces myeloid lineage commitment in multipotent hematopoietic progenitors. Genes Dev. 1998, 12: 2403-2412. 10.1101/gad.12.15.2403.PubMedCentralCrossRefPubMed
25.
go back to reference Blevins G, Fedoroff S: Microglia in colony-stimulating factor 1-deficient op/op mice. J Neurosci Res. 1995, 40: 535-544. 10.1002/jnr.490400412.CrossRefPubMed Blevins G, Fedoroff S: Microglia in colony-stimulating factor 1-deficient op/op mice. J Neurosci Res. 1995, 40: 535-544. 10.1002/jnr.490400412.CrossRefPubMed
26.
go back to reference Erblich B, Zhu L, Etgen AM, Dobrenis K, Pollard JW: Absence of colony stimulation factor-1 receptor results in loss of microglia, disrupted brain development and olfactory deficits. PLoS One. 2011, 6: e26317-10.1371/journal.pone.0026317.PubMedCentralCrossRefPubMed Erblich B, Zhu L, Etgen AM, Dobrenis K, Pollard JW: Absence of colony stimulation factor-1 receptor results in loss of microglia, disrupted brain development and olfactory deficits. PLoS One. 2011, 6: e26317-10.1371/journal.pone.0026317.PubMedCentralCrossRefPubMed
27.
go back to reference Chitu V, Stanley ER: Colony-stimulating factor-1 in immunity and inflammation. Curr Opin Immunol. 2006, 18: 39-48. 10.1016/j.coi.2005.11.006.CrossRefPubMed Chitu V, Stanley ER: Colony-stimulating factor-1 in immunity and inflammation. Curr Opin Immunol. 2006, 18: 39-48. 10.1016/j.coi.2005.11.006.CrossRefPubMed
28.
go back to reference Reddy MA, Yang BS, Yue X, Barnett CJ, Ross IL, Sweet MJ: Opposing actions of c-ets/PU.1 and c-myb protooncogene products in regulating the macrophage-specific promoters of the human and mouse colony-stimulating factor-1 receptor (c-fms) genes. J Exp Med. 1994, 180: 2309-2319. 10.1084/jem.180.6.2309.CrossRefPubMed Reddy MA, Yang BS, Yue X, Barnett CJ, Ross IL, Sweet MJ: Opposing actions of c-ets/PU.1 and c-myb protooncogene products in regulating the macrophage-specific promoters of the human and mouse colony-stimulating factor-1 receptor (c-fms) genes. J Exp Med. 1994, 180: 2309-2319. 10.1084/jem.180.6.2309.CrossRefPubMed
29.
go back to reference Wei S, Nandi S, Chitu V, Yeung Y-G, Yu W, Huang M: Functional overlap but differential expression of CSF-1 and IL-34 in their CSF-1 receptor-mediated regulation of myeloid cells. J Leukoc Biol. 2010, 88: 495-505. 10.1189/jlb.1209822.PubMedCentralCrossRefPubMed Wei S, Nandi S, Chitu V, Yeung Y-G, Yu W, Huang M: Functional overlap but differential expression of CSF-1 and IL-34 in their CSF-1 receptor-mediated regulation of myeloid cells. J Leukoc Biol. 2010, 88: 495-505. 10.1189/jlb.1209822.PubMedCentralCrossRefPubMed
30.
go back to reference Pont-Lezica L, Béchade C, Belarif-Cantaut Y, Pascual O, Bessis A: Physiological roles of microglia during development. J Neurochem. 2011, 119: 901-908. 10.1111/j.1471-4159.2011.07504.x.CrossRefPubMed Pont-Lezica L, Béchade C, Belarif-Cantaut Y, Pascual O, Bessis A: Physiological roles of microglia during development. J Neurochem. 2011, 119: 901-908. 10.1111/j.1471-4159.2011.07504.x.CrossRefPubMed
31.
go back to reference Koushik SV, Wang J, Rogers R, Moskophidis D, Lambert NA, Creazzo TL, Conway SJ: Targeted inactivation of the sodium-calcium exchanger (ncx1) results in the lack of a heartbeat and abnormal myofibrillar organization. FASEB J. 2001, 15: 1209-1211.PubMed Koushik SV, Wang J, Rogers R, Moskophidis D, Lambert NA, Creazzo TL, Conway SJ: Targeted inactivation of the sodium-calcium exchanger (ncx1) results in the lack of a heartbeat and abnormal myofibrillar organization. FASEB J. 2001, 15: 1209-1211.PubMed
32.
go back to reference Rigato C, Buckinx R, Le-Corronc H, Rigo JM, Legendre P: Pattern of invasion of the embryonic mouse spinal cord by microglial cells at the time of the onset of functional neuronal networks. GLIA. 2011, 59: 675-695. 10.1002/glia.21140.CrossRefPubMed Rigato C, Buckinx R, Le-Corronc H, Rigo JM, Legendre P: Pattern of invasion of the embryonic mouse spinal cord by microglial cells at the time of the onset of functional neuronal networks. GLIA. 2011, 59: 675-695. 10.1002/glia.21140.CrossRefPubMed
33.
go back to reference Santos AM, Calvente R, Tassi M, Carrasco M-C, Martín-Oliva D, Marín-Teva JL: Embryonic and postnatal development of microglial cells in the mouse retina. J Comp Neurol. 2008, 506: 224-239. 10.1002/cne.21538.CrossRefPubMed Santos AM, Calvente R, Tassi M, Carrasco M-C, Martín-Oliva D, Marín-Teva JL: Embryonic and postnatal development of microglial cells in the mouse retina. J Comp Neurol. 2008, 506: 224-239. 10.1002/cne.21538.CrossRefPubMed
34.
go back to reference Rymo SF, Gerhardt H, Wolfhagen Sand F, Lang R, Uv A, Betsholtz C: A two-way communication between microglial cells and angiogenic sprouts regulates angiogenesis in aortic ring cultures. PLoS One. 2011, 6: e15846-10.1371/journal.pone.0015846.PubMedCentralCrossRefPubMed Rymo SF, Gerhardt H, Wolfhagen Sand F, Lang R, Uv A, Betsholtz C: A two-way communication between microglial cells and angiogenic sprouts regulates angiogenesis in aortic ring cultures. PLoS One. 2011, 6: e15846-10.1371/journal.pone.0015846.PubMedCentralCrossRefPubMed
35.
go back to reference Kubota Y, Takubo K, Shimizu T, Ohno H, Kishi K, Shibuya M: M-CSF inhibition selectively targets pathological angiogenesis and lymphangiogenesis. J Exp Med. 2009, 206: 1089-1102. 10.1084/jem.20081605.PubMedCentralCrossRefPubMed Kubota Y, Takubo K, Shimizu T, Ohno H, Kishi K, Shibuya M: M-CSF inhibition selectively targets pathological angiogenesis and lymphangiogenesis. J Exp Med. 2009, 206: 1089-1102. 10.1084/jem.20081605.PubMedCentralCrossRefPubMed
36.
go back to reference Eilken HM, Adams RH: Dynamics of endothelial cell behavior in sprouting angiogenesis. Curr Opin Cell Biol. 2010, 22: 617-625. 10.1016/j.ceb.2010.08.010.CrossRefPubMed Eilken HM, Adams RH: Dynamics of endothelial cell behavior in sprouting angiogenesis. Curr Opin Cell Biol. 2010, 22: 617-625. 10.1016/j.ceb.2010.08.010.CrossRefPubMed
38.
go back to reference Phng LK, Gerhardt H: Angiogenesis: A team effort coordinated by notch. Dev Cell. 2009, 16: 196-208. 10.1016/j.devcel.2009.01.015.CrossRefPubMed Phng LK, Gerhardt H: Angiogenesis: A team effort coordinated by notch. Dev Cell. 2009, 16: 196-208. 10.1016/j.devcel.2009.01.015.CrossRefPubMed
39.
go back to reference Moya IM, Umans L, Maas E, Pereira PNG, Beets K, Francis A: Stalk cell phenotype depends on integration of notch and smad1/5 signaling cascades. Dev Cell. 2012, 22: 501-514. 10.1016/j.devcel.2012.01.007.PubMedCentralCrossRefPubMed Moya IM, Umans L, Maas E, Pereira PNG, Beets K, Francis A: Stalk cell phenotype depends on integration of notch and smad1/5 signaling cascades. Dev Cell. 2012, 22: 501-514. 10.1016/j.devcel.2012.01.007.PubMedCentralCrossRefPubMed
40.
go back to reference Larrivée B, Prahst C, Gordon E, del Toro R, Mathivet T, Duarte A: ALK1 signaling inhibits angiogenesis by cooperating with the notch pathway. Dev Cell. 2012, 22: 489-500. 10.1016/j.devcel.2012.02.005.PubMedCentralCrossRefPubMed Larrivée B, Prahst C, Gordon E, del Toro R, Mathivet T, Duarte A: ALK1 signaling inhibits angiogenesis by cooperating with the notch pathway. Dev Cell. 2012, 22: 489-500. 10.1016/j.devcel.2012.02.005.PubMedCentralCrossRefPubMed
41.
go back to reference Kim J, Oh WJ, Gaiano N, Yoshida Y, Gu C: Semaphorin 3e–plexin-d1 signaling regulates VEGF function in developmental angiogenesis via a feedback mechanism. Genes Dev. 2011, 25: 1399-1411. 10.1101/gad.2042011.PubMedCentralCrossRefPubMed Kim J, Oh WJ, Gaiano N, Yoshida Y, Gu C: Semaphorin 3e–plexin-d1 signaling regulates VEGF function in developmental angiogenesis via a feedback mechanism. Genes Dev. 2011, 25: 1399-1411. 10.1101/gad.2042011.PubMedCentralCrossRefPubMed
42.
go back to reference Corada M, Nyqvist D, Orsenigo F, Caprini A, Giampietro C, Taketo MM: The wnt/beta-catenin pathway modulates vascular remodeling and specification by upregulating dll4/notch signaling. Dev Cell. 2010, 18: 938-949. 10.1016/j.devcel.2010.05.006.CrossRefPubMed Corada M, Nyqvist D, Orsenigo F, Caprini A, Giampietro C, Taketo MM: The wnt/beta-catenin pathway modulates vascular remodeling and specification by upregulating dll4/notch signaling. Dev Cell. 2010, 18: 938-949. 10.1016/j.devcel.2010.05.006.CrossRefPubMed
43.
go back to reference Gore AV, Swift MR, Cha YR, Lo B, McKinney MC, Li W: Rspo1/wnt signaling promotes angiogenesis via vegfc/vegfr3. Development. 2011, 138: 4875-4886. 10.1242/dev.068460.PubMedCentralCrossRefPubMed Gore AV, Swift MR, Cha YR, Lo B, McKinney MC, Li W: Rspo1/wnt signaling promotes angiogenesis via vegfc/vegfr3. Development. 2011, 138: 4875-4886. 10.1242/dev.068460.PubMedCentralCrossRefPubMed
44.
go back to reference Shoham AB, Malkinson G, Krief S, Shwartz Y, Ely Y, Ferrara N: S1P1 inhibits sprouting angiogenesis during vascular development. Development. 2012, 139: 3859-3869. 10.1242/dev.078550.CrossRefPubMed Shoham AB, Malkinson G, Krief S, Shwartz Y, Ely Y, Ferrara N: S1P1 inhibits sprouting angiogenesis during vascular development. Development. 2012, 139: 3859-3869. 10.1242/dev.078550.CrossRefPubMed
45.
go back to reference Jung B, Obinata H, Galvani S, Mendelson K, Ding B-S, Skoura A: Flow-regulated endothelial S1P receptor-1 signaling sustains vascular development. Dev Cell. 2012, 23: 600-610. 10.1016/j.devcel.2012.07.015.PubMedCentralCrossRefPubMed Jung B, Obinata H, Galvani S, Mendelson K, Ding B-S, Skoura A: Flow-regulated endothelial S1P receptor-1 signaling sustains vascular development. Dev Cell. 2012, 23: 600-610. 10.1016/j.devcel.2012.07.015.PubMedCentralCrossRefPubMed
46.
go back to reference Gaengel K, Niaudet C, Hagikura K, Siemsen BL, Muhl L, Hofmann JJ: The sphingosine-1-phosphate receptor S1PR1 restricts sprouting angiogenesis by regulating the interplay between ve-cadherin and VEGFR2. Dev Cell. 2012, 23: 587-599. 10.1016/j.devcel.2012.08.005.CrossRefPubMed Gaengel K, Niaudet C, Hagikura K, Siemsen BL, Muhl L, Hofmann JJ: The sphingosine-1-phosphate receptor S1PR1 restricts sprouting angiogenesis by regulating the interplay between ve-cadherin and VEGFR2. Dev Cell. 2012, 23: 587-599. 10.1016/j.devcel.2012.08.005.CrossRefPubMed
47.
go back to reference Vasudevan A, Long JE, Crandall JE, Rubenstein JL, Bhide PG: Compartment-specific transcription factors orchestrate angiogenesis gradients in the embryonic brain. Nat Neurosci. 2008, 11: 429-439. 10.1038/nn2074.PubMedCentralCrossRefPubMed Vasudevan A, Long JE, Crandall JE, Rubenstein JL, Bhide PG: Compartment-specific transcription factors orchestrate angiogenesis gradients in the embryonic brain. Nat Neurosci. 2008, 11: 429-439. 10.1038/nn2074.PubMedCentralCrossRefPubMed
48.
go back to reference Simón-Marín R, Vilanova JR, Aguinagalde A, Barberá-Guillem E: Vascular architecture of the developing spinal cord in the rat: A suggested model. J Embryol Exp Morphol. 1983, 76: 27-36.PubMed Simón-Marín R, Vilanova JR, Aguinagalde A, Barberá-Guillem E: Vascular architecture of the developing spinal cord in the rat: A suggested model. J Embryol Exp Morphol. 1983, 76: 27-36.PubMed
49.
go back to reference Greenberg DA, Jin K: From angiogenesis to neuropathology. Nature. 2005, 438: 954-959. 10.1038/nature04481.CrossRefPubMed Greenberg DA, Jin K: From angiogenesis to neuropathology. Nature. 2005, 438: 954-959. 10.1038/nature04481.CrossRefPubMed
50.
go back to reference Fruttiger M: Development of the retinal vasculature. Angiogenesis. 2007, 10: 77-88. 10.1007/s10456-007-9065-1.CrossRefPubMed Fruttiger M: Development of the retinal vasculature. Angiogenesis. 2007, 10: 77-88. 10.1007/s10456-007-9065-1.CrossRefPubMed
51.
go back to reference Checchin D, Sennlaub F, Levavasseur E, Leduc M, Chemtob S: Potential role of microglia in retinal blood vessel formation. Invest Ophthalmol Vis Sci. 2006, 47: 3595-3602. 10.1167/iovs.05-1522.CrossRefPubMed Checchin D, Sennlaub F, Levavasseur E, Leduc M, Chemtob S: Potential role of microglia in retinal blood vessel formation. Invest Ophthalmol Vis Sci. 2006, 47: 3595-3602. 10.1167/iovs.05-1522.CrossRefPubMed
52.
go back to reference Unoki N, Murakami T, Nishijima K, Ogino K, van Rooijen N, Yoshimura N: SDF-1/CXCR4 contributes to the activation of tip cells and microglia in retinal angiogenesis. Invest Ophthalmol Vis Sci. 2010, 51: 3362-3371. 10.1167/iovs.09-4978.CrossRefPubMed Unoki N, Murakami T, Nishijima K, Ogino K, van Rooijen N, Yoshimura N: SDF-1/CXCR4 contributes to the activation of tip cells and microglia in retinal angiogenesis. Invest Ophthalmol Vis Sci. 2010, 51: 3362-3371. 10.1167/iovs.09-4978.CrossRefPubMed
53.
go back to reference Stefater JA, Lewkowich I, Rao S, Mariggi G, Carpenter AC, Burr AR: Regulation of angiogenesis by a non-canonical wnt-flt1 pathway in myeloid cells. Nature. 2011, 474: 511-515. 10.1038/nature10085.PubMedCentralCrossRefPubMed Stefater JA, Lewkowich I, Rao S, Mariggi G, Carpenter AC, Burr AR: Regulation of angiogenesis by a non-canonical wnt-flt1 pathway in myeloid cells. Nature. 2011, 474: 511-515. 10.1038/nature10085.PubMedCentralCrossRefPubMed
54.
go back to reference Benedito R, Rocha SF, Woeste M, Zamykal M, Radtke F, Casanovas O: Notch-dependent VEGFR3 upregulation allows angiogenesis without VEGF-VEGFR2 signalling. Nature. 2012, 484: 110-114. 10.1038/nature10908.CrossRefPubMed Benedito R, Rocha SF, Woeste M, Zamykal M, Radtke F, Casanovas O: Notch-dependent VEGFR3 upregulation allows angiogenesis without VEGF-VEGFR2 signalling. Nature. 2012, 484: 110-114. 10.1038/nature10908.CrossRefPubMed
55.
go back to reference Tammela T, Zarkada G, Wallgard E, Murtomäki A, Suchting S, Wirzenius M: Blocking VEGFR-3 suppresses angiogenic sprouting and vascular network formation. Nature. 2008, 454: 656-660. 10.1038/nature07083.CrossRefPubMed Tammela T, Zarkada G, Wallgard E, Murtomäki A, Suchting S, Wirzenius M: Blocking VEGFR-3 suppresses angiogenic sprouting and vascular network formation. Nature. 2008, 454: 656-660. 10.1038/nature07083.CrossRefPubMed
56.
go back to reference Tammela T, Zarkada G, Nurmi H, Jakobsson L, Heinolainen K, Tvorogov D: VEGFR-3 controls tip to stalk conversion at vessel fusion sites by reinforcing notch signalling. Nat Cell Biol. 2011, 13: 1202-1213. 10.1038/ncb2331.PubMedCentralCrossRefPubMed Tammela T, Zarkada G, Nurmi H, Jakobsson L, Heinolainen K, Tvorogov D: VEGFR-3 controls tip to stalk conversion at vessel fusion sites by reinforcing notch signalling. Nat Cell Biol. 2011, 13: 1202-1213. 10.1038/ncb2331.PubMedCentralCrossRefPubMed
57.
go back to reference Outtz HH, Tattersall IW, Kofler NM, Steinbach N, Kitajewski J: Notch1 controls macrophage recruitment and notch signaling is activated at sites of endothelial cell anastomosis during retinal angiogenesis in mice. Blood. 2011, 118: 3436-3439. 10.1182/blood-2010-12-327015.PubMedCentralCrossRefPubMed Outtz HH, Tattersall IW, Kofler NM, Steinbach N, Kitajewski J: Notch1 controls macrophage recruitment and notch signaling is activated at sites of endothelial cell anastomosis during retinal angiogenesis in mice. Blood. 2011, 118: 3436-3439. 10.1182/blood-2010-12-327015.PubMedCentralCrossRefPubMed
58.
go back to reference Hofmann JJ, Luisa I-AM: Notch expression patterns in the retina: An eye on receptor-ligand distribution during angiogenesis. Gene Expr Patterns. 2007, 7: 461-470. 10.1016/j.modgep.2006.11.002.PubMedCentralCrossRefPubMed Hofmann JJ, Luisa I-AM: Notch expression patterns in the retina: An eye on receptor-ligand distribution during angiogenesis. Gene Expr Patterns. 2007, 7: 461-470. 10.1016/j.modgep.2006.11.002.PubMedCentralCrossRefPubMed
Metadata
Title
The importance of microglia in the development of the vasculature in the central nervous system
Authors
Tom Arnold
Christer Betsholtz
Publication date
01-12-2013
Publisher
BioMed Central
Published in
Vascular Cell / Issue 1/2013
Electronic ISSN: 2045-824X
DOI
https://doi.org/10.1186/2045-824X-5-4

Other articles of this Issue 1/2013

Vascular Cell 1/2013 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.