Skip to main content
Top
Published in: Nutrition & Metabolism 1/2009

Open Access 01-12-2009 | Research

Effect of beverage glucose and sodium content on fluid delivery

Authors: Asker E Jeukendrup, Kevin Currell, Juliette Clarke, Johnny Cole, Andrew K Blannin

Published in: Nutrition & Metabolism | Issue 1/2009

Login to get access

Abstract

Background

Rapid fluid delivery from ingested beverages is the goal of oral rehydration solutions (ORS) and sports drinks.

Objective

The aim of the present study was to investigate the effects of increasing carbohydrate and sodium content upon fluid delivery using a deuterium oxide (D2O) tracer.

Design

Twenty healthy male subjects were divided into two groups of 10, the first group was a carbohydrate group (CHO) and the second a sodium group (Na). The CHO group ingested four different drinks with a stepped increase of 3% glucose from 0% to 9% while sodium concentration was 20 mmol/L. The Na group ingested four drinks with a stepped increase of 20 mmol/L from 0 mmol/L to 60 mmol/l while glucose concentration was 6%. All beverages contained 3 g of D2O. Subjects remained seated for two hours after ingestion of the experimental beverage, with blood taken every 5 min in the first hour and every 10 min in the second hour.

Results

Including 3% glucose in the beverage led to a significantly greater AUC 60 min (19640 ± 1252 δ‰ vs. VSMOW.60 min) than all trials. No carbohydrate (18381 ± 1198 δ‰ vs. VSMOW.60 min) had a greater AUC 60 min than a 6% (16088 ± 1359 δ‰ vs. VSMOW.60 min) and 9% beverage (13134 ± 1115 δ‰ vs. VSMOW.60 min); the 6% beverage had a significantly greater AUC 60 min than the 9% beverage. There was no difference in fluid delivery between the different sodium beverages.

Conclusion

In conclusion the present study showed that when carbohydrate concentration in an ingested beverage was increased above 6% fluid delivery was compromised. However, increasing the amount of sodium (0–60 mmol/L) in a 6% glucose beverage did not lead to increases in fluid delivery.
Appendix
Available only for authorised users
Literature
1.
go back to reference Maughan RJ, Leiper JB: Limitations to fluid replacement during exercise. Can J Appl Physiol. 1999, 24: 173-187.CrossRef Maughan RJ, Leiper JB: Limitations to fluid replacement during exercise. Can J Appl Physiol. 1999, 24: 173-187.CrossRef
2.
go back to reference Gisolfi CV, Summers RW, Schedl HP, Bleiler TL, Oppliger RA: Human intestinal water absorption: direct vs. indirect measurements. Am J Physiol. 1990, 258: G216-222. Gisolfi CV, Summers RW, Schedl HP, Bleiler TL, Oppliger RA: Human intestinal water absorption: direct vs. indirect measurements. Am J Physiol. 1990, 258: G216-222.
3.
go back to reference Davis JM, Lamb DR, Burgess WA, Bartoli WP: Accumulation of deuterium oxide in body fluids after ingestion of D2O-labeled beverages. J Appl Physiol. 1987, 63: 2060-2066. Davis JM, Lamb DR, Burgess WA, Bartoli WP: Accumulation of deuterium oxide in body fluids after ingestion of D2O-labeled beverages. J Appl Physiol. 1987, 63: 2060-2066.
4.
go back to reference Davis JM, Burgess WA, Slentz CA, Bartoli WP: Fluid avalibility and sports drinks differing in carbohydrate type and concentration. Am J Clin Nutr. 1990, 51: 1054-1057. Davis JM, Burgess WA, Slentz CA, Bartoli WP: Fluid avalibility and sports drinks differing in carbohydrate type and concentration. Am J Clin Nutr. 1990, 51: 1054-1057.
5.
go back to reference Leiper JB, Maughan RJ: Experimental models for the investigation of water and solute transport in man. Implications for oral rehydration solutions. Drugs. 1988, 36 (Suppl 4): 65-79.CrossRef Leiper JB, Maughan RJ: Experimental models for the investigation of water and solute transport in man. Implications for oral rehydration solutions. Drugs. 1988, 36 (Suppl 4): 65-79.CrossRef
6.
go back to reference Barr SI, Costill DL, Fink WJ: Fluid replacement during prolonged exercise: effects of water, saline, or no fluid. Med Sci Sports Exerc. 1991, 23- Barr SI, Costill DL, Fink WJ: Fluid replacement during prolonged exercise: effects of water, saline, or no fluid. Med Sci Sports Exerc. 1991, 23-
7.
go back to reference Schedl HP, Maughan RJ, Gisolfi CV: Intestinal absorption during rest and exercise: implications for formulating oral rehydration solution (ORS). Med Sci Sport Exerc. 1994, 26: 267-280.CrossRef Schedl HP, Maughan RJ, Gisolfi CV: Intestinal absorption during rest and exercise: implications for formulating oral rehydration solution (ORS). Med Sci Sport Exerc. 1994, 26: 267-280.CrossRef
8.
go back to reference Gisolfi CV, Summers RD, Schedl HP, Bleiler TL: Effect of sodium concentration in a carbohydrate-electrolyte solution on intestinal absorption. Med Sci Sports Exerc. 1995, 27: 1414-1420.CrossRef Gisolfi CV, Summers RD, Schedl HP, Bleiler TL: Effect of sodium concentration in a carbohydrate-electrolyte solution on intestinal absorption. Med Sci Sports Exerc. 1995, 27: 1414-1420.CrossRef
9.
go back to reference Lambert CP, Ball D, Leiper JB, Maughan RJ: The use of a deuterium tracer technique to follow the fate of fluids ingested by human subjects: effects of drink volume and tracer concentration and content. Exp Physiol. 1999, 84: 391-399. 10.1017/S0958067099018266.CrossRef Lambert CP, Ball D, Leiper JB, Maughan RJ: The use of a deuterium tracer technique to follow the fate of fluids ingested by human subjects: effects of drink volume and tracer concentration and content. Exp Physiol. 1999, 84: 391-399. 10.1017/S0958067099018266.CrossRef
10.
go back to reference Murray R, Eddy DE, Murray TW, Seifert JG, Paul GL, Halaby GA: The effect of fluid and carbohydrate feedings during intermittent cycling ecxercise. Med Sci Sports Exerc. 1987, 19: 597-604.CrossRef Murray R, Eddy DE, Murray TW, Seifert JG, Paul GL, Halaby GA: The effect of fluid and carbohydrate feedings during intermittent cycling ecxercise. Med Sci Sports Exerc. 1987, 19: 597-604.CrossRef
11.
go back to reference Jeukendrup AE, Moseley L: Multiple transportable carbohydrates enhance gastric emptying and fluid delivery. Scand J Med Sci Sports. 2008, Jeukendrup AE, Moseley L: Multiple transportable carbohydrates enhance gastric emptying and fluid delivery. Scand J Med Sci Sports. 2008,
12.
go back to reference Murray R, Bartoli WP, Eddy DE, Horn MK: Gastric emptying and plasma deuterium accumulation following ingestion of water and two carbohydrate-electrolyte beverages. Int J Sport Nutr. 1997, 7: 144-153. Murray R, Bartoli WP, Eddy DE, Horn MK: Gastric emptying and plasma deuterium accumulation following ingestion of water and two carbohydrate-electrolyte beverages. Int J Sport Nutr. 1997, 7: 144-153.
13.
go back to reference Semenza G, Kessler M, Hosang M, Weber J, Schmidt U: Biochemistry of the Na+, D-glucose cotransporter of the small-intestinal brush-border membrane. The state of the art in 1984. Biochim Biophys Acta. 1984, 779: 343-379.CrossRef Semenza G, Kessler M, Hosang M, Weber J, Schmidt U: Biochemistry of the Na+, D-glucose cotransporter of the small-intestinal brush-border membrane. The state of the art in 1984. Biochim Biophys Acta. 1984, 779: 343-379.CrossRef
14.
go back to reference Kellett GL: The facilitated component of intestinal glucose absorption. J Physiol. 2001, 531: 585-595. 10.1111/j.1469-7793.2001.0585h.x.CrossRef Kellett GL: The facilitated component of intestinal glucose absorption. J Physiol. 2001, 531: 585-595. 10.1111/j.1469-7793.2001.0585h.x.CrossRef
15.
go back to reference Shi X, Summers RW, Schedl HP, Flanagan SW, Chang R, Gisolfi CV: Effects of carbohydrate type and concentration and solution osmolality on water absorption. Med Sci Sports Exerc. 1995, 27: 1607-1615. Shi X, Summers RW, Schedl HP, Flanagan SW, Chang R, Gisolfi CV: Effects of carbohydrate type and concentration and solution osmolality on water absorption. Med Sci Sports Exerc. 1995, 27: 1607-1615.
16.
go back to reference Zachwieja JJ, Costill DL, Beard GC, Robergs RA, Pascoe DD, Anderson DE: The effects of a carbonated carbohydrate drink on gastric emptying, gastrointestinal distress, and exercise performance. Int J Sport Nutr. 1992, 2: 229-238. Zachwieja JJ, Costill DL, Beard GC, Robergs RA, Pascoe DD, Anderson DE: The effects of a carbonated carbohydrate drink on gastric emptying, gastrointestinal distress, and exercise performance. Int J Sport Nutr. 1992, 2: 229-238.
17.
go back to reference Lambert GP, Chang RT, Xia T, Summers RW, Gisolfi CV: Absorption from different intestinal segments during exercise. J Appl Physiol. 1997, 83: 204-212. Lambert GP, Chang RT, Xia T, Summers RW, Gisolfi CV: Absorption from different intestinal segments during exercise. J Appl Physiol. 1997, 83: 204-212.
18.
go back to reference Loo DD, Zeuthen T, Chandy G, Wright EM: Cotransport of water by the Na+/glucose cotransporter. Proc Natl Acad Sci USA. 1996, 93: 13367-13370. 10.1073/pnas.93.23.13367.CrossRef Loo DD, Zeuthen T, Chandy G, Wright EM: Cotransport of water by the Na+/glucose cotransporter. Proc Natl Acad Sci USA. 1996, 93: 13367-13370. 10.1073/pnas.93.23.13367.CrossRef
19.
go back to reference Turner JR: Show me the pathway! Regulation of paracellular permeability by Na(+)-glucose cotransport. Adv Drug Deliv Rev. 2000, 41: 265-281. 10.1016/S0169-409X(00)00046-6.CrossRef Turner JR: Show me the pathway! Regulation of paracellular permeability by Na(+)-glucose cotransport. Adv Drug Deliv Rev. 2000, 41: 265-281. 10.1016/S0169-409X(00)00046-6.CrossRef
20.
go back to reference Gisolfi CV, Lambert GP, Summers RW: Intestinal fluid absorption during exercise: role of sport drink osmolality and [Na+]. Med Sci Sports Exerc. 2001, 33: 907-915. 10.1097/00005768-200106000-00009.CrossRef Gisolfi CV, Lambert GP, Summers RW: Intestinal fluid absorption during exercise: role of sport drink osmolality and [Na+]. Med Sci Sports Exerc. 2001, 33: 907-915. 10.1097/00005768-200106000-00009.CrossRef
21.
go back to reference Murray R: The effects of consuming carbohydrate-electrolyte beverages on gastric emptying and fluid absorption during and following exercise. Sports Med. 1987, 4: 322-351. 10.2165/00007256-198704050-00002.CrossRef Murray R: The effects of consuming carbohydrate-electrolyte beverages on gastric emptying and fluid absorption during and following exercise. Sports Med. 1987, 4: 322-351. 10.2165/00007256-198704050-00002.CrossRef
22.
go back to reference Minehan MR, Riley MD, Burke LM: Effect of flavor and awareness of kilojoule content of drinks on preference and fluid balance in team sports. Int J Sport Nutr Exerc Metab. 2002, 12: 81-92. Minehan MR, Riley MD, Burke LM: Effect of flavor and awareness of kilojoule content of drinks on preference and fluid balance in team sports. Int J Sport Nutr Exerc Metab. 2002, 12: 81-92.
23.
go back to reference Sawka MN, Montain SJ, Latzka WA: Hydration effects on thermoregulation and performance in the heat. Comp Biochem Physiol A Mol Integr Physiol. 2001, 128: 679-690. 10.1016/S1095-6433(01)00274-4.CrossRef Sawka MN, Montain SJ, Latzka WA: Hydration effects on thermoregulation and performance in the heat. Comp Biochem Physiol A Mol Integr Physiol. 2001, 128: 679-690. 10.1016/S1095-6433(01)00274-4.CrossRef
24.
go back to reference Shirreffs SM, Taylor AJ, Leiper JB, Maughan RJ: Post-exercise rehydration in man: effects of volume consumed and drink sodium content. Med Sci Sports Exerc. 1996, 28: 1260-1271.CrossRef Shirreffs SM, Taylor AJ, Leiper JB, Maughan RJ: Post-exercise rehydration in man: effects of volume consumed and drink sodium content. Med Sci Sports Exerc. 1996, 28: 1260-1271.CrossRef
25.
go back to reference Koulmann N, Melin B, Jimenez C, Charpenet A, Savourey G, Bittel J: Effects of different carbohydrate-electrolyte beverages on the appearance of ingested deuterium in body fluids during moderate exercise by humans in the heat. Eur J Appl Physiol Occup Physiol. 1997, 75: 525-531. 10.1007/s004210050199.CrossRef Koulmann N, Melin B, Jimenez C, Charpenet A, Savourey G, Bittel J: Effects of different carbohydrate-electrolyte beverages on the appearance of ingested deuterium in body fluids during moderate exercise by humans in the heat. Eur J Appl Physiol Occup Physiol. 1997, 75: 525-531. 10.1007/s004210050199.CrossRef
26.
go back to reference Maughan RJ, Leiper JB, Vist GE: Gastric emptying and fluid availability after ingestion of glucose and soy protein hydrolysate solutions in man. Exp Physiol. 2004, 89: 101-108. 10.1113/expphysiol.2003.002655.CrossRef Maughan RJ, Leiper JB, Vist GE: Gastric emptying and fluid availability after ingestion of glucose and soy protein hydrolysate solutions in man. Exp Physiol. 2004, 89: 101-108. 10.1113/expphysiol.2003.002655.CrossRef
Metadata
Title
Effect of beverage glucose and sodium content on fluid delivery
Authors
Asker E Jeukendrup
Kevin Currell
Juliette Clarke
Johnny Cole
Andrew K Blannin
Publication date
01-12-2009
Publisher
BioMed Central
Published in
Nutrition & Metabolism / Issue 1/2009
Electronic ISSN: 1743-7075
DOI
https://doi.org/10.1186/1743-7075-6-9

Other articles of this Issue 1/2009

Nutrition & Metabolism 1/2009 Go to the issue
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discuss last year's major advances in heart failure and cardiomyopathies.