Skip to main content
Top
Published in: Nutrition & Metabolism 1/2009

Open Access 01-12-2009 | Research

Anti-inflammatory and anti-coagulatory activities of caffeic acid and ellagic acid in cardiac tissue of diabetic mice

Authors: Pei-chun Chao, Cheng-chin Hsu, Mei-chin Yin

Published in: Nutrition & Metabolism | Issue 1/2009

Login to get access

Abstract

Background

Caffeic acid (CA) and ellagic acid (EA) are phenolic acids naturally occurring in many plant foods. Cardiac protective effects of these compounds against dyslipidemia, hypercoagulability, oxidative stress and inflammation in diabetic mice were examined.

Methods

Diabetic mice were divided into three groups (15 mice per group): diabetic mice with normal diet, 2% CA treatment, or 2% EA treatment. One group of non-diabetic mice with normal diet was used for comparison. After 12 weeks supplement, mice were sacrificed, and the variation of biomarkers for hypercoagulability, oxidative stress and inflammation in cardiac tissue of diabetic mice were measured.

Results

The intake of CA or EA significantly increased cardiac content of these compounds, alleviated body weight loss, elevated plasma insulin and decreased plasma glucose levels in diabetic mice (p < 0.05). These treatments also significantly enhanced plasma antithrombin-III and protein C activities (p < 0.05); and decreased triglyceride content in cardiac tissue and plasma (p < 0.05), in which the hypolipidemic effects of EA were significantly greater than that of CA (p < 0.05). CA or EA significantly lowered cardiac levels of malondialdehyde, reactive oxygen species, interleukin (IL)-beta, IL-6, tumor necrosis factor (TNF)-alpha and monocyte chemoattractant protein (MCP)-1 (p < 0.05); and retained cardiac activity of glutathione peroxidase (GPX), superoxide dismutase (SOD) and catalase (p < 0.05). These compounds also significantly up-regulated cardiac mRNA expression of GPX1, SOD and catalase; and down-regulated IL-1beta, IL-6, TNF-alpha and MCP-1 mRNA expression in diabetic mice (p < 0.05).

Conclusion

These results support that CA and EA could provide triglyceride-lowering, anti-coagulatory, anti-oxidative, and anti-inflammatory protection in cardiac tissue of diabetic mice. Thus, the supplement of these agents might be helpful for the prevention or attenuation of diabetic cardiomyopathy.
Appendix
Available only for authorised users
Literature
1.
go back to reference Tziakas DN, Chalikias GK, Kaski JC: Epidemiology of the diabetic heart. Coron Artery Dis. 2005, S3-S10. 10.1097/00019501-200511001-00002. Suppl 1CrossRef Tziakas DN, Chalikias GK, Kaski JC: Epidemiology of the diabetic heart. Coron Artery Dis. 2005, S3-S10. 10.1097/00019501-200511001-00002. Suppl 1CrossRef
2.
go back to reference Reasner CA: Reducing cardiovascular complications of type 2 diabetes by targeting multiple risk factors. J Cardiovasc Pharmacol. 2008, 52: 136-144. 10.1097/FJC.0b013e31817ffe5a.CrossRef Reasner CA: Reducing cardiovascular complications of type 2 diabetes by targeting multiple risk factors. J Cardiovasc Pharmacol. 2008, 52: 136-144. 10.1097/FJC.0b013e31817ffe5a.CrossRef
3.
go back to reference Sowers JR, Epstein M, Frohlich ED: Diabetes, hypertension and cardiovascular disease: an update. Hypertension. 2001, 37: 1053-1059.CrossRef Sowers JR, Epstein M, Frohlich ED: Diabetes, hypertension and cardiovascular disease: an update. Hypertension. 2001, 37: 1053-1059.CrossRef
4.
go back to reference Ye G, Metreveli NS, Donthi RV, Xia S, Xu M, Carlson EC, Epstein PN: Catalase protect cardiomyocyte function in models of type 1 and 2 diabetes. Diabetes. 2004, 53: 1336-1343. 10.2337/diabetes.53.5.1336.CrossRef Ye G, Metreveli NS, Donthi RV, Xia S, Xu M, Carlson EC, Epstein PN: Catalase protect cardiomyocyte function in models of type 1 and 2 diabetes. Diabetes. 2004, 53: 1336-1343. 10.2337/diabetes.53.5.1336.CrossRef
5.
go back to reference Zhou G, Li X, Hein DW, Xiang X, Marshall JP, Prabhu SD, Cai L: Metallothionein suppresses angiotensin II-induced nicotinamide adenine dinucleotide phosphate oxidase activation, nitrosative stress, apoptosis, and pathological remodeling in the diabetic heart. J Am Coll Cardio. 2008, 52: 655-666. 10.1016/j.jacc.2008.05.019.CrossRef Zhou G, Li X, Hein DW, Xiang X, Marshall JP, Prabhu SD, Cai L: Metallothionein suppresses angiotensin II-induced nicotinamide adenine dinucleotide phosphate oxidase activation, nitrosative stress, apoptosis, and pathological remodeling in the diabetic heart. J Am Coll Cardio. 2008, 52: 655-666. 10.1016/j.jacc.2008.05.019.CrossRef
6.
go back to reference Geerlings SE, Brouwer EC, van Kessel KC, Gaastra W, Stolk RP, Hoepelman AL: Cytokine secretion is impaired in women with diabetes mellitus. Euro J Clin Invest. 2000, 30: 995-1001. 10.1046/j.1365-2362.2000.00745.x.CrossRef Geerlings SE, Brouwer EC, van Kessel KC, Gaastra W, Stolk RP, Hoepelman AL: Cytokine secretion is impaired in women with diabetes mellitus. Euro J Clin Invest. 2000, 30: 995-1001. 10.1046/j.1365-2362.2000.00745.x.CrossRef
7.
go back to reference Drimal J, Knezl V, Navarova J, Nedelcevova J, Paulovicova E, Sotnikova VR, Snirc V, Drimal D: Role of inflammatory cytokines and chemoattractants in rat model of streptozotocin-induced diabetic heart failure. Endo Regul. 2008, 42: 129-135. Drimal J, Knezl V, Navarova J, Nedelcevova J, Paulovicova E, Sotnikova VR, Snirc V, Drimal D: Role of inflammatory cytokines and chemoattractants in rat model of streptozotocin-induced diabetic heart failure. Endo Regul. 2008, 42: 129-135.
8.
go back to reference Sellappan S, Akoh CC, Krewer G: Phenolic compounds and antioxidant capacity of Georgia-grown blueberries and blackberries. J Agric Food Chem. 2002, 50: 2432-2438. 10.1021/jf011097r.CrossRef Sellappan S, Akoh CC, Krewer G: Phenolic compounds and antioxidant capacity of Georgia-grown blueberries and blackberries. J Agric Food Chem. 2002, 50: 2432-2438. 10.1021/jf011097r.CrossRef
9.
go back to reference Mattila P, Kumpulainen J: Determination of free and total phenolic acids in plant-derived foods by HPLC with diode-array detection. J Agric Food Chem. 2002, 50: 3660-3667. 10.1021/jf020028p.CrossRef Mattila P, Kumpulainen J: Determination of free and total phenolic acids in plant-derived foods by HPLC with diode-array detection. J Agric Food Chem. 2002, 50: 3660-3667. 10.1021/jf020028p.CrossRef
10.
go back to reference Makena PS, Chung KT: Effects of various plant polyphenols on bladder carcinogen benzidine-induced mutagenicity. Food Chem Toxicol. 2007, 45: 1899-1909. 10.1016/j.fct.2007.04.007.CrossRef Makena PS, Chung KT: Effects of various plant polyphenols on bladder carcinogen benzidine-induced mutagenicity. Food Chem Toxicol. 2007, 45: 1899-1909. 10.1016/j.fct.2007.04.007.CrossRef
11.
go back to reference Prakash D, Suri S, Upadhyay G, Singh BN: Total phenol, antioxidant and free radical scavenging activities of some medicinal plants. Int J Food Sci Nutr. 2007, 58: 18-28. 10.1080/09637480601093269.CrossRef Prakash D, Suri S, Upadhyay G, Singh BN: Total phenol, antioxidant and free radical scavenging activities of some medicinal plants. Int J Food Sci Nutr. 2007, 58: 18-28. 10.1080/09637480601093269.CrossRef
12.
go back to reference Yamada Y, Yasui H, Sakurai H: Suppressive effect of caffeic acid and its derivatives on the generation of UVA-induced reactive oxygen species in the skin of hairless mice and pharmacokinetic analysis on organ distribution of caffeic acid in ddY mice. Photochem Photobiol. 2006, 82: 1668-1676.CrossRef Yamada Y, Yasui H, Sakurai H: Suppressive effect of caffeic acid and its derivatives on the generation of UVA-induced reactive oxygen species in the skin of hairless mice and pharmacokinetic analysis on organ distribution of caffeic acid in ddY mice. Photochem Photobiol. 2006, 82: 1668-1676.CrossRef
13.
go back to reference Cheng JT, Liu IM, Tzeng TF, Chen WC, Hayakawa S, Yamamoto T: Release of beta-endorphin by caffeic acid to lower plasma glucose in streptozotocin-induced diabetic rats. Horm Metab Res. 2003, 35: 251-258. 10.1055/s-2003-39482.CrossRef Cheng JT, Liu IM, Tzeng TF, Chen WC, Hayakawa S, Yamamoto T: Release of beta-endorphin by caffeic acid to lower plasma glucose in streptozotocin-induced diabetic rats. Horm Metab Res. 2003, 35: 251-258. 10.1055/s-2003-39482.CrossRef
14.
go back to reference Jung UJ, Lee MK, Park YB, Jeon SM, Choi MS: Antihyperglycemic and antioxidant properties of caffeic acid in db/db mice. J Pharmacol Exp Ther. 2006, 318: 476-483. 10.1124/jpet.106.105163.CrossRef Jung UJ, Lee MK, Park YB, Jeon SM, Choi MS: Antihyperglycemic and antioxidant properties of caffeic acid in db/db mice. J Pharmacol Exp Ther. 2006, 318: 476-483. 10.1124/jpet.106.105163.CrossRef
15.
go back to reference Lowry OH, Rosebrough NJ, Farr AL: Protein determination with the Folin phenol reagent. J Biol Chem. 1951, 193: 265-275. Lowry OH, Rosebrough NJ, Farr AL: Protein determination with the Folin phenol reagent. J Biol Chem. 1951, 193: 265-275.
16.
go back to reference Biggs HG, Erikson JM, Moorehead WR: A manual colorimetric assay of triglycerides in serum. Clin Chem. 1975, 21: 437-441. Biggs HG, Erikson JM, Moorehead WR: A manual colorimetric assay of triglycerides in serum. Clin Chem. 1975, 21: 437-441.
17.
go back to reference Rudel LL, Morris MD: Determination of cholesterol using o-phthalaldehyde. J Lipid Res. 1973, 14: 164-166. Rudel LL, Morris MD: Determination of cholesterol using o-phthalaldehyde. J Lipid Res. 1973, 14: 164-166.
18.
go back to reference Jain SK, Palmer M: The effect of oxygen radical metabolites and vitamin E on glycosylation or proteins. Free Rad Biol Med. 1997, 22: 593-596. 10.1016/S0891-5849(96)00377-2.CrossRef Jain SK, Palmer M: The effect of oxygen radical metabolites and vitamin E on glycosylation or proteins. Free Rad Biol Med. 1997, 22: 593-596. 10.1016/S0891-5849(96)00377-2.CrossRef
19.
go back to reference Privratsky JR, Wold LE, Sowers JR, Quinn MT, Ren J: AT1 blockade prevents glucose-induced cardiac dysfunction in ventricular myocytes: role of the AT1 receptor and NADPH oxidase. Hypertension. 2003, 42: 206-212. 10.1161/01.HYP.0000082814.62655.85.CrossRef Privratsky JR, Wold LE, Sowers JR, Quinn MT, Ren J: AT1 blockade prevents glucose-induced cardiac dysfunction in ventricular myocytes: role of the AT1 receptor and NADPH oxidase. Hypertension. 2003, 42: 206-212. 10.1161/01.HYP.0000082814.62655.85.CrossRef
20.
go back to reference Yamada T, Sato A, Nishimori T, Mitsuhashi T, Terao A, Sagai H, Komatsu M, Aizawa T, Hashizume K: Importance of hypercoagulability over hyperglycemia for vascular complication in type 2 diabetes. Diabetes Res Clin Prac. 2000, 49: 23-31. 10.1016/S0168-8227(00)00134-0.CrossRef Yamada T, Sato A, Nishimori T, Mitsuhashi T, Terao A, Sagai H, Komatsu M, Aizawa T, Hashizume K: Importance of hypercoagulability over hyperglycemia for vascular complication in type 2 diabetes. Diabetes Res Clin Prac. 2000, 49: 23-31. 10.1016/S0168-8227(00)00134-0.CrossRef
21.
go back to reference Shen L, He X, Dahlback B: Synergistic cofactor function of factor V and protein S to activate protein C in the inactivation of the factor VIIIafactor IXa complex – species specific interactions of components of the protein C anticoagulant system. Thromb Haemost. 1997, 78: 1030-1036. Shen L, He X, Dahlback B: Synergistic cofactor function of factor V and protein S to activate protein C in the inactivation of the factor VIIIafactor IXa complex – species specific interactions of components of the protein C anticoagulant system. Thromb Haemost. 1997, 78: 1030-1036.
22.
go back to reference Urano T, Ihara H, Suzuki Y, Takada Y, Takada A: Coagulation-associated enhancement of fibrinolytic activity via a neutralization of PAI-1 activity. Semin Thromb Hemost. 2000, 26: 39-42. 10.1055/s-2000-9801.CrossRef Urano T, Ihara H, Suzuki Y, Takada Y, Takada A: Coagulation-associated enhancement of fibrinolytic activity via a neutralization of PAI-1 activity. Semin Thromb Hemost. 2000, 26: 39-42. 10.1055/s-2000-9801.CrossRef
23.
go back to reference Hori M, Nishida K: Oxidative stress and left ventricular remodeling after myocardial infarction. Cardiovasc Res. 2009, 81: 457-464. 10.1093/cvr/cvn335.CrossRef Hori M, Nishida K: Oxidative stress and left ventricular remodeling after myocardial infarction. Cardiovasc Res. 2009, 81: 457-464. 10.1093/cvr/cvn335.CrossRef
24.
go back to reference Mohamed-Ali V, Armstrong L, Vlark D, Bolton CH, Pinkney JH: Evidence for the regulation of levels of plasma adhesion molecules by inflammatory cytokines and their soluble receptors in type 1 diabetes. J Inter Med. 2001, 250: 415-421. 10.1046/j.1365-2796.2001.00900.x.CrossRef Mohamed-Ali V, Armstrong L, Vlark D, Bolton CH, Pinkney JH: Evidence for the regulation of levels of plasma adhesion molecules by inflammatory cytokines and their soluble receptors in type 1 diabetes. J Inter Med. 2001, 250: 415-421. 10.1046/j.1365-2796.2001.00900.x.CrossRef
25.
go back to reference Aso Y, Okumura K, Yoshida N, Tayama K, Kanda T, Kobayashi I, Takemura Y, Inukai T: Plasma interleukin-6 is associated with coagulation in poorly controlled patients with Type 2 diabetes. Diabetic Med. 2003, 20: 930-934. 10.1046/j.1464-5491.2003.01058.x.CrossRef Aso Y, Okumura K, Yoshida N, Tayama K, Kanda T, Kobayashi I, Takemura Y, Inukai T: Plasma interleukin-6 is associated with coagulation in poorly controlled patients with Type 2 diabetes. Diabetic Med. 2003, 20: 930-934. 10.1046/j.1464-5491.2003.01058.x.CrossRef
26.
go back to reference Takahashi K, Mizuarai S, Araki H, Mashiko S, Ishihara A, Kanatani A, Itadani H, Kotani H: Adiposity elevates plasma MCP-1 levels leading to the increased CD11b-positive monocytes in mice. J Biol Chem. 2003, 278: 46654-46660. 10.1074/jbc.M309895200.CrossRef Takahashi K, Mizuarai S, Araki H, Mashiko S, Ishihara A, Kanatani A, Itadani H, Kotani H: Adiposity elevates plasma MCP-1 levels leading to the increased CD11b-positive monocytes in mice. J Biol Chem. 2003, 278: 46654-46660. 10.1074/jbc.M309895200.CrossRef
27.
go back to reference Martinovic I, Abegunewardene N, Seul M, Vosseler M, Horstick G, Buerke M, Darius H, Lindemann S: Elevated monocyte chemoattractant protein-1 serum levels in patients at risk for coronary artery disease. Circulation J. 2005, 69: 1484-1489. 10.1253/circj.69.1484.CrossRef Martinovic I, Abegunewardene N, Seul M, Vosseler M, Horstick G, Buerke M, Darius H, Lindemann S: Elevated monocyte chemoattractant protein-1 serum levels in patients at risk for coronary artery disease. Circulation J. 2005, 69: 1484-1489. 10.1253/circj.69.1484.CrossRef
28.
go back to reference Han DH, Lee MJ, Kim JH: Antioxidant and apoptosis-inducing activities of ellagic acid. Anticancer Res. 2006, 26: 3601-3606. Han DH, Lee MJ, Kim JH: Antioxidant and apoptosis-inducing activities of ellagic acid. Anticancer Res. 2006, 26: 3601-3606.
29.
go back to reference Tasaki M, Umemura T, Maeda M, Ishii Y, Okamura T, Inoue T, Kuroiwa Y, Hirose M, Nishikawa A: Safety assessment of ellagic acid, a food additive, in a subchronic toxicity study using F344 rats. Food Chem Toxicol. 2008, 46: 1119-1124.CrossRef Tasaki M, Umemura T, Maeda M, Ishii Y, Okamura T, Inoue T, Kuroiwa Y, Hirose M, Nishikawa A: Safety assessment of ellagic acid, a food additive, in a subchronic toxicity study using F344 rats. Food Chem Toxicol. 2008, 46: 1119-1124.CrossRef
Metadata
Title
Anti-inflammatory and anti-coagulatory activities of caffeic acid and ellagic acid in cardiac tissue of diabetic mice
Authors
Pei-chun Chao
Cheng-chin Hsu
Mei-chin Yin
Publication date
01-12-2009
Publisher
BioMed Central
Published in
Nutrition & Metabolism / Issue 1/2009
Electronic ISSN: 1743-7075
DOI
https://doi.org/10.1186/1743-7075-6-33

Other articles of this Issue 1/2009

Nutrition & Metabolism 1/2009 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine