Skip to main content
Top
Published in: Virology Journal 1/2009

Open Access 01-12-2009 | Research

Expression and characterization of the UL31 protein from duck enteritis virus

Authors: Wei Xie, Anchun Cheng, Mingshu Wang, Hua Chang, Dekang Zhu, Qihui Luo, Renyong Jia, Xiaoyue Chen

Published in: Virology Journal | Issue 1/2009

Login to get access

Abstract

Background

Previous studies indicate that the UL31 protein and its homology play similar roles in nuclear egress of all herpesviruses. However, there is no report on the UL31 gene product of DEV. In this study, we expressed and presented the basic properties of the DEV UL31 product.

Results

The entire ORF of the UL31 was cloned into pET 32a (+) prokaryotic expression vector. Escherichia coli BL21(DE3) competent cells were transformed with the construct followed by the induction of protein expression by the addition of IPTG. Band corresponding to the predicted sizes (55 kDa) was produced on the SDS-PAGE. Over expressed 6×His-UL31 fusion protein was purified by nickel affinity chromatography. The DEV UL31 gene product has been identified by using a rabbit polyclonal antiserum raised against the purified protein. A protein of approximate 35 kDa that reacted with the antiserum was detected in immunoblots of DEV-infected cellular lysates, suggesting that the 35 kDa protein was the primary translation product of the UL31 gene. RT-PCR analyses revealed that the UL31 gene was transcribed most abundantly during the late phase of replication. Subsequently, Immunofluorescence analysis revealed that the protein was widespread speckled structures in the nuclei of infected cells. Western blotting of purified virion preparations showed that UL31 was a component of intracellular virions but was absent from mature extracellular virions. Finally, an Immunofluorescence assay was established to study the distribution of the UL31 antigen in tissues of artificially DEV infected ducks. The results showed that the UL31 antigen was primarily located in the cells of digestive organs and immunological organs.

Conclusion

In this work, we present the basic properties of the DEV UL31 product. The results indicate that DEV UL31 shares many similarities with its HSV or PRV homolog UL31 and suggest that functional cross-complementation is possible between members of the Alpha herpesvirus subfamily. Furthermore, in vivo experiments with ducks infected with UL31-defective isolates of DEV will also be of importance in order to assess the possible role of the UL31 protein in viral pathogenesis. These properties of the UL31 protein provide a prerequisite for further functional analysis of this gene.
Appendix
Available only for authorised users
Literature
1.
go back to reference Davison S, Converse kA, Hamir AN: Duck viral enteritis in Muscovy ducks in Pennsylvania. Avian Dis 1993, 37: 1142-1146. 10.2307/1591927CrossRefPubMed Davison S, Converse kA, Hamir AN: Duck viral enteritis in Muscovy ducks in Pennsylvania. Avian Dis 1993, 37: 1142-1146. 10.2307/1591927CrossRefPubMed
2.
go back to reference Montali RJ, Bush M, Greenwell GA: An epornitic of duck viral enteritis in a zoological park. J Am Vet Med Assoc 1976, 169: 954-958.PubMed Montali RJ, Bush M, Greenwell GA: An epornitic of duck viral enteritis in a zoological park. J Am Vet Med Assoc 1976, 169: 954-958.PubMed
3.
go back to reference Proctor SJ: Pathogenesis of duck plague in the bursa of Fabricius, thymus, and spleen. Am J Vet Res 1976, 37: 427-431.PubMed Proctor SJ: Pathogenesis of duck plague in the bursa of Fabricius, thymus, and spleen. Am J Vet Res 1976, 37: 427-431.PubMed
4.
go back to reference Fauquet CM, Mayo MA, Maniloff J, Desselberger U: Virus Taxonomy: Eighth Report of the International Committee on Taxonomy of Viruses. Elsevier Academic Press, California; 2005. Fauquet CM, Mayo MA, Maniloff J, Desselberger U: Virus Taxonomy: Eighth Report of the International Committee on Taxonomy of Viruses. Elsevier Academic Press, California; 2005.
5.
go back to reference Burgess EC, Ossa J, Yuill TM: Duck plague: a carrier state in waterfowl. Avian Dis 1979, 23: 940-949. 10.2307/1589610CrossRefPubMed Burgess EC, Ossa J, Yuill TM: Duck plague: a carrier state in waterfowl. Avian Dis 1979, 23: 940-949. 10.2307/1589610CrossRefPubMed
6.
go back to reference Gardner R, Wilkerson J, Johnson JC: Molecular characterization of the DNA of Anatid herpesvirus 1. Intervirology 1993, 36: 99-112.PubMed Gardner R, Wilkerson J, Johnson JC: Molecular characterization of the DNA of Anatid herpesvirus 1. Intervirology 1993, 36: 99-112.PubMed
7.
go back to reference Cheng AC, Wang MS, Wen M: Construction of duck enteritis virus gene libraries and discovery, cloning and identification of viral nucleocapsid protein gene. High Technology Letters 2006, 16: 948-953. (in Chinese) Cheng AC, Wang MS, Wen M: Construction of duck enteritis virus gene libraries and discovery, cloning and identification of viral nucleocapsid protein gene. High Technology Letters 2006, 16: 948-953. (in Chinese)
8.
go back to reference Gonnella R, Farina A, Santarelli R, Raffa S, Feederle R: Characterization and intracellular localization of the Epstein-Barr virus protein BFLF2: interactions with BFRF1 and with the nuclear lamina. J Virol 2005, 79: 3713-3727. 10.1128/JVI.79.6.3713-3727.2005PubMedCentralCrossRefPubMed Gonnella R, Farina A, Santarelli R, Raffa S, Feederle R: Characterization and intracellular localization of the Epstein-Barr virus protein BFLF2: interactions with BFRF1 and with the nuclear lamina. J Virol 2005, 79: 3713-3727. 10.1128/JVI.79.6.3713-3727.2005PubMedCentralCrossRefPubMed
9.
go back to reference Schnee M, Ruzsics Z, Bubeck A, Koszinowski UH: Common and specific properties of herpesvirus UL34/UL31 protein family members revealed by protein complementation assay. J Virol 2006, 80: 11658-11666. 10.1128/JVI.01662-06PubMedCentralCrossRefPubMed Schnee M, Ruzsics Z, Bubeck A, Koszinowski UH: Common and specific properties of herpesvirus UL34/UL31 protein family members revealed by protein complementation assay. J Virol 2006, 80: 11658-11666. 10.1128/JVI.01662-06PubMedCentralCrossRefPubMed
10.
go back to reference Susan L, Bjerke RJ, Roller : Roles for herpes simplex virus type 1 UL34 and US3 proteins in disrupting the nuclear lamina during herpes simplex virus type 1 egress. Virology 2006, 347: 261-276. 10.1016/j.virol.2005.11.053CrossRef Susan L, Bjerke RJ, Roller : Roles for herpes simplex virus type 1 UL34 and US3 proteins in disrupting the nuclear lamina during herpes simplex virus type 1 egress. Virology 2006, 347: 261-276. 10.1016/j.virol.2005.11.053CrossRef
11.
go back to reference Granzow H, Klupp BG, Mettenleiter TC: The pseudorabies virus US3 protein is a component of primary and of mature virions. J Virol 2004, 78: 1314-1323. 10.1128/JVI.78.3.1314-1323.2004PubMedCentralCrossRefPubMed Granzow H, Klupp BG, Mettenleiter TC: The pseudorabies virus US3 protein is a component of primary and of mature virions. J Virol 2004, 78: 1314-1323. 10.1128/JVI.78.3.1314-1323.2004PubMedCentralCrossRefPubMed
12.
go back to reference Ho T, Hsiang C, Chang T: Analysis of pseudorabies virus genes by cDNA sequencing. Gene 1996, 175: 247-251. 10.1016/0378-1119(96)00158-8CrossRefPubMed Ho T, Hsiang C, Chang T: Analysis of pseudorabies virus genes by cDNA sequencing. Gene 1996, 175: 247-251. 10.1016/0378-1119(96)00158-8CrossRefPubMed
13.
go back to reference Ye GJ, Roizman B: The essential protein encoded by the UL31 gene of herpes simplex virus 1 depends for its stability on the presence of UL34 protein. Proc Natl Acad Sci USA 2000, 97: 11002-11007. 10.1073/pnas.97.20.11002PubMedCentralCrossRefPubMed Ye GJ, Roizman B: The essential protein encoded by the UL31 gene of herpes simplex virus 1 depends for its stability on the presence of UL34 protein. Proc Natl Acad Sci USA 2000, 97: 11002-11007. 10.1073/pnas.97.20.11002PubMedCentralCrossRefPubMed
14.
go back to reference Reynolds AE, Ryckman BJ, Baines JD, Zhou Y, Liang L, Roller RJ: U(L)31 and U(L)34 proteins of herpes simplex virus type 1 form a complex that accumulates at the nuclear rim and is required for envelopment of nucleocapsids. J Virol 2001, 75: 8803-8817. 10.1128/JVI.75.18.8803-8817.2001PubMedCentralCrossRefPubMed Reynolds AE, Ryckman BJ, Baines JD, Zhou Y, Liang L, Roller RJ: U(L)31 and U(L)34 proteins of herpes simplex virus type 1 form a complex that accumulates at the nuclear rim and is required for envelopment of nucleocapsids. J Virol 2001, 75: 8803-8817. 10.1128/JVI.75.18.8803-8817.2001PubMedCentralCrossRefPubMed
15.
go back to reference Zhu HY, Yamada H, Jiang YM, Yamada M, Nishiyama Y: Intracellular localization of the UL31 protein of herpes simplex virus type 2. Arch Virol 1999, 144: 1923-1935. 10.1007/s007050050715CrossRefPubMed Zhu HY, Yamada H, Jiang YM, Yamada M, Nishiyama Y: Intracellular localization of the UL31 protein of herpes simplex virus type 2. Arch Virol 1999, 144: 1923-1935. 10.1007/s007050050715CrossRefPubMed
16.
go back to reference Dal Monte P, Pignatelli S, Zini N, Maraldi NM, Perret E, Prevost MC, Landini MP: Analysis of intracellular and intraviral localization of the human cytomegalovirus UL53 protein. J Gen Virol 2002, 83: 1005-1012.CrossRefPubMed Dal Monte P, Pignatelli S, Zini N, Maraldi NM, Perret E, Prevost MC, Landini MP: Analysis of intracellular and intraviral localization of the human cytomegalovirus UL53 protein. J Gen Virol 2002, 83: 1005-1012.CrossRefPubMed
17.
go back to reference Farina A, Feederle R, Raffa S, Gonnella R, Santarelli R, Frati L, Angeloni A, Torrisi MR, Faggioni A, Delecluse HJ: BFRF1 of Epstein-Barr Virus Is Essential for Efficient Primary Viral Envelopment and Egress. Journal of Virology 2005, 79: 3703-3712. 10.1128/JVI.79.6.3703-3712.2005PubMedCentralCrossRefPubMed Farina A, Feederle R, Raffa S, Gonnella R, Santarelli R, Frati L, Angeloni A, Torrisi MR, Faggioni A, Delecluse HJ: BFRF1 of Epstein-Barr Virus Is Essential for Efficient Primary Viral Envelopment and Egress. Journal of Virology 2005, 79: 3703-3712. 10.1128/JVI.79.6.3703-3712.2005PubMedCentralCrossRefPubMed
18.
go back to reference Klupp BG, Granzow H, Mettenleiter TC: Primary envelopment of pseudorabies virus at the nuclear membrane requires the UL34 gene product. Virology 2000, 74: 10063-10073. 10.1128/JVI.74.21.10063-10073.2000CrossRef Klupp BG, Granzow H, Mettenleiter TC: Primary envelopment of pseudorabies virus at the nuclear membrane requires the UL34 gene product. Virology 2000, 74: 10063-10073. 10.1128/JVI.74.21.10063-10073.2000CrossRef
19.
go back to reference Lake CM, Hutt-Fletcher LM: The Epstein-Barr virus BFRF1 and BFLF2 proteins interact and coexpression alters their cellular localization. Virology 2004, 320: 99-106. 10.1016/j.virol.2003.11.018CrossRefPubMed Lake CM, Hutt-Fletcher LM: The Epstein-Barr virus BFRF1 and BFLF2 proteins interact and coexpression alters their cellular localization. Virology 2004, 320: 99-106. 10.1016/j.virol.2003.11.018CrossRefPubMed
20.
go back to reference Lotzerich M, Ruzsics Z, Koszinowski UH: Functional domains of murine cytomegalovirus nuclear egress protein M53/p38. J Virol 2006, 80: 73-84. 10.1128/JVI.80.1.73-84.2006PubMedCentralCrossRefPubMed Lotzerich M, Ruzsics Z, Koszinowski UH: Functional domains of murine cytomegalovirus nuclear egress protein M53/p38. J Virol 2006, 80: 73-84. 10.1128/JVI.80.1.73-84.2006PubMedCentralCrossRefPubMed
21.
go back to reference Blom N, Sicheritz-Ponten T, Gupta R, Gammeltoft S, Brunak S: Prediction of post-translational glycosylation and phosphorylation of proteins from the amino acid sequence. Proteomics(Weinheim Print) 2004, 4: 1633-1649. Blom N, Sicheritz-Ponten T, Gupta R, Gammeltoft S, Brunak S: Prediction of post-translational glycosylation and phosphorylation of proteins from the amino acid sequence. Proteomics(Weinheim Print) 2004, 4: 1633-1649.
22.
go back to reference Helferich D, Veits J, Mettenleiter TC, Fuchs W: Identification of transcripts and protein products of the UL31, UL37, UL46, UL47, UL48, UL49 and US4 gene homologues of avian infectious laryngotracheitis virus. J Gen Virol 2007, 88: 719-731. 10.1099/vir.0.82532-0CrossRefPubMed Helferich D, Veits J, Mettenleiter TC, Fuchs W: Identification of transcripts and protein products of the UL31, UL37, UL46, UL47, UL48, UL49 and US4 gene homologues of avian infectious laryngotracheitis virus. J Gen Virol 2007, 88: 719-731. 10.1099/vir.0.82532-0CrossRefPubMed
23.
go back to reference Simpson-Holley M, Baines J, Roller R, Knipe DM: Herpes simplex virus 1 U(L)31 and U(L)34 gene products promote the late maturation of viral replication compartments to the nuclear periphery. J Virol 2004, 78: 5591-5600. 10.1128/JVI.78.11.5591-5600.2004PubMedCentralCrossRefPubMed Simpson-Holley M, Baines J, Roller R, Knipe DM: Herpes simplex virus 1 U(L)31 and U(L)34 gene products promote the late maturation of viral replication compartments to the nuclear periphery. J Virol 2004, 78: 5591-5600. 10.1128/JVI.78.11.5591-5600.2004PubMedCentralCrossRefPubMed
24.
go back to reference Muranyi W, Haas J, Wagner M, Krohne G, Koszinowski UH: Cytomegalovirus recruitment of cellular kinases to dissolve the nuclear lamina. Science 2002, 297: 854-857. 10.1126/science.1071506CrossRefPubMed Muranyi W, Haas J, Wagner M, Krohne G, Koszinowski UH: Cytomegalovirus recruitment of cellular kinases to dissolve the nuclear lamina. Science 2002, 297: 854-857. 10.1126/science.1071506CrossRefPubMed
25.
go back to reference Holland LE, Sandri-Goldin RM, Goldin AL, Glorioso JC: Transcription and genetic analysis of the herpes simplex virus type 1 genome: coordinates 0.29 to 0.45. Virology 1984, 45: 947-959. Holland LE, Sandri-Goldin RM, Goldin AL, Glorioso JC: Transcription and genetic analysis of the herpes simplex virus type 1 genome: coordinates 0.29 to 0.45. Virology 1984, 45: 947-959.
26.
go back to reference Fuchs W, Klupp BG, Granzow H, Osterrieder N, Mettenleiter TC: The interacting UL31 and UL34 gene products of pseudorabies virus are involved in egress from the host-cell nucleus and represent components of primary enveloped but not mature virions. J Virol 2002, 76: 364-378. 10.1128/JVI.76.1.364-378.2002PubMedCentralCrossRefPubMed Fuchs W, Klupp BG, Granzow H, Osterrieder N, Mettenleiter TC: The interacting UL31 and UL34 gene products of pseudorabies virus are involved in egress from the host-cell nucleus and represent components of primary enveloped but not mature virions. J Virol 2002, 76: 364-378. 10.1128/JVI.76.1.364-378.2002PubMedCentralCrossRefPubMed
27.
go back to reference Fuchs W, Klupp BG, Mettenleiter TC: The interacting UL31 and UL34 gene products of Pseudorabies virus are involved in egress from the host-cell nucleus and represent components of primary enveloped but not mature virions. Virology 2002, 76: 364-378. 10.1128/JVI.76.1.364-378.2002CrossRef Fuchs W, Klupp BG, Mettenleiter TC: The interacting UL31 and UL34 gene products of Pseudorabies virus are involved in egress from the host-cell nucleus and represent components of primary enveloped but not mature virions. Virology 2002, 76: 364-378. 10.1128/JVI.76.1.364-378.2002CrossRef
28.
go back to reference Blaho JA, Mitchell C, Roizman B: An amino acid sequence shared by the herpes simplex virus 1 alpha regulatory proteins 0, 4, 22, and 27 predicts the nucleotidylylation of the UL21, UL31, UL47, and UL49 gene products. J Biol Chem 1994, 269: 17401-17410.PubMed Blaho JA, Mitchell C, Roizman B: An amino acid sequence shared by the herpes simplex virus 1 alpha regulatory proteins 0, 4, 22, and 27 predicts the nucleotidylylation of the UL21, UL31, UL47, and UL49 gene products. J Biol Chem 1994, 269: 17401-17410.PubMed
29.
go back to reference Laemmli UK: Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 1970, 227: 680-685. 10.1038/227680a0CrossRefPubMed Laemmli UK: Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 1970, 227: 680-685. 10.1038/227680a0CrossRefPubMed
30.
go back to reference Sambrook J, Fritsch EF, Maniatis T: Molecular Cloning: A Laboratory Manual. Volume 18. 2nd edition. New York: Cold Spring Harbor Laboratory; 1989:58. Sambrook J, Fritsch EF, Maniatis T: Molecular Cloning: A Laboratory Manual. Volume 18. 2nd edition. New York: Cold Spring Harbor Laboratory; 1989:58.
31.
go back to reference Feldmann L, Rixon FJ, Ben-Porat T: Transcription of the genome of pseudorabies virus(A herpesvius) is strictly controlled. Virology 1979, 97: 316-327. 10.1016/0042-6822(79)90343-XCrossRef Feldmann L, Rixon FJ, Ben-Porat T: Transcription of the genome of pseudorabies virus(A herpesvius) is strictly controlled. Virology 1979, 97: 316-327. 10.1016/0042-6822(79)90343-XCrossRef
32.
go back to reference Guo YF, Cheng AC, Wang MS, Zhou Y: Purification of anatid herpesvirus 1 particles by tangential-flow ultrafiltration and sucrose gradient ultracentrifugation. Journal of Virological Methods 2009, in press. Guo YF, Cheng AC, Wang MS, Zhou Y: Purification of anatid herpesvirus 1 particles by tangential-flow ultrafiltration and sucrose gradient ultracentrifugation. Journal of Virological Methods 2009, in press.
Metadata
Title
Expression and characterization of the UL31 protein from duck enteritis virus
Authors
Wei Xie
Anchun Cheng
Mingshu Wang
Hua Chang
Dekang Zhu
Qihui Luo
Renyong Jia
Xiaoyue Chen
Publication date
01-12-2009
Publisher
BioMed Central
Published in
Virology Journal / Issue 1/2009
Electronic ISSN: 1743-422X
DOI
https://doi.org/10.1186/1743-422X-6-19

Other articles of this Issue 1/2009

Virology Journal 1/2009 Go to the issue