Skip to main content
Top
Published in: Journal of NeuroEngineering and Rehabilitation 1/2012

Open Access 01-12-2012 | Research

Biofeedback improves postural control recovery from multi-axis discrete perturbations

Authors: Kathleen H Sienko, M David Balkwill, Conrad Wall III

Published in: Journal of NeuroEngineering and Rehabilitation | Issue 1/2012

Login to get access

Abstract

Background

Multi-axis vibrotactile feedback has been shown to significantly reduce the root-mean-square (RMS) sway, elliptical fits to sway trajectory area, and the time spent outside of the no feedback zone in individuals with vestibular deficits during continuous multidirectional support surface perturbations. The purpose of this study was to examine the effect of multidirectional vibrotactile biofeedback on postural stability during discrete multidirectional support surface perturbations.

Methods

The vibrotactile biofeedback device mapped tilt estimates onto the torso using a 3-row by 16-column tactor array. The number of columns displayed was varied to determine the effect of spatial resolution upon subject response. Torso kinematics and center of pressure data were measured in six subjects with vestibular deficits. Transient and steady state postural responses with and without feedback were characterized in response to eight perturbation directions. Four feedback conditions in addition to the tactors off (no feedback) configuration were evaluated. Postural response data captured by both a force plate and an inertial measurement unit worn on the torso were partitioned into three distinct phases: ballistic, recovery, and steady state.

Results

The results suggest that feedback has minimal effects during the ballistic phase (body’s outbound trajectory in response to the perturbation), and the greatest effects during the recovery (return toward baseline) and steady state (post-recovery) phases. Specifically, feedback significantly decreases the time required for the body tilt to return to baseline values and significantly increases the velocity of the body’s return to baseline values. Furthermore, feedback significantly decreases root mean square roll and pitch sway and significantly increases the amount of time spent in the no feedback zone. All four feedback conditions produced comparable performance improvements. Incidences of delayed and uncontrolled responses were significantly reduced with feedback while erroneous (sham) feedback resulted in poorer performance when compared with the no feedback condition.

Conclusions

The results show that among the displays evaluated in this study, no one tactor column configuration was optimal for standing tasks involving discrete surface perturbations. Feedback produced larger effects on body tilt versus center of pressure parameters. Furthermore, the subjects’ performance worsened when erroneous feedback was provided, suggesting that vibrotactile stimulation applied to the torso is actively processed and acted upon rather than being responsible for simply triggering a stiffening response.
Appendix
Available only for authorised users
Literature
1.
go back to reference Wall C: Application of vibrotactile feedback of body motion to improve rehabilitation in individuals with imbalance. J Neurol Phys Ther 2010,34(2):98-104.PubMedCentralCrossRefPubMed Wall C: Application of vibrotactile feedback of body motion to improve rehabilitation in individuals with imbalance. J Neurol Phys Ther 2010,34(2):98-104.PubMedCentralCrossRefPubMed
2.
go back to reference Tyler M, Danilov Y, Bach-y-Rita P: Closing an open-loop control system: vestibular substitution through the tongue. J Integr Neurosci 2003,2(2):159-164. 10.1142/S0219635203000263CrossRefPubMed Tyler M, Danilov Y, Bach-y-Rita P: Closing an open-loop control system: vestibular substitution through the tongue. J Integr Neurosci 2003,2(2):159-164. 10.1142/S0219635203000263CrossRefPubMed
3.
go back to reference Nitz JC, et al.: Is the Wii fit a new-generation tool for improving balance, health and well-being? A pilot study. Climacteric 2010,13(5):487-491. 10.3109/13697130903395193CrossRefPubMed Nitz JC, et al.: Is the Wii fit a new-generation tool for improving balance, health and well-being? A pilot study. Climacteric 2010,13(5):487-491. 10.3109/13697130903395193CrossRefPubMed
4.
go back to reference Dozza M, Chiari L, Horak FB: Audio-biofeedback improves balance in patients with bilateral vestibular loss. Arch Phys Med Rehabil 2005,86(7):1401-1403. 10.1016/j.apmr.2004.12.036CrossRefPubMed Dozza M, Chiari L, Horak FB: Audio-biofeedback improves balance in patients with bilateral vestibular loss. Arch Phys Med Rehabil 2005,86(7):1401-1403. 10.1016/j.apmr.2004.12.036CrossRefPubMed
5.
go back to reference Verhoeff LL, et al.: Effects of biofeedback on trunk sway during dual tasking in the healthy young and elderly. Gait Posture 2009,30(1):76-81. 10.1016/j.gaitpost.2009.03.002CrossRefPubMed Verhoeff LL, et al.: Effects of biofeedback on trunk sway during dual tasking in the healthy young and elderly. Gait Posture 2009,30(1):76-81. 10.1016/j.gaitpost.2009.03.002CrossRefPubMed
6.
go back to reference Bechly K, Carender W, Myles J, Sienko KH, et al.: Determining the preferred modality for real-time biofeedback during balance training. submitted Bechly K, Carender W, Myles J, Sienko KH, et al.: Determining the preferred modality for real-time biofeedback during balance training. submitted
7.
go back to reference Janssen M, et al.: Salient and placebo vibrotactile feedback are equally effective in reducing sway in bilateral vestibular loss patients. Gait Posture 2010,31(2):213-217. 10.1016/j.gaitpost.2009.10.008CrossRefPubMed Janssen M, et al.: Salient and placebo vibrotactile feedback are equally effective in reducing sway in bilateral vestibular loss patients. Gait Posture 2010,31(2):213-217. 10.1016/j.gaitpost.2009.10.008CrossRefPubMed
8.
go back to reference Wall C, et al.: Balance prosthesis based on micromechanical sensors using vibrotactile feedback of tilt. IEEE Trans Biomed Eng 2001,48(10):1153-1161. 10.1109/10.951518CrossRefPubMed Wall C, et al.: Balance prosthesis based on micromechanical sensors using vibrotactile feedback of tilt. IEEE Trans Biomed Eng 2001,48(10):1153-1161. 10.1109/10.951518CrossRefPubMed
9.
go back to reference Van Erp J: Presenting directions with a vibrotactile torso display. Ergonomics 2005,48(3):302-313. 10.1080/0014013042000327670CrossRefPubMed Van Erp J: Presenting directions with a vibrotactile torso display. Ergonomics 2005,48(3):302-313. 10.1080/0014013042000327670CrossRefPubMed
10.
go back to reference Cholewiak RW, Brill JC, Schwab A: Vibrotactile localization on the abdomen: effects of place and space. Percept Psychophys 2004,66(6):970-987. 10.3758/BF03194989CrossRefPubMed Cholewiak RW, Brill JC, Schwab A: Vibrotactile localization on the abdomen: effects of place and space. Percept Psychophys 2004,66(6):970-987. 10.3758/BF03194989CrossRefPubMed
11.
go back to reference Kadkade P, et al.: Vibrotactile display coding for a balance prosthesis. IEEE Trans Neural Syst Rehabil Eng 2003,11(4):392-399. 10.1109/TNSRE.2003.819937CrossRefPubMed Kadkade P, et al.: Vibrotactile display coding for a balance prosthesis. IEEE Trans Neural Syst Rehabil Eng 2003,11(4):392-399. 10.1109/TNSRE.2003.819937CrossRefPubMed
12.
go back to reference Nashner L: Computerized dynamic posturography. In Practical management of the dizzy patient. Edited by: Goebel J. Lippincott Williams & Wilkins, Philadelphia; 2001:143-170. Nashner L: Computerized dynamic posturography. In Practical management of the dizzy patient. Edited by: Goebel J. Lippincott Williams & Wilkins, Philadelphia; 2001:143-170.
13.
go back to reference Goebel JA, et al.: Effectiveness of head-mounted vibrotactile stimulation in subjects with bilateral vestibular loss: a phase 1 clinical trial. Otol Neurotol 2009,30(2):210-216. 10.1097/MAO.0b013e318194f84dCrossRefPubMed Goebel JA, et al.: Effectiveness of head-mounted vibrotactile stimulation in subjects with bilateral vestibular loss: a phase 1 clinical trial. Otol Neurotol 2009,30(2):210-216. 10.1097/MAO.0b013e318194f84dCrossRefPubMed
14.
go back to reference Kentala E, Vivas J, Wall C: Reduction of postural sway by use of a vibrotactile balance prosthesis prototype in subjects with vestibular deficits. Ann Otol Rhinol Laryngol 2003,112(5):404-409.CrossRefPubMed Kentala E, Vivas J, Wall C: Reduction of postural sway by use of a vibrotactile balance prosthesis prototype in subjects with vestibular deficits. Ann Otol Rhinol Laryngol 2003,112(5):404-409.CrossRefPubMed
15.
go back to reference Wall C, Kentala E: Control of sway using vibrotactile feedback of body tilt in patients with moderate and severe postural control deficits. J Vestib Res 2005,15(5–6):313-325.PubMed Wall C, Kentala E: Control of sway using vibrotactile feedback of body tilt in patients with moderate and severe postural control deficits. J Vestib Res 2005,15(5–6):313-325.PubMed
16.
go back to reference Sienko KH, et al.: Effects of multi-directional vibrotactile feedback on vestibular-deficient postural performance during continuous multi-directional support surface perturbations. J Vestib Res 2008, 18: 5-6. Sienko KH, et al.: Effects of multi-directional vibrotactile feedback on vestibular-deficient postural performance during continuous multi-directional support surface perturbations. J Vestib Res 2008, 18: 5-6.
17.
go back to reference Sienko KH, et al.: Assessment of vibrotactile feedback on postural stability during pseudorandom multidirectional platform motion. IEEE Trans Biomed Eng 2010,57(4):944-952.CrossRefPubMed Sienko KH, et al.: Assessment of vibrotactile feedback on postural stability during pseudorandom multidirectional platform motion. IEEE Trans Biomed Eng 2010,57(4):944-952.CrossRefPubMed
18.
go back to reference Wall C, Kentala E: Effect of displacement, velocity, and combined vibrotactile tilt feedback on postural control of vestibulopathic subjects. J Vestib Res 2010,20(1):61-69.PubMed Wall C, Kentala E: Effect of displacement, velocity, and combined vibrotactile tilt feedback on postural control of vestibulopathic subjects. J Vestib Res 2010,20(1):61-69.PubMed
19.
go back to reference Oddsson LI, et al.: Recovery from perturbations during paced walking. Gait Posture 2004,19(1):24-34. 10.1016/S0966-6362(03)00008-0CrossRefPubMed Oddsson LI, et al.: Recovery from perturbations during paced walking. Gait Posture 2004,19(1):24-34. 10.1016/S0966-6362(03)00008-0CrossRefPubMed
20.
go back to reference Winter DA: A.B.C. (Anatomy, Biomechanics, and Control) of balance during standing and walking. Graphic Services, University of Waterloo, Waterloo; 1995. Winter DA: A.B.C. (Anatomy, Biomechanics, and Control) of balance during standing and walking. Graphic Services, University of Waterloo, Waterloo; 1995.
21.
go back to reference Dimitri PS, Wall C, Oas JG: Classification of human rotation test results using parametric modeling and multivariate statistics. Acta Otolaryngol 1996,116(4):497-506.CrossRefPubMed Dimitri PS, Wall C, Oas JG: Classification of human rotation test results using parametric modeling and multivariate statistics. Acta Otolaryngol 1996,116(4):497-506.CrossRefPubMed
22.
go back to reference Dimitri PS, Wall C, Rauch SD: Multivariate vestibular testing: thresholds for bilateral Meniere’s disease and aminoglycoside ototoxicity. J Vestib Res 2001,11(6):391-404.PubMed Dimitri PS, Wall C, Rauch SD: Multivariate vestibular testing: thresholds for bilateral Meniere’s disease and aminoglycoside ototoxicity. J Vestib Res 2001,11(6):391-404.PubMed
23.
go back to reference Lee BC, Kim J, Chen S, Sienko KH: Journal of NeuroEngineering and Rehabilitation. Ann Otol Rhinol Laryngol 2012,112(5):404-409. Lee BC, Kim J, Chen S, Sienko KH: Journal of NeuroEngineering and Rehabilitation. Ann Otol Rhinol Laryngol 2012,112(5):404-409.
Metadata
Title
Biofeedback improves postural control recovery from multi-axis discrete perturbations
Authors
Kathleen H Sienko
M David Balkwill
Conrad Wall III
Publication date
01-12-2012
Publisher
BioMed Central
Published in
Journal of NeuroEngineering and Rehabilitation / Issue 1/2012
Electronic ISSN: 1743-0003
DOI
https://doi.org/10.1186/1743-0003-9-53

Other articles of this Issue 1/2012

Journal of NeuroEngineering and Rehabilitation 1/2012 Go to the issue