Skip to main content
Top
Published in: Journal of NeuroEngineering and Rehabilitation 1/2012

Open Access 01-12-2012 | Research

Recommended number of strides for automatic assessment of gait symmetry and regularity in above-knee amputees by means of accelerometry and autocorrelation analysis

Authors: Andrea Tura, Laura Rocchi, Michele Raggi, Andrea G Cutti, Lorenzo Chiari

Published in: Journal of NeuroEngineering and Rehabilitation | Issue 1/2012

Login to get access

Abstract

Background

Symmetry and regularity of gait are essential outcomes of gait retraining programs, especially in lower-limb amputees. This study aims presenting an algorithm to automatically compute symmetry and regularity indices, and assessing the minimum number of strides for appropriate evaluation of gait symmetry and regularity through autocorrelation of acceleration signals.

Methods

Ten transfemoral amputees (AMP) and ten control subjects (CTRL) were studied. Subjects wore an accelerometer and were asked to walk for 70 m at their natural speed (twice). Reference values of step and stride regularity indices (Ad1 and Ad2) were obtained by autocorrelation analysis of the vertical and antero-posterior acceleration signals, excluding initial and final strides. The Ad1 and Ad2 coefficients were then computed at different stages by analyzing increasing portions of the signals (considering both the signals cleaned by initial and final strides, and the whole signals). At each stage, the difference between Ad1 and Ad2 values and the corresponding reference values were compared with the minimum detectable difference, MDD, of the index. If that difference was less than MDD, it was assumed that the portion of signal used in the analysis was of sufficient length to allow reliable estimation of the autocorrelation coefficient.

Results

All Ad1 and Ad2 indices were lower in AMP than in CTRL (P < 0.0001). Excluding initial and final strides from the analysis, the minimum number of strides needed for reliable computation of step symmetry and stride regularity was about 2.2 and 3.5, respectively. Analyzing the whole signals, the minimum number of strides increased to about 15 and 20, respectively.

Conclusions

Without the need to identify and eliminate the phases of gait initiation and termination, twenty strides can provide a reasonable amount of information to reliably estimate gait regularity in transfemoral amputees.
Appendix
Available only for authorised users
Literature
1.
go back to reference Segal AD, Orendurff MS, Klute GK, McDowell ML, Pecoraro JA, Shofer J, Czerniecki JM: Kinematic and kinetic comparisons of transfemoral amputee gait using C-Leg and Mauch SNS prosthetic knees. J Rehabil Res Dev 2006, 43: 857-870. 10.1682/JRRD.2005.09.0147CrossRefPubMed Segal AD, Orendurff MS, Klute GK, McDowell ML, Pecoraro JA, Shofer J, Czerniecki JM: Kinematic and kinetic comparisons of transfemoral amputee gait using C-Leg and Mauch SNS prosthetic knees. J Rehabil Res Dev 2006, 43: 857-870. 10.1682/JRRD.2005.09.0147CrossRefPubMed
2.
go back to reference Hillman SJ, Donald SC, Herman J, McCurrach E, McGarry A, Richardson AM, Robb JE: Repeatability of a new observational gait score for unilateral lower limb amputees. Gait Posture 2010, 32: 39-45. 10.1016/j.gaitpost.2010.03.007CrossRefPubMed Hillman SJ, Donald SC, Herman J, McCurrach E, McGarry A, Richardson AM, Robb JE: Repeatability of a new observational gait score for unilateral lower limb amputees. Gait Posture 2010, 32: 39-45. 10.1016/j.gaitpost.2010.03.007CrossRefPubMed
3.
go back to reference Hagberg K, Haggstrom E, Branemark R: Physiological cost index (PCI) and walking performance in individuals with transfemoral prostheses compared to healthy controls. Disabil Rehabil 2007, 29: 643-649. 10.1080/09638280600902869CrossRefPubMed Hagberg K, Haggstrom E, Branemark R: Physiological cost index (PCI) and walking performance in individuals with transfemoral prostheses compared to healthy controls. Disabil Rehabil 2007, 29: 643-649. 10.1080/09638280600902869CrossRefPubMed
4.
go back to reference Gailey R, Allen K, Castles J, Kucharik J, Roeder M: Review of secondary physical conditions associated with lower-limb amputation and long-term prosthesis use. J Rehabil Res Dev 2008, 45: 15-29. 10.1682/JRRD.2006.11.0147CrossRefPubMed Gailey R, Allen K, Castles J, Kucharik J, Roeder M: Review of secondary physical conditions associated with lower-limb amputation and long-term prosthesis use. J Rehabil Res Dev 2008, 45: 15-29. 10.1682/JRRD.2006.11.0147CrossRefPubMed
5.
go back to reference Christensen B, Ellegaard B, Bretler U, Ostrup EL: The effect of prosthetic rehabilitation in lower limb amputees. Prosthet Orthot Int 1995, 19: 46-52.PubMed Christensen B, Ellegaard B, Bretler U, Ostrup EL: The effect of prosthetic rehabilitation in lower limb amputees. Prosthet Orthot Int 1995, 19: 46-52.PubMed
6.
go back to reference Summers GD, Morrison JD, Cochrane GM: Amputee walking training: a preliminary study of biomechanical measurements of stance and balance. Int Disabil Stud 1988, 10: 1-5. 10.3109/09638288809164048CrossRefPubMed Summers GD, Morrison JD, Cochrane GM: Amputee walking training: a preliminary study of biomechanical measurements of stance and balance. Int Disabil Stud 1988, 10: 1-5. 10.3109/09638288809164048CrossRefPubMed
7.
go back to reference Gauthier-Gagnon C, Grise MC, Potvin D: Enabling factors related to prosthetic use by people with transtibial and transfemoral amputation. Arch Phys Med Rehabil 1999, 80: 706-713. 10.1016/S0003-9993(99)90177-6CrossRefPubMed Gauthier-Gagnon C, Grise MC, Potvin D: Enabling factors related to prosthetic use by people with transtibial and transfemoral amputation. Arch Phys Med Rehabil 1999, 80: 706-713. 10.1016/S0003-9993(99)90177-6CrossRefPubMed
8.
go back to reference Tura A, Raggi M, Rocchi L, Cutti AG, Chiari L: Gait symmetry and regularity in transfemoral amputees assessed by trunk accelerations. J Neuroeng Rehabil 2010, 7: 4. 10.1186/1743-0003-7-4PubMedCentralCrossRefPubMed Tura A, Raggi M, Rocchi L, Cutti AG, Chiari L: Gait symmetry and regularity in transfemoral amputees assessed by trunk accelerations. J Neuroeng Rehabil 2010, 7: 4. 10.1186/1743-0003-7-4PubMedCentralCrossRefPubMed
9.
go back to reference Nolan L, Wit A, Dudzinski K, Lees A, Lake M, Wychowanski M: Adjustments in gait symmetry with walking speed in trans-femoral and trans-tibial amputees. Gait Posture 2003, 17: 142-151. 10.1016/S0966-6362(02)00066-8CrossRefPubMed Nolan L, Wit A, Dudzinski K, Lees A, Lake M, Wychowanski M: Adjustments in gait symmetry with walking speed in trans-femoral and trans-tibial amputees. Gait Posture 2003, 17: 142-151. 10.1016/S0966-6362(02)00066-8CrossRefPubMed
10.
go back to reference Mathie MJ, Coster AC, Lovell NH, Celler BG: Accelerometry: providing an integrated, practical method for long-term, ambulatory monitoring of human movement. Physiol Meas 2004, 25: R1-20. 10.1088/0967-3334/25/2/R01CrossRefPubMed Mathie MJ, Coster AC, Lovell NH, Celler BG: Accelerometry: providing an integrated, practical method for long-term, ambulatory monitoring of human movement. Physiol Meas 2004, 25: R1-20. 10.1088/0967-3334/25/2/R01CrossRefPubMed
11.
go back to reference Bonato P: Clinical applications of wearable technology. Conf Proc IEEE Eng Med Biol Soc 2004, 2009: 6580-6583. Bonato P: Clinical applications of wearable technology. Conf Proc IEEE Eng Med Biol Soc 2004, 2009: 6580-6583.
12.
go back to reference Patel S, Lorincz K, Hughes R, Huggins N, Growdon J, Standaert D, Akay M, Dy J, Welsh M, Bonato P: Monitoring motor fluctuations in patients with Parkinson's disease using wearable sensors. IEEE Trans Inf Technol Biomed 2009, 13: 864-873.CrossRefPubMed Patel S, Lorincz K, Hughes R, Huggins N, Growdon J, Standaert D, Akay M, Dy J, Welsh M, Bonato P: Monitoring motor fluctuations in patients with Parkinson's disease using wearable sensors. IEEE Trans Inf Technol Biomed 2009, 13: 864-873.CrossRefPubMed
13.
go back to reference Moe-Nilssen R, Helbostad JL: Estimation of gait cycle characteristics by trunk accelerometry. J Biomech 2004, 37: 121-126. 10.1016/S0021-9290(03)00233-1CrossRefPubMed Moe-Nilssen R, Helbostad JL: Estimation of gait cycle characteristics by trunk accelerometry. J Biomech 2004, 37: 121-126. 10.1016/S0021-9290(03)00233-1CrossRefPubMed
14.
go back to reference Campanini I, Merlo A: Reliability, smallest real difference and concurrent validity of indices computed from GRF components in gait of stroke patients. Gait Posture 2009, 30: 127-131. 10.1016/j.gaitpost.2009.03.011CrossRefPubMed Campanini I, Merlo A: Reliability, smallest real difference and concurrent validity of indices computed from GRF components in gait of stroke patients. Gait Posture 2009, 30: 127-131. 10.1016/j.gaitpost.2009.03.011CrossRefPubMed
15.
go back to reference de Vet HC, Terwee CB, Knol DL, Bouter LM: When to use agreement versus reliability measures. J Clin Epidemiol 2006, 59: 1033-1039. 10.1016/j.jclinepi.2005.10.015CrossRefPubMed de Vet HC, Terwee CB, Knol DL, Bouter LM: When to use agreement versus reliability measures. J Clin Epidemiol 2006, 59: 1033-1039. 10.1016/j.jclinepi.2005.10.015CrossRefPubMed
16.
go back to reference Weir JP: Quantifying test-retest reliability using the intraclass correlation coefficient and the SEM. J Strength Cond Res 2005, 19: 231-240.PubMed Weir JP: Quantifying test-retest reliability using the intraclass correlation coefficient and the SEM. J Strength Cond Res 2005, 19: 231-240.PubMed
17.
go back to reference Terrier P, Deriaz O, Meichtry A, Luthi F: Prescription footwear for severe injuries of foot and ankle: effect on regularity and symmetry of the gait assessed by trunk accelerometry. Gait Posture 2009, 30: 492-496. 10.1016/j.gaitpost.2009.07.122CrossRefPubMed Terrier P, Deriaz O, Meichtry A, Luthi F: Prescription footwear for severe injuries of foot and ankle: effect on regularity and symmetry of the gait assessed by trunk accelerometry. Gait Posture 2009, 30: 492-496. 10.1016/j.gaitpost.2009.07.122CrossRefPubMed
18.
go back to reference Auvinet B, Chaleil D, Barrey E: Accelerometric gait analysis for use in hospital outpatients. Rev Rhum Engl Ed 1999, 66: 389-397.PubMed Auvinet B, Chaleil D, Barrey E: Accelerometric gait analysis for use in hospital outpatients. Rev Rhum Engl Ed 1999, 66: 389-397.PubMed
Metadata
Title
Recommended number of strides for automatic assessment of gait symmetry and regularity in above-knee amputees by means of accelerometry and autocorrelation analysis
Authors
Andrea Tura
Laura Rocchi
Michele Raggi
Andrea G Cutti
Lorenzo Chiari
Publication date
01-12-2012
Publisher
BioMed Central
Published in
Journal of NeuroEngineering and Rehabilitation / Issue 1/2012
Electronic ISSN: 1743-0003
DOI
https://doi.org/10.1186/1743-0003-9-11

Other articles of this Issue 1/2012

Journal of NeuroEngineering and Rehabilitation 1/2012 Go to the issue