Skip to main content
Top
Published in: Journal of Neuroinflammation 1/2011

Open Access 01-12-2011 | Research

Comparing the immunosuppressive potency of naïve marrow stromal cells and Notch-transfected marrow stromal cells

Authors: Mo A Dao, Ciara C Tate, Irina Aizman, Michael McGrogan, Casey C Case

Published in: Journal of Neuroinflammation | Issue 1/2011

Login to get access

Abstract

Background

SB623 cells are expanded from marrow stromal cells (MSCs) transfected with a Notch intracellular domain (NICD)-expressing plasmid. In stroke-induced animals, these cells reduce infarct size and promote functional recovery. SB623 cells resemble the parental MSCs with respect to morphology and cell surface markers despite having been in extended culture. MSCs are known to have immunosuppressive properties; whether long-term culture of MSCs impact their immunomodulatory activity has not been addressed.

Methods

To assess the possible senescent properties of SB623 cells, we performed cell cycle related assays and beta-galactosidase staining. To assess the immunomodulatory activity of these expanded NICD-transfected MSCs, we performed co-cultures of SB623 cells or MSCs with either enriched human T cells or monocytes and assessed cytokine production by flow cytometry. In addition, we monitored the immunosuppressive activity of SB623 cells in both allogenic and xenogenic mixed lymphocyte reaction (MLR).

Results

Compared to MSCs, we showed that a small number of senescent-like cells appear in each lot of SB623 cells. Nevertheless, we demonstrated that these cells suppress human T cell proliferation in both the allogeneic and xenogeneic mixed lymphocyte reaction (MLR) in a manner comparable to MSCs. IL-10 producing T cells were generated and monocyte-dendritic cell differentiation was dampened by co-culture with SB623 cells. Compared to the parental MSCs, SB623 cells appear to exert a greater inhibitory impact on the maturation of dendritic cells as demonstrated by a greater reduction in the surface expression of the co-stimulatory molecule, CD86.

Conclusion

The results demonstrated that the immunosuppressive activity of the expanded NICD-transfected MSCs is comparable to the parental MSCs, in spite of the appearance of a small number of senescent-like cells.
Appendix
Available only for authorised users
Literature
1.
go back to reference Aizman I, Tate CC, McGrogan M, Case CC: Extracellular matrix produced by bone marrow stromal cells and by their derivative, SB623 cells, supports neural cell growth. J Neurosci Res. 2009, 87: 3198-3206. 10.1002/jnr.22146.CrossRefPubMed Aizman I, Tate CC, McGrogan M, Case CC: Extracellular matrix produced by bone marrow stromal cells and by their derivative, SB623 cells, supports neural cell growth. J Neurosci Res. 2009, 87: 3198-3206. 10.1002/jnr.22146.CrossRefPubMed
2.
go back to reference Tate CC, Fonck C, McGrogan M, Case CC: Human mesenchymal stromal cells and their derivative, SB623 cells, rescue neural cells via trophic support following in vitro ischemia. Cell Transplant. 2010, 19: 973-984. 10.3727/096368910X494885.CrossRefPubMed Tate CC, Fonck C, McGrogan M, Case CC: Human mesenchymal stromal cells and their derivative, SB623 cells, rescue neural cells via trophic support following in vitro ischemia. Cell Transplant. 2010, 19: 973-984. 10.3727/096368910X494885.CrossRefPubMed
3.
go back to reference Glavaski-Joksimovic A, Virag T, Mangatu TA, McGrogan M, Wang XS, Bohn MC: Glial cell line-derived neurotrophic factor-secreting genetically modified human bone marrow-derived mesenchymal stem cells promote recovery in a rat model of Parkinson's disease. J Neurosci Res. 2010, 88: 2669-2681.PubMed Glavaski-Joksimovic A, Virag T, Mangatu TA, McGrogan M, Wang XS, Bohn MC: Glial cell line-derived neurotrophic factor-secreting genetically modified human bone marrow-derived mesenchymal stem cells promote recovery in a rat model of Parkinson's disease. J Neurosci Res. 2010, 88: 2669-2681.PubMed
4.
go back to reference Glavaski-Joksimovic A, Virag T, Chang QA, West NC, Mangatu TA, McGrogan MP, Dugich-Djordjevic M, Bohn MC: Reversal of dopaminergic degeneration in a parkinsonian rat following micrografting of human bone marrow-derived neural progenitors. Cell Transplant. 2009, 18: 801-814. 10.3727/096368909X470801.CrossRefPubMed Glavaski-Joksimovic A, Virag T, Chang QA, West NC, Mangatu TA, McGrogan MP, Dugich-Djordjevic M, Bohn MC: Reversal of dopaminergic degeneration in a parkinsonian rat following micrografting of human bone marrow-derived neural progenitors. Cell Transplant. 2009, 18: 801-814. 10.3727/096368909X470801.CrossRefPubMed
5.
go back to reference Yasuhara T, Matsukawa N, Hara K, Maki M, Ali MM, Yu SJ, Bae E, Yu G, Xu L, McGrogan M, Bankiewicz K, Case C, Borlongan CV: Notch-induced rat and human bone marrow stromal cell grafts reduce ischemic cell loss and ameliorate behavioral deficits in chronic stroke animals. Stem Cells Dev. 2009, 18: 1501-1514. 10.1089/scd.2009.0011.CrossRefPubMed Yasuhara T, Matsukawa N, Hara K, Maki M, Ali MM, Yu SJ, Bae E, Yu G, Xu L, McGrogan M, Bankiewicz K, Case C, Borlongan CV: Notch-induced rat and human bone marrow stromal cell grafts reduce ischemic cell loss and ameliorate behavioral deficits in chronic stroke animals. Stem Cells Dev. 2009, 18: 1501-1514. 10.1089/scd.2009.0011.CrossRefPubMed
6.
go back to reference Wagner W, Horn P, Castoldi M, Diehlmann A, Bork S, Saffrich R, Benes V, Blake J, Pfister S: Eckstein V, Ho AD. Replicative senescence of mesenchymal stem cells: a continuous and organized process. PLoS One. 2008, 3 (5): e2213-10.1371/journal.pone.0002213.PubMedCentralCrossRefPubMed Wagner W, Horn P, Castoldi M, Diehlmann A, Bork S, Saffrich R, Benes V, Blake J, Pfister S: Eckstein V, Ho AD. Replicative senescence of mesenchymal stem cells: a continuous and organized process. PLoS One. 2008, 3 (5): e2213-10.1371/journal.pone.0002213.PubMedCentralCrossRefPubMed
7.
go back to reference Jin Y, Kato T, Furu M, Nasu A, Kajita Y, Mitsui H, Ueda M, Aoyama T, Nakayama T, Nakamura T, Toguchida J: Mesenchymal stem cells cultured under hypoxia escape from senescence via down-regulation of p16 and extracellular signal regulated kinase. Biochem Biophys Res Commun. 2010, 391 (3): 1471-6. 10.1016/j.bbrc.2009.12.096.CrossRefPubMed Jin Y, Kato T, Furu M, Nasu A, Kajita Y, Mitsui H, Ueda M, Aoyama T, Nakayama T, Nakamura T, Toguchida J: Mesenchymal stem cells cultured under hypoxia escape from senescence via down-regulation of p16 and extracellular signal regulated kinase. Biochem Biophys Res Commun. 2010, 391 (3): 1471-6. 10.1016/j.bbrc.2009.12.096.CrossRefPubMed
8.
go back to reference Rodier F, Coppé JP, Patil CK, Hoeijmakers WA, Munoz DP, Raza SR, Freund A, Campeau E, Davalos AR, Campisi J: Persistent DNA damage signalling triggers senescence-associated inflammatory cytokine secretion. Nat Cell Biol. 2009, 11: 973-979. 10.1038/ncb1909.PubMedCentralCrossRefPubMed Rodier F, Coppé JP, Patil CK, Hoeijmakers WA, Munoz DP, Raza SR, Freund A, Campeau E, Davalos AR, Campisi J: Persistent DNA damage signalling triggers senescence-associated inflammatory cytokine secretion. Nat Cell Biol. 2009, 11: 973-979. 10.1038/ncb1909.PubMedCentralCrossRefPubMed
9.
go back to reference Coppé JP, Patil CK, Rodier F, Sun Y, Muñoz DP, Goldstein J, Nelson PS, Desprez PY, Campisi J: Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor. PLoS Biol. 2008, 6 (12): 2853-68.CrossRefPubMed Coppé JP, Patil CK, Rodier F, Sun Y, Muñoz DP, Goldstein J, Nelson PS, Desprez PY, Campisi J: Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor. PLoS Biol. 2008, 6 (12): 2853-68.CrossRefPubMed
10.
go back to reference Freund A, Orjalo AV, Desprez PY, Campisi J: Inflammatory networks during cellular senescence: causes and consequences. Trends Mol Med. 2010, 16 (5): 238-46. 10.1016/j.molmed.2010.03.003. ReviewPubMedCentralCrossRefPubMed Freund A, Orjalo AV, Desprez PY, Campisi J: Inflammatory networks during cellular senescence: causes and consequences. Trends Mol Med. 2010, 16 (5): 238-46. 10.1016/j.molmed.2010.03.003. ReviewPubMedCentralCrossRefPubMed
11.
go back to reference Duperrier K, Farre A, Bienvenu J, Bleyzac N, Bernaud J, Gebuhrer L, Rigal D, Eljaafari A: Cyclosporin A inhibits dendritic cell maturation promoted by TNF-alpha or LPS but not by double-stranded RNA or CD40L. J Leukoc Biol. 2002, 72: 953-961.PubMed Duperrier K, Farre A, Bienvenu J, Bleyzac N, Bernaud J, Gebuhrer L, Rigal D, Eljaafari A: Cyclosporin A inhibits dendritic cell maturation promoted by TNF-alpha or LPS but not by double-stranded RNA or CD40L. J Leukoc Biol. 2002, 72: 953-961.PubMed
12.
go back to reference Robbins PA, Maino VC, Warner NL, Brodsky FM: Activated T cells and monocytes have characteristic patterns of class II antigen expression. J Immunol. 1988, 141: 1281-1287.PubMed Robbins PA, Maino VC, Warner NL, Brodsky FM: Activated T cells and monocytes have characteristic patterns of class II antigen expression. J Immunol. 1988, 141: 1281-1287.PubMed
13.
go back to reference English K, Ryan JM, Tobin L, Murphy MJ, Barry FP, Mahon BP: Cell contact, prostaglandin E(2) and transforming growth factor beta 1 play non-redundant roles in human mesenchymal stem cell induction of CD4+CD25(High) forkhead box P3+ regulatory T cells. Clin Exp Immunol. 2009, 156: 149-160. 10.1111/j.1365-2249.2009.03874.x.PubMedCentralCrossRefPubMed English K, Ryan JM, Tobin L, Murphy MJ, Barry FP, Mahon BP: Cell contact, prostaglandin E(2) and transforming growth factor beta 1 play non-redundant roles in human mesenchymal stem cell induction of CD4+CD25(High) forkhead box P3+ regulatory T cells. Clin Exp Immunol. 2009, 156: 149-160. 10.1111/j.1365-2249.2009.03874.x.PubMedCentralCrossRefPubMed
14.
go back to reference Poggi A, Zocchi MR: Role of bone marrow stromal cells in the generation of human CD8+ regulatory T cells. Hum Immunol. 2008, 69: 755-759. 10.1016/j.humimm.2008.08.278.CrossRefPubMed Poggi A, Zocchi MR: Role of bone marrow stromal cells in the generation of human CD8+ regulatory T cells. Hum Immunol. 2008, 69: 755-759. 10.1016/j.humimm.2008.08.278.CrossRefPubMed
15.
go back to reference Wang Y, Zhang A, Ye Z, Xie H, Zheng S: Bone marrow-derived mesenchymal stem cells inhibit acute rejection of rat liver allografts in association with regulatory T-cell expansion. Transplant Proc. 2009, 41: 4352-4356. 10.1016/j.transproceed.2009.08.072.CrossRefPubMed Wang Y, Zhang A, Ye Z, Xie H, Zheng S: Bone marrow-derived mesenchymal stem cells inhibit acute rejection of rat liver allografts in association with regulatory T-cell expansion. Transplant Proc. 2009, 41: 4352-4356. 10.1016/j.transproceed.2009.08.072.CrossRefPubMed
16.
go back to reference Ou-Yang HF, Zhang HW, Wu CG, Zhang J, Li JC, Hou LH, He F, Ti XY, Song LQ, Zhang SZ, Feng L, Qi HW, Han H: Notch signaling regulates the FOXP3 promoter through RBP-J- and Hes1-dependent mechanisms. Mol Cell Biochem. 2009, 320: 109-14. 10.1007/s11010-008-9912-4.CrossRefPubMed Ou-Yang HF, Zhang HW, Wu CG, Zhang J, Li JC, Hou LH, He F, Ti XY, Song LQ, Zhang SZ, Feng L, Qi HW, Han H: Notch signaling regulates the FOXP3 promoter through RBP-J- and Hes1-dependent mechanisms. Mol Cell Biochem. 2009, 320: 109-14. 10.1007/s11010-008-9912-4.CrossRefPubMed
17.
go back to reference Asano N, Watanabe T, Kitani A, Fuss IJ, Strober W: Notch1 signaling and regulatory T cell function. J Immunol. 2008, 180: 2796-2804.CrossRefPubMed Asano N, Watanabe T, Kitani A, Fuss IJ, Strober W: Notch1 signaling and regulatory T cell function. J Immunol. 2008, 180: 2796-2804.CrossRefPubMed
18.
go back to reference Ostroukhova M, Qi Z, Oriss TB, Dixon-McCarthy B, Ray P, Ray A: Treg-mediated immunosuppression involves activation of the Notch-HES1 axis by membrane-bound TGF-beta. J Clin Invest. 2006, 116: 996-1004. 10.1172/JCI26490.PubMedCentralCrossRefPubMed Ostroukhova M, Qi Z, Oriss TB, Dixon-McCarthy B, Ray P, Ray A: Treg-mediated immunosuppression involves activation of the Notch-HES1 axis by membrane-bound TGF-beta. J Clin Invest. 2006, 116: 996-1004. 10.1172/JCI26490.PubMedCentralCrossRefPubMed
19.
go back to reference Wang G, Khattar M, Guo Z, Miyahara Y, Linkes SP, Sun Z, He X, Stepkowski SM, Chen W: IL-2-deprivation and TGF-beta are two non-redundant suppressor mechanisms of CD4+CD25+ regulatory T cell which jointly restrain CD4+CD25- cell activation. Immunol Lett. 2010, 132: 61-68. 10.1016/j.imlet.2010.06.001.PubMedCentralCrossRefPubMed Wang G, Khattar M, Guo Z, Miyahara Y, Linkes SP, Sun Z, He X, Stepkowski SM, Chen W: IL-2-deprivation and TGF-beta are two non-redundant suppressor mechanisms of CD4+CD25+ regulatory T cell which jointly restrain CD4+CD25- cell activation. Immunol Lett. 2010, 132: 61-68. 10.1016/j.imlet.2010.06.001.PubMedCentralCrossRefPubMed
20.
go back to reference Kosiewicz MM, Alard P, Liang S, Clark SL: Mechanisms of tolerance induced by transforming growth factor-beta-treated antigen-presenting cells: CD8 regulatory T cells inhibit the effector phase of the immune response in primed mice through a mechanism involving Fas ligand. Int Immunol. 2004, 16: 697-706. 10.1093/intimm/dxh067.CrossRefPubMed Kosiewicz MM, Alard P, Liang S, Clark SL: Mechanisms of tolerance induced by transforming growth factor-beta-treated antigen-presenting cells: CD8 regulatory T cells inhibit the effector phase of the immune response in primed mice through a mechanism involving Fas ligand. Int Immunol. 2004, 16: 697-706. 10.1093/intimm/dxh067.CrossRefPubMed
21.
go back to reference Nakamura K, Kitani A, Fuss I, Pedersen A, Harada N, Nawata H, Strober W: TGF-beta 1 plays an important role in the mechanism of CD4+CD25+ regulatory T cell activity in both humans and mice. J Immunol. 2004, 172: 834-842.CrossRefPubMed Nakamura K, Kitani A, Fuss I, Pedersen A, Harada N, Nawata H, Strober W: TGF-beta 1 plays an important role in the mechanism of CD4+CD25+ regulatory T cell activity in both humans and mice. J Immunol. 2004, 172: 834-842.CrossRefPubMed
22.
go back to reference Baecher-Allan C, Brown JA, Freeman GJ, Hafler DA: CD4+CD25high regulatory cells in human peripheral blood. J Immunol. 2001, 167 (3): 1245-53.CrossRefPubMed Baecher-Allan C, Brown JA, Freeman GJ, Hafler DA: CD4+CD25high regulatory cells in human peripheral blood. J Immunol. 2001, 167 (3): 1245-53.CrossRefPubMed
23.
go back to reference Dieckmann D, Plottner H, Berchtold S, Berger T, Schuler G: Ex vivo isolation and characterization of CD4(+)CD25(+) T cells with regulatory properties from human blood. J Exp Med. 2001, 193 (11): 1303-10. 10.1084/jem.193.11.1303.PubMedCentralCrossRefPubMed Dieckmann D, Plottner H, Berchtold S, Berger T, Schuler G: Ex vivo isolation and characterization of CD4(+)CD25(+) T cells with regulatory properties from human blood. J Exp Med. 2001, 193 (11): 1303-10. 10.1084/jem.193.11.1303.PubMedCentralCrossRefPubMed
24.
go back to reference Kong QF, Sun B, Bai SS, Zhai DX, Wang GY, Liu YM, Zhang SJ, Li R, Zhao W, Sun YY, Li N, Wang Q, Peng HS, Jin LH, Li HL: Administration of bone marrow stromal cells ameliorates experimental autoimmune myasthenia gravis by altering the balance of Th1/Th2/Th17/Treg cell subsets through the secretion of TGF-beta. J Neuroimmunol. 2009, 207: 83-91. 10.1016/j.jneuroim.2008.12.005.CrossRefPubMed Kong QF, Sun B, Bai SS, Zhai DX, Wang GY, Liu YM, Zhang SJ, Li R, Zhao W, Sun YY, Li N, Wang Q, Peng HS, Jin LH, Li HL: Administration of bone marrow stromal cells ameliorates experimental autoimmune myasthenia gravis by altering the balance of Th1/Th2/Th17/Treg cell subsets through the secretion of TGF-beta. J Neuroimmunol. 2009, 207: 83-91. 10.1016/j.jneuroim.2008.12.005.CrossRefPubMed
25.
go back to reference Tolar J, Le Blanc K, Keating A, Blazar BR: Concise review: hitting the right spot with mesenchymal stromal cells. Stem Cells. 2010, 28: 1446-1455. 10.1002/stem.459.PubMedCentralCrossRefPubMed Tolar J, Le Blanc K, Keating A, Blazar BR: Concise review: hitting the right spot with mesenchymal stromal cells. Stem Cells. 2010, 28: 1446-1455. 10.1002/stem.459.PubMedCentralCrossRefPubMed
26.
go back to reference Lai HY, Yang MJ, Wen KC, Chao KC, Shih CC, Lee OK: Mesenchymal stem cells negatively regulate dendritic lineage commitment of umbilical-cord-blood-derived hematopoietic stem cells: an unappreciated mechanism as immunomodulators. Tissue Eng Part A. 2010, 16: 2987-2997. 10.1089/ten.tea.2009.0731.CrossRefPubMed Lai HY, Yang MJ, Wen KC, Chao KC, Shih CC, Lee OK: Mesenchymal stem cells negatively regulate dendritic lineage commitment of umbilical-cord-blood-derived hematopoietic stem cells: an unappreciated mechanism as immunomodulators. Tissue Eng Part A. 2010, 16: 2987-2997. 10.1089/ten.tea.2009.0731.CrossRefPubMed
27.
go back to reference Spaggiari GM, Abdelrazik H, Becchetti F, Moretta L: MSCs inhibit monocyte-derived DC maturation and function by selectively interfering with the generation of immature DCs: central role of MSC-derived prostaglandin E2. Blood. 2009, 113: 6576-6583. 10.1182/blood-2009-02-203943.CrossRefPubMed Spaggiari GM, Abdelrazik H, Becchetti F, Moretta L: MSCs inhibit monocyte-derived DC maturation and function by selectively interfering with the generation of immature DCs: central role of MSC-derived prostaglandin E2. Blood. 2009, 113: 6576-6583. 10.1182/blood-2009-02-203943.CrossRefPubMed
28.
go back to reference Ramasamy R, Fazekasova H, Lam EW, Soeiro I, Lombardi G, Dazzi F: Mesenchymal stem cells inhibit dendritic cell differentiation and function by preventing entry into the cell cycle. Transplantation. 2007, 83: 71-76. 10.1097/01.tp.0000244572.24780.54.CrossRefPubMed Ramasamy R, Fazekasova H, Lam EW, Soeiro I, Lombardi G, Dazzi F: Mesenchymal stem cells inhibit dendritic cell differentiation and function by preventing entry into the cell cycle. Transplantation. 2007, 83: 71-76. 10.1097/01.tp.0000244572.24780.54.CrossRefPubMed
29.
go back to reference Jiang XX, Zhang Y, Liu B, Zhang SX, Wu Y, Yu XD, Mao N: Human mesenchymal stem cells inhibit differentiation and function of monocyte-derived dendritic cells. Blood. 2005, 105: 4120-4126. 10.1182/blood-2004-02-0586.CrossRefPubMed Jiang XX, Zhang Y, Liu B, Zhang SX, Wu Y, Yu XD, Mao N: Human mesenchymal stem cells inhibit differentiation and function of monocyte-derived dendritic cells. Blood. 2005, 105: 4120-4126. 10.1182/blood-2004-02-0586.CrossRefPubMed
30.
go back to reference Zhang W, Ge W, Li C, You S, Liao L, Han Q, Deng W, Zhao RC: Effects of mesenchymal stem cells on differentiation, maturation, and function of human monocyte-derived dendritic cells. Stem Cells Dev. 2004, 13: 263-271. 10.1089/154732804323099190.CrossRefPubMed Zhang W, Ge W, Li C, You S, Liao L, Han Q, Deng W, Zhao RC: Effects of mesenchymal stem cells on differentiation, maturation, and function of human monocyte-derived dendritic cells. Stem Cells Dev. 2004, 13: 263-271. 10.1089/154732804323099190.CrossRefPubMed
31.
go back to reference Chomarat P, Banchereau J, Davoust J, Palucka AK: IL-6 switches thedifferentiation of monocytes from dendritic cells to macrophages. Nat Immunol. 2000, 1: 510-514. 10.1038/82763.CrossRefPubMed Chomarat P, Banchereau J, Davoust J, Palucka AK: IL-6 switches thedifferentiation of monocytes from dendritic cells to macrophages. Nat Immunol. 2000, 1: 510-514. 10.1038/82763.CrossRefPubMed
32.
go back to reference Djouad F, Charbonnier LM, Bouffi C, Louis-Plence P, Bony C, Apparailly F, Cantos C, Jorgensen C, Noel D: Mesenchymal stem cells inhibit the differentiation of dendritic cells through an interleukin-6-dependent mechanism. Stem Cells. 2007, 25: 2025-32. 10.1634/stemcells.2006-0548.CrossRefPubMed Djouad F, Charbonnier LM, Bouffi C, Louis-Plence P, Bony C, Apparailly F, Cantos C, Jorgensen C, Noel D: Mesenchymal stem cells inhibit the differentiation of dendritic cells through an interleukin-6-dependent mechanism. Stem Cells. 2007, 25: 2025-32. 10.1634/stemcells.2006-0548.CrossRefPubMed
33.
go back to reference Park SJ, Nakagawa T, Kitamura H, Atsumi T, Kamimura D, Park SJ, Murakami M, Kitamura Y, Iwakura Y, Hirano T: IL-6 regulates in vivo dendritic cell differentiation through STAT3 activation. J Immunol. 2004, 173: 3844-3854.CrossRefPubMed Park SJ, Nakagawa T, Kitamura H, Atsumi T, Kamimura D, Park SJ, Murakami M, Kitamura Y, Iwakura Y, Hirano T: IL-6 regulates in vivo dendritic cell differentiation through STAT3 activation. J Immunol. 2004, 173: 3844-3854.CrossRefPubMed
34.
go back to reference Takahashi A, Kono K, Ichihara F, Sugai H, Fujii H, Matsumoto Y: Vascular endothelial growth factor inhibits maturation of dendritic cells induced by lipopolysaccharide, but not by proinflammatory cytokines. Cancer Immunol Immunother. 2004, 53: 543-550. 10.1007/s00262-003-0466-8.CrossRefPubMed Takahashi A, Kono K, Ichihara F, Sugai H, Fujii H, Matsumoto Y: Vascular endothelial growth factor inhibits maturation of dendritic cells induced by lipopolysaccharide, but not by proinflammatory cytokines. Cancer Immunol Immunother. 2004, 53: 543-550. 10.1007/s00262-003-0466-8.CrossRefPubMed
35.
go back to reference Zhang K, Huang L, Sun H, Zhu Y, Xiao Y, Huang M, Liu W: Role of Notch expression in premature senescence of murine bone marrow stromal cells. Progress in Natural Science. 2009, 19: 557-562. 10.1016/j.pnsc.2008.09.005.CrossRef Zhang K, Huang L, Sun H, Zhu Y, Xiao Y, Huang M, Liu W: Role of Notch expression in premature senescence of murine bone marrow stromal cells. Progress in Natural Science. 2009, 19: 557-562. 10.1016/j.pnsc.2008.09.005.CrossRef
36.
go back to reference Yagi H, Soto-Gutierrez A, Navarro-Alvarez N, Nahmias Y, Goldwasser Y, Kitagawa Y, Tilles AW, Tompkins RG, Parekkadan B, Yarmush ML: Reactive bone marrow stromal cells attenuate systemic inflammation via sTNFR1. Mol Ther. 2010, 18 (10): 1857-64. 10.1038/mt.2010.155.PubMedCentralCrossRefPubMed Yagi H, Soto-Gutierrez A, Navarro-Alvarez N, Nahmias Y, Goldwasser Y, Kitagawa Y, Tilles AW, Tompkins RG, Parekkadan B, Yarmush ML: Reactive bone marrow stromal cells attenuate systemic inflammation via sTNFR1. Mol Ther. 2010, 18 (10): 1857-64. 10.1038/mt.2010.155.PubMedCentralCrossRefPubMed
37.
go back to reference Shibata Y, Foster LA, Kurimoto M, Okamura H, Nakamura RM, Kawajiri K, Justice JP, Van Scott MR, Myrvik QN, Metzger WJ: Immunoregulatory roles of IL-10 in innate immunity: IL-10 inhibits macrophage production of IFN-gamma-inducing factors but enhances NK cell production of IFN-gamma. J Immunol. 1998, 161: 4283-4288.PubMed Shibata Y, Foster LA, Kurimoto M, Okamura H, Nakamura RM, Kawajiri K, Justice JP, Van Scott MR, Myrvik QN, Metzger WJ: Immunoregulatory roles of IL-10 in innate immunity: IL-10 inhibits macrophage production of IFN-gamma-inducing factors but enhances NK cell production of IFN-gamma. J Immunol. 1998, 161: 4283-4288.PubMed
38.
go back to reference Murray PJ: The primary mechanism of the IL-10-regulated anti-inflammatory response is to selectively inhibit transcription. Proc Natl Acad Sci USA. 2005, 102: 8686-8691. 10.1073/pnas.0500419102.PubMedCentralCrossRefPubMed Murray PJ: The primary mechanism of the IL-10-regulated anti-inflammatory response is to selectively inhibit transcription. Proc Natl Acad Sci USA. 2005, 102: 8686-8691. 10.1073/pnas.0500419102.PubMedCentralCrossRefPubMed
39.
go back to reference Yamana J, Yamamura M, Okamoto A, Aita T, Iwahashi M, Sunahori K, Makino H: Resistance to IL-10 inhibition of interferon gamma production and expression of suppressor of cytokine signaling 1 in CD4+ T cells from patients with rheumatoid arthritis. Arthritis Res Ther. 2004, 6: R567-R577. 10.1186/ar1445.PubMedCentralCrossRefPubMed Yamana J, Yamamura M, Okamoto A, Aita T, Iwahashi M, Sunahori K, Makino H: Resistance to IL-10 inhibition of interferon gamma production and expression of suppressor of cytokine signaling 1 in CD4+ T cells from patients with rheumatoid arthritis. Arthritis Res Ther. 2004, 6: R567-R577. 10.1186/ar1445.PubMedCentralCrossRefPubMed
40.
41.
go back to reference O'Garra A, Vieira P: T(H)1 cells control themselves by producing interleukin-10. Nat Rev Immunol. 2007, 7: 425-428. 10.1038/nri2097.CrossRefPubMed O'Garra A, Vieira P: T(H)1 cells control themselves by producing interleukin-10. Nat Rev Immunol. 2007, 7: 425-428. 10.1038/nri2097.CrossRefPubMed
42.
go back to reference Rutz S, Janke M, Kassner N, Hohnstein T, Krueger M, Scheffold A: Notch regulates IL-10 production by T helper 1 cells. Proc Natl Acad Sci USA. 2008, 105: 3497-3502. 10.1073/pnas.0712102105.PubMedCentralCrossRefPubMed Rutz S, Janke M, Kassner N, Hohnstein T, Krueger M, Scheffold A: Notch regulates IL-10 production by T helper 1 cells. Proc Natl Acad Sci USA. 2008, 105: 3497-3502. 10.1073/pnas.0712102105.PubMedCentralCrossRefPubMed
43.
go back to reference Guo Z, Zheng C, Chen Z, Gu D, Du W, Ge J, Han Z, Yang R: Fetal BM-derived mesenchymal stem cells promote the expansion of human Th17 cells, but inhibit the production of Th1 cells. Eur J Immunol. 2009, 39 (10): 2840-9. 10.1002/eji.200839070.CrossRefPubMed Guo Z, Zheng C, Chen Z, Gu D, Du W, Ge J, Han Z, Yang R: Fetal BM-derived mesenchymal stem cells promote the expansion of human Th17 cells, but inhibit the production of Th1 cells. Eur J Immunol. 2009, 39 (10): 2840-9. 10.1002/eji.200839070.CrossRefPubMed
44.
go back to reference Schuh K, Twardzik T, Kneitz B, Heyer J, Schimpl A, Serfling E: The interleukin 2 receptor alpha chain/CD25 promoter is a target for nuclear factor of activated T cells. J Exp Med. 1998, 188 (7): 1369-73. 10.1084/jem.188.7.1369.PubMedCentralCrossRefPubMed Schuh K, Twardzik T, Kneitz B, Heyer J, Schimpl A, Serfling E: The interleukin 2 receptor alpha chain/CD25 promoter is a target for nuclear factor of activated T cells. J Exp Med. 1998, 188 (7): 1369-73. 10.1084/jem.188.7.1369.PubMedCentralCrossRefPubMed
45.
go back to reference Hori S, Nomura T, Sakaguchi S: Control of regulatory T cell development by the transcription factor Foxp3. Science. 2003, 299 (5609): 1057-61. 10.1126/science.1079490.CrossRefPubMed Hori S, Nomura T, Sakaguchi S: Control of regulatory T cell development by the transcription factor Foxp3. Science. 2003, 299 (5609): 1057-61. 10.1126/science.1079490.CrossRefPubMed
46.
go back to reference Manrique SZ, Correa MA, Hoelzinger DB, Dominguez AL, Mirza N, Lin HH, Stein-Streilein J, Gordon S, Lustgarten J: Foxp3-positive macrophages display immunosuppressive properties and promote tumor growth. J Exp Med. 2011, 208 (7): 1485-99. 10.1084/jem.20100730.CrossRefPubMed Manrique SZ, Correa MA, Hoelzinger DB, Dominguez AL, Mirza N, Lin HH, Stein-Streilein J, Gordon S, Lustgarten J: Foxp3-positive macrophages display immunosuppressive properties and promote tumor growth. J Exp Med. 2011, 208 (7): 1485-99. 10.1084/jem.20100730.CrossRefPubMed
47.
go back to reference Annacker O, Pimenta-Araujo R, Burlen-Defranoux O, Barbosa TC, Cumano A, Bandeira A: CD25+ CD4+ T cells regulate the expansion of peripheral CD4 T cells through the production of IL-10. J Immunol. 2001, 166: 3008-2018.CrossRefPubMed Annacker O, Pimenta-Araujo R, Burlen-Defranoux O, Barbosa TC, Cumano A, Bandeira A: CD25+ CD4+ T cells regulate the expansion of peripheral CD4 T cells through the production of IL-10. J Immunol. 2001, 166: 3008-2018.CrossRefPubMed
48.
go back to reference Vieira PL, Christensen JR, Minaee S, O'Neill EJ, Barrat FJ, Boonstra A, Barthlott T, Stockinger B, Wraith DC, O'Garra A: IL-10-secreting regulatory T cells do not express Foxp3 but have comparable regulatory function to naturally occurring CD4+CD25+ regulatory T cells. J Immunol. 2004, 172: 5986-5993.CrossRefPubMed Vieira PL, Christensen JR, Minaee S, O'Neill EJ, Barrat FJ, Boonstra A, Barthlott T, Stockinger B, Wraith DC, O'Garra A: IL-10-secreting regulatory T cells do not express Foxp3 but have comparable regulatory function to naturally occurring CD4+CD25+ regulatory T cells. J Immunol. 2004, 172: 5986-5993.CrossRefPubMed
Metadata
Title
Comparing the immunosuppressive potency of naïve marrow stromal cells and Notch-transfected marrow stromal cells
Authors
Mo A Dao
Ciara C Tate
Irina Aizman
Michael McGrogan
Casey C Case
Publication date
01-12-2011
Publisher
BioMed Central
Published in
Journal of Neuroinflammation / Issue 1/2011
Electronic ISSN: 1742-2094
DOI
https://doi.org/10.1186/1742-2094-8-133

Other articles of this Issue 1/2011

Journal of Neuroinflammation 1/2011 Go to the issue