Skip to main content
Top
Published in: Journal of Neuroinflammation 1/2011

Open Access 01-12-2011 | Research

Delayed inflammatory mRNA and protein expression after spinal cord injury

Authors: Kimberly R Byrnes, Patricia M Washington, Susan M Knoblach, Eric Hoffman, Alan I Faden

Published in: Journal of Neuroinflammation | Issue 1/2011

Login to get access

Abstract

Background

Spinal cord injury (SCI) induces secondary tissue damage that is associated with inflammation. We have previously demonstrated that inflammation-related gene expression after SCI occurs in two waves - an initial cluster that is acutely and transiently up-regulated within 24 hours, and a more delayed cluster that peaks between 72 hours and 7 days. Here we extend the microarray analysis of these gene clusters up to 6 months post-SCI.

Methods

Adult male rats were subjected to mild, moderate or severe spinal cord contusion injury at T9 using a well-characterized weight-drop model. Tissue from the lesion epicenter was obtained 4 hours, 24 hours, 7 days, 28 days, 3 months or 6 months post-injury and processed for microarray analysis and protein expression.

Results

Anchor gene analysis using C1qB revealed a cluster of genes that showed elevated expression through 6 months post-injury, including galectin-3, p22PHOX, gp91PHOX, CD53 and progranulin. The expression of these genes occurred primarily in microglia/macrophage cells and was confirmed at the protein level using both immunohistochemistry and western blotting. As p22PHOX and gp91PHOX are components of the NADPH oxidase enzyme, enzymatic activity and its role in SCI were assessed and NADPH oxidase activity was found to be significantly up-regulated through 6 months post-injury. Further, treating rats with the nonspecific, irreversible NADPH oxidase inhibitor diphenylene iodinium (DPI) reduced both lesion volume and expression of chronic gene cluster proteins one month after trauma.

Conclusions

These data demonstrate that inflammation-related genes are chronically up-regulated after SCI and may contribute to further tissue loss.
Appendix
Available only for authorised users
Literature
1.
go back to reference Dumont RJ, Okonkwo DO, Verma S, Hurlbert RJ, Boulos PT, Ellegala DB, Dumont AS: Acute spinal cord injury, part I: pathophysiologic mechanisms. Clin Neuropharmacol. 2001, 24: 254-264. 10.1097/00002826-200109000-00002.CrossRefPubMed Dumont RJ, Okonkwo DO, Verma S, Hurlbert RJ, Boulos PT, Ellegala DB, Dumont AS: Acute spinal cord injury, part I: pathophysiologic mechanisms. Clin Neuropharmacol. 2001, 24: 254-264. 10.1097/00002826-200109000-00002.CrossRefPubMed
2.
go back to reference Tator CH: Experimental and clinical studies of the pathophysiology and management of acute spinal cord injury. J Spinal Cord Med. 1996, 19: 206-214.PubMed Tator CH: Experimental and clinical studies of the pathophysiology and management of acute spinal cord injury. J Spinal Cord Med. 1996, 19: 206-214.PubMed
3.
go back to reference Fitch MT, Doller C, Combs CK, Landreth GE, Silver J: Cellular and molecular mechanisms of glial scarring and progressive cavitation: In vivo and in vitro analysis of inflammation-induced secondary injury after cns trauma. J Neurosci. 1999, 19: 8182-8198.PubMed Fitch MT, Doller C, Combs CK, Landreth GE, Silver J: Cellular and molecular mechanisms of glial scarring and progressive cavitation: In vivo and in vitro analysis of inflammation-induced secondary injury after cns trauma. J Neurosci. 1999, 19: 8182-8198.PubMed
4.
go back to reference Dusart I, Schwab ME: Secondary cell death and the inflammatory reaction after dorsal hemisection of the rat spinal cord. Eur J Neurosci. 1994, 6: 712-724. 10.1111/j.1460-9568.1994.tb00983.x.CrossRefPubMed Dusart I, Schwab ME: Secondary cell death and the inflammatory reaction after dorsal hemisection of the rat spinal cord. Eur J Neurosci. 1994, 6: 712-724. 10.1111/j.1460-9568.1994.tb00983.x.CrossRefPubMed
5.
go back to reference Popovich PG, Guan Z, McGaughy V, Fisher L, Hickey WF, Basso DM: The neuropathological and behavioral consequences of intraspinal microglial/macrophage activation. J Neuropathol Exp Neurol. 2002, 61: 623-633.CrossRefPubMed Popovich PG, Guan Z, McGaughy V, Fisher L, Hickey WF, Basso DM: The neuropathological and behavioral consequences of intraspinal microglial/macrophage activation. J Neuropathol Exp Neurol. 2002, 61: 623-633.CrossRefPubMed
6.
go back to reference Teng YD, Choi H, Onario RC, Zhu S, Desilets FC, Lan S, Woodard EJ, Snyder EY, Eichler ME, Friedlander RM: Minocycline inhibits contusion-triggered mitochondrial cytochrome c release and mitigates functional deficits after spinal cord injury. Proc Natl Acad Sci USA. 2004, 101: 3071-3076. 10.1073/pnas.0306239101.PubMedCentralCrossRefPubMed Teng YD, Choi H, Onario RC, Zhu S, Desilets FC, Lan S, Woodard EJ, Snyder EY, Eichler ME, Friedlander RM: Minocycline inhibits contusion-triggered mitochondrial cytochrome c release and mitigates functional deficits after spinal cord injury. Proc Natl Acad Sci USA. 2004, 101: 3071-3076. 10.1073/pnas.0306239101.PubMedCentralCrossRefPubMed
7.
go back to reference Stirling DP, Khodarahmi K, Liu J, McPhail LT, McBride CB, Steeves JD, Ramer MS, Tetzlaff W: Minocycline treatment reduces delayed oligodendrocyte death, attenuates axonal dieback, and improves functional outcome after spinal cord injury. J Neurosci. 2004, 24: 2182-2190. 10.1523/JNEUROSCI.5275-03.2004.CrossRefPubMed Stirling DP, Khodarahmi K, Liu J, McPhail LT, McBride CB, Steeves JD, Ramer MS, Tetzlaff W: Minocycline treatment reduces delayed oligodendrocyte death, attenuates axonal dieback, and improves functional outcome after spinal cord injury. J Neurosci. 2004, 24: 2182-2190. 10.1523/JNEUROSCI.5275-03.2004.CrossRefPubMed
8.
go back to reference Demjen D, Klussmann S, Kleber S, Zuliani C, Stieltjes B, Metzger C, Hirt UA, Walczak H, Falk W, Essig M, et al: Neutralization of CD95 ligand promotes regeneration and functional recovery after spinal cord injury. Nat Med. 2004, 10: 389-395. 10.1038/nm1007.CrossRefPubMed Demjen D, Klussmann S, Kleber S, Zuliani C, Stieltjes B, Metzger C, Hirt UA, Walczak H, Falk W, Essig M, et al: Neutralization of CD95 ligand promotes regeneration and functional recovery after spinal cord injury. Nat Med. 2004, 10: 389-395. 10.1038/nm1007.CrossRefPubMed
9.
go back to reference Beattie MS: Inflammation and apoptosis: linked therapeutic targets in spinal cord injury. Trends Mol Med. 2004, 10: 580-583. 10.1016/j.molmed.2004.10.006.CrossRefPubMed Beattie MS: Inflammation and apoptosis: linked therapeutic targets in spinal cord injury. Trends Mol Med. 2004, 10: 580-583. 10.1016/j.molmed.2004.10.006.CrossRefPubMed
10.
go back to reference Spranger M, Fontana A: Activation of microglia: a dangerous interlude in immune function in the brain. The Neuroscientist. 1996, 2: 293-305. 10.1177/107385849600200515.CrossRef Spranger M, Fontana A: Activation of microglia: a dangerous interlude in immune function in the brain. The Neuroscientist. 1996, 2: 293-305. 10.1177/107385849600200515.CrossRef
11.
go back to reference Gomes-Leal W, Corkill DJ, Freire MA, Picanco-Diniz CW, Perry VH: Astrocytosis, microglia activation, oligodendrocyte degeneration, and pyknosis following acute spinal cord injury. Exp Neurol. 2004, 190: 456-467. 10.1016/j.expneurol.2004.06.028.CrossRefPubMed Gomes-Leal W, Corkill DJ, Freire MA, Picanco-Diniz CW, Perry VH: Astrocytosis, microglia activation, oligodendrocyte degeneration, and pyknosis following acute spinal cord injury. Exp Neurol. 2004, 190: 456-467. 10.1016/j.expneurol.2004.06.028.CrossRefPubMed
12.
go back to reference Smith ME, van der Maesen K, Somera FP: Macrophage and microglial responses to cytokines in vitro: phagocytic activity, proteolytic enzyme release, and free radical production. J Neurosci Res. 1998, 54: 68-78. 10.1002/(SICI)1097-4547(19981001)54:1<68::AID-JNR8>3.0.CO;2-F.CrossRefPubMed Smith ME, van der Maesen K, Somera FP: Macrophage and microglial responses to cytokines in vitro: phagocytic activity, proteolytic enzyme release, and free radical production. J Neurosci Res. 1998, 54: 68-78. 10.1002/(SICI)1097-4547(19981001)54:1<68::AID-JNR8>3.0.CO;2-F.CrossRefPubMed
13.
go back to reference Davalos D, Grutzendler J, Yang G, Kim JV, Zuo Y, Jung S, Littman DR, Dustin ML, Gan WB: ATP mediates rapid microglial response to local brain injury in vivo. Nat Neurosci. 2005, 8: 752-758. 10.1038/nn1472.CrossRefPubMed Davalos D, Grutzendler J, Yang G, Kim JV, Zuo Y, Jung S, Littman DR, Dustin ML, Gan WB: ATP mediates rapid microglial response to local brain injury in vivo. Nat Neurosci. 2005, 8: 752-758. 10.1038/nn1472.CrossRefPubMed
14.
go back to reference Popovich PG, Hickey WF: Bone marrow chimeric rats reveal the unique distribution of resident and recruited macrophages in the contused rat spinal cord. J Neuropathol Exp Neurol. 2001, 60: 676-685.CrossRefPubMed Popovich PG, Hickey WF: Bone marrow chimeric rats reveal the unique distribution of resident and recruited macrophages in the contused rat spinal cord. J Neuropathol Exp Neurol. 2001, 60: 676-685.CrossRefPubMed
15.
go back to reference Byrnes KR, Garay J, Di Giovanni S, De Biase A, Knoblach SM, Hoffman EP, Movsesyan V, Faden AI: Expression of two temporally distinct microglia-related gene clusters after spinal cord injury. Glia. 2006, 53: 420-433. 10.1002/glia.20295.CrossRefPubMed Byrnes KR, Garay J, Di Giovanni S, De Biase A, Knoblach SM, Hoffman EP, Movsesyan V, Faden AI: Expression of two temporally distinct microglia-related gene clusters after spinal cord injury. Glia. 2006, 53: 420-433. 10.1002/glia.20295.CrossRefPubMed
16.
go back to reference Popovich PG, Horner PJ, Mullin BB, Stokes BT: A quantitative spatial analysis of the blood-spinal cord barrier. I. Permeability changes after experimental spinal contusion injury. Exp Neurol. 1996, 142: 258-275. 10.1006/exnr.1996.0196.CrossRefPubMed Popovich PG, Horner PJ, Mullin BB, Stokes BT: A quantitative spatial analysis of the blood-spinal cord barrier. I. Permeability changes after experimental spinal contusion injury. Exp Neurol. 1996, 142: 258-275. 10.1006/exnr.1996.0196.CrossRefPubMed
17.
go back to reference Cross AR, Segal AW: The NADPH oxidase of professional phagocytes--prototype of the NOX electron transport chain systems. Biochim Biophys Acta. 2004, 1657: 1-22.PubMedCentralCrossRefPubMed Cross AR, Segal AW: The NADPH oxidase of professional phagocytes--prototype of the NOX electron transport chain systems. Biochim Biophys Acta. 2004, 1657: 1-22.PubMedCentralCrossRefPubMed
18.
go back to reference Qin L, Liu Y, Wang T, Wei SJ, Block ML, Wilson B, Liu B, Hong JS: NADPH oxidase mediates lipopolysaccharide-induced neurotoxicity and proinflammatory gene expression in activated microglia. J Biol Chem. 2004, 279: 1415-1421.CrossRefPubMed Qin L, Liu Y, Wang T, Wei SJ, Block ML, Wilson B, Liu B, Hong JS: NADPH oxidase mediates lipopolysaccharide-induced neurotoxicity and proinflammatory gene expression in activated microglia. J Biol Chem. 2004, 279: 1415-1421.CrossRefPubMed
19.
go back to reference Block ML, Zecca L, Hong JS: Microglia-mediated neurotoxicity: uncovering the molecular mechanisms. Nat Rev Neurosci. 2007, 8: 57-69. 10.1038/nrn2038.CrossRefPubMed Block ML, Zecca L, Hong JS: Microglia-mediated neurotoxicity: uncovering the molecular mechanisms. Nat Rev Neurosci. 2007, 8: 57-69. 10.1038/nrn2038.CrossRefPubMed
20.
go back to reference Aldskogius H, Kozlova EN: Central neuron-glial and glial-glial interactions following axon injury. Prog Neurobiol. 1998, 55: 1-26. 10.1016/S0301-0082(97)00093-2.CrossRefPubMed Aldskogius H, Kozlova EN: Central neuron-glial and glial-glial interactions following axon injury. Prog Neurobiol. 1998, 55: 1-26. 10.1016/S0301-0082(97)00093-2.CrossRefPubMed
21.
go back to reference Cheret C, Gervais A, Lelli A, Colin C, Amar L, Ravassard P, Mallet J, Cumano A, Krause KH, Mallat M: Neurotoxic activation of microglia is promoted by a nox1-dependent NADPH oxidase. J Neurosci. 2008, 28: 12039-12051. 10.1523/JNEUROSCI.3568-08.2008.CrossRefPubMed Cheret C, Gervais A, Lelli A, Colin C, Amar L, Ravassard P, Mallet J, Cumano A, Krause KH, Mallat M: Neurotoxic activation of microglia is promoted by a nox1-dependent NADPH oxidase. J Neurosci. 2008, 28: 12039-12051. 10.1523/JNEUROSCI.3568-08.2008.CrossRefPubMed
22.
go back to reference Peng J, Stevenson FF, Oo ML, Andersen JK: Iron-enhanced paraquat-mediated dopaminergic cell death due to increased oxidative stress as a consequence of microglial activation. Free Radic Biol Med. 2009, 46: 312-320. 10.1016/j.freeradbiomed.2008.10.045.PubMedCentralCrossRefPubMed Peng J, Stevenson FF, Oo ML, Andersen JK: Iron-enhanced paraquat-mediated dopaminergic cell death due to increased oxidative stress as a consequence of microglial activation. Free Radic Biol Med. 2009, 46: 312-320. 10.1016/j.freeradbiomed.2008.10.045.PubMedCentralCrossRefPubMed
23.
go back to reference Gao HM, Jiang J, Wilson B, Zhang W, Hong JS, Liu B: Microglial activation-mediated delayed and progressive degeneration of rat nigral dopaminergic neurons: relevance to Parkinson's disease. J Neurochem. 2002, 81: 1285-1297. 10.1046/j.1471-4159.2002.00928.x.CrossRefPubMed Gao HM, Jiang J, Wilson B, Zhang W, Hong JS, Liu B: Microglial activation-mediated delayed and progressive degeneration of rat nigral dopaminergic neurons: relevance to Parkinson's disease. J Neurochem. 2002, 81: 1285-1297. 10.1046/j.1471-4159.2002.00928.x.CrossRefPubMed
24.
go back to reference Min KJ, Pyo HK, Yang MS, Ji KA, Jou I, Joe EH: Gangliosides activate microglia via protein kinase C and NADPH oxidase. Glia. 2004, 48: 197-206. 10.1002/glia.20069.CrossRefPubMed Min KJ, Pyo HK, Yang MS, Ji KA, Jou I, Joe EH: Gangliosides activate microglia via protein kinase C and NADPH oxidase. Glia. 2004, 48: 197-206. 10.1002/glia.20069.CrossRefPubMed
25.
go back to reference Pawate S, Shen Q, Fan F, Bhat NR: Redox regulation of glial inflammatory response to lipopolysaccharide and interferongamma. J Neurosci Res. 2004, 77: 540-551. 10.1002/jnr.20180.CrossRefPubMed Pawate S, Shen Q, Fan F, Bhat NR: Redox regulation of glial inflammatory response to lipopolysaccharide and interferongamma. J Neurosci Res. 2004, 77: 540-551. 10.1002/jnr.20180.CrossRefPubMed
26.
go back to reference Doussiere J, Gaillard J, Vignais PV: The heme component of the neutrophil NADPH oxidase complex is a target for aryliodonium compounds. Biochemistry. 1999, 38: 3694-3703. 10.1021/bi9823481.CrossRefPubMed Doussiere J, Gaillard J, Vignais PV: The heme component of the neutrophil NADPH oxidase complex is a target for aryliodonium compounds. Biochemistry. 1999, 38: 3694-3703. 10.1021/bi9823481.CrossRefPubMed
27.
go back to reference O'Donnell BV, Tew DG, Jones OT, England PJ: Studies on the inhibitory mechanism of iodonium compounds with special reference to neutrophil NADPH oxidase. Biochem J. 1993, 290 (Pt 1): 41-49.PubMedCentralCrossRefPubMed O'Donnell BV, Tew DG, Jones OT, England PJ: Studies on the inhibitory mechanism of iodonium compounds with special reference to neutrophil NADPH oxidase. Biochem J. 1993, 290 (Pt 1): 41-49.PubMedCentralCrossRefPubMed
28.
go back to reference Li J, Baud O, Vartanian T, Volpe JJ, Rosenberg PA: Peroxynitrite generated by inducible nitric oxide synthase and NADPH oxidase mediates microglial toxicity to oligodendrocytes. Proc Natl Acad Sci USA. 2005, 102: 9936-9941. 10.1073/pnas.0502552102.PubMedCentralCrossRefPubMed Li J, Baud O, Vartanian T, Volpe JJ, Rosenberg PA: Peroxynitrite generated by inducible nitric oxide synthase and NADPH oxidase mediates microglial toxicity to oligodendrocytes. Proc Natl Acad Sci USA. 2005, 102: 9936-9941. 10.1073/pnas.0502552102.PubMedCentralCrossRefPubMed
29.
go back to reference Yakovlev AG, Faden AI: Sequential expression of c-fos protooncogene, TNF-alpha, and dynorphin genes in spinal cord following experimental traumatic injury. Mol Chem Neuropathol. 1994, 23: 179-190. 10.1007/BF02815410.CrossRefPubMed Yakovlev AG, Faden AI: Sequential expression of c-fos protooncogene, TNF-alpha, and dynorphin genes in spinal cord following experimental traumatic injury. Mol Chem Neuropathol. 1994, 23: 179-190. 10.1007/BF02815410.CrossRefPubMed
30.
go back to reference Di Giovanni S, Faden AI, Yakovlev A, Duke-Cohan JS, Finn T, Thouin M, Knoblach S, De Biase A, Bregman BS, Hoffman EP: Neuronal plasticity after spinal cord injury: identification of a gene cluster driving neurite outgrowth. Faseb J. 2005, 19: 153-154.PubMed Di Giovanni S, Faden AI, Yakovlev A, Duke-Cohan JS, Finn T, Thouin M, Knoblach S, De Biase A, Bregman BS, Hoffman EP: Neuronal plasticity after spinal cord injury: identification of a gene cluster driving neurite outgrowth. Faseb J. 2005, 19: 153-154.PubMed
31.
go back to reference Di Giovanni S, Knoblach SM, Brandoli C, Aden SA, Hoffman EP, Faden AI: Gene profiling in spinal cord injury shows role of cell cycle in neuronal death. Ann Neurol. 2003, 53: 454-468. 10.1002/ana.10472.CrossRefPubMed Di Giovanni S, Knoblach SM, Brandoli C, Aden SA, Hoffman EP, Faden AI: Gene profiling in spinal cord injury shows role of cell cycle in neuronal death. Ann Neurol. 2003, 53: 454-468. 10.1002/ana.10472.CrossRefPubMed
32.
go back to reference Byrnes KR, Stoica BA, Fricke S, Di Giovanni S, Faden AI: Cell cycle activation contributes to post-mitotic cell death and secondary damage after spinal cord injury. Brain. 2007, 130: 2977-2992. 10.1093/brain/awm179.CrossRefPubMed Byrnes KR, Stoica BA, Fricke S, Di Giovanni S, Faden AI: Cell cycle activation contributes to post-mitotic cell death and secondary damage after spinal cord injury. Brain. 2007, 130: 2977-2992. 10.1093/brain/awm179.CrossRefPubMed
33.
go back to reference Donnelly DJ, Gensel JC, Ankeny DP, van Rooijen N, Popovich PG: An efficient and reproducible method for quantifying macrophages in different experimental models of central nervous system pathology. J Neurosci Methods. 2009, 181: 36-44. 10.1016/j.jneumeth.2009.04.010.PubMedCentralCrossRefPubMed Donnelly DJ, Gensel JC, Ankeny DP, van Rooijen N, Popovich PG: An efficient and reproducible method for quantifying macrophages in different experimental models of central nervous system pathology. J Neurosci Methods. 2009, 181: 36-44. 10.1016/j.jneumeth.2009.04.010.PubMedCentralCrossRefPubMed
34.
go back to reference Fernandes DC, Wosniak J, Pescatore LA, Bertoline MA, Liberman M, Laurindo FR, Santos CX: Analysis of DHE-derived oxidation products by HPLC in the assessment of superoxide production and NADPH oxidase activity in vascular systems. Am J Physiol Cell Physiol. 2007, 292: C413-422.CrossRefPubMed Fernandes DC, Wosniak J, Pescatore LA, Bertoline MA, Liberman M, Laurindo FR, Santos CX: Analysis of DHE-derived oxidation products by HPLC in the assessment of superoxide production and NADPH oxidase activity in vascular systems. Am J Physiol Cell Physiol. 2007, 292: C413-422.CrossRefPubMed
35.
go back to reference Iannotti C, Ping Zhang Y, Shields CB, Han Y, Burke DA, Xu XM: A neuroprotective role of glial cell line-derived neurotrophic factor following moderate spinal cord contusion injury. Exp Neurol. 2004, 189: 317-332. 10.1016/j.expneurol.2004.05.033.CrossRefPubMed Iannotti C, Ping Zhang Y, Shields CB, Han Y, Burke DA, Xu XM: A neuroprotective role of glial cell line-derived neurotrophic factor following moderate spinal cord contusion injury. Exp Neurol. 2004, 189: 317-332. 10.1016/j.expneurol.2004.05.033.CrossRefPubMed
36.
go back to reference Byrnes KR, Stoica B, Riccio A, Pajoohesh-Ganji A, Loane DJ, Faden AI: Activation of metabotropic glutamate receptor 5 improves recovery after spinal cord injury in rodents. Ann Neurol. 2009, 66: 63-74. 10.1002/ana.21673.PubMedCentralCrossRefPubMed Byrnes KR, Stoica B, Riccio A, Pajoohesh-Ganji A, Loane DJ, Faden AI: Activation of metabotropic glutamate receptor 5 improves recovery after spinal cord injury in rodents. Ann Neurol. 2009, 66: 63-74. 10.1002/ana.21673.PubMedCentralCrossRefPubMed
37.
go back to reference Sorce S, Krause KH: NOX enzymes in the central nervous system: from signaling to disease. Antioxid Redox Signal. 2009, 10: 2481-504.CrossRef Sorce S, Krause KH: NOX enzymes in the central nervous system: from signaling to disease. Antioxid Redox Signal. 2009, 10: 2481-504.CrossRef
38.
go back to reference Byrnes KR, Fricke ST, Faden AI: Neuropathological differences between rats and mice after spinal cord injury. J Magn Res Imag. 2010, 32: 836-46. 10.1002/jmri.22323.CrossRef Byrnes KR, Fricke ST, Faden AI: Neuropathological differences between rats and mice after spinal cord injury. J Magn Res Imag. 2010, 32: 836-46. 10.1002/jmri.22323.CrossRef
39.
go back to reference Totoiu MO, Keirstead HS: Spinal cord injury is accompanied by chronic progressive demyelination. J Comp Neurol. 2005, 486: 373-383. 10.1002/cne.20517.CrossRefPubMed Totoiu MO, Keirstead HS: Spinal cord injury is accompanied by chronic progressive demyelination. J Comp Neurol. 2005, 486: 373-383. 10.1002/cne.20517.CrossRefPubMed
40.
go back to reference Naphade SB, Kigerl KA, Jakeman LB, Kostyk SK, Popovich PG, Kuret J: Progranulin expression is upregulated after spinal contusion in mice. Acta Neuropathol. 2010, 119: 123-133. 10.1007/s00401-009-0616-y.PubMedCentralCrossRefPubMed Naphade SB, Kigerl KA, Jakeman LB, Kostyk SK, Popovich PG, Kuret J: Progranulin expression is upregulated after spinal contusion in mice. Acta Neuropathol. 2010, 119: 123-133. 10.1007/s00401-009-0616-y.PubMedCentralCrossRefPubMed
41.
go back to reference Grewal RP, Morgan TE, Finch CE: C1qB and clusterin mRNA increase in association with neurodegeneration in sporadic amyotrophic lateral sclerosis. Neurosci Lett. 1999, 271: 65-67. 10.1016/S0304-3940(99)00496-6.CrossRefPubMed Grewal RP, Morgan TE, Finch CE: C1qB and clusterin mRNA increase in association with neurodegeneration in sporadic amyotrophic lateral sclerosis. Neurosci Lett. 1999, 271: 65-67. 10.1016/S0304-3940(99)00496-6.CrossRefPubMed
42.
go back to reference Natale JE, Ahmed F, Cernak I, Stoica B, Faden AI: Gene expression profile changes are commonly modulated across models and species after traumatic brain injury. J Neurotrauma. 2003, 20: 907-927. 10.1089/089771503770195777.CrossRefPubMed Natale JE, Ahmed F, Cernak I, Stoica B, Faden AI: Gene expression profile changes are commonly modulated across models and species after traumatic brain injury. J Neurotrauma. 2003, 20: 907-927. 10.1089/089771503770195777.CrossRefPubMed
43.
go back to reference Doverhag C, Hedtjarn M, Poirier F, Mallard C, Hagberg H, Karlsson A, Savman K: Galectin-3 contributes to neonatal hypoxic-ischemic brain injury. Neurobiol Dis. 2010, 38: 36-46. 10.1016/j.nbd.2009.12.024.CrossRefPubMed Doverhag C, Hedtjarn M, Poirier F, Mallard C, Hagberg H, Karlsson A, Savman K: Galectin-3 contributes to neonatal hypoxic-ischemic brain injury. Neurobiol Dis. 2010, 38: 36-46. 10.1016/j.nbd.2009.12.024.CrossRefPubMed
44.
go back to reference Yan YP, Lang BT, Vemuganti R, Dempsey RJ: Galectin-3 mediates post-ischemic tissue remodeling. Brain Res. 2009, 1288: 116-124.CrossRefPubMed Yan YP, Lang BT, Vemuganti R, Dempsey RJ: Galectin-3 mediates post-ischemic tissue remodeling. Brain Res. 2009, 1288: 116-124.CrossRefPubMed
45.
go back to reference Ahmed Z, Mackenzie IR, Hutton ML, Dickson DW: Progranulin in frontotemporal lobar degeneration and neuroinflammation. J Neuroinflammation. 2007, 4: 7-10.1186/1742-2094-4-7.PubMedCentralCrossRefPubMed Ahmed Z, Mackenzie IR, Hutton ML, Dickson DW: Progranulin in frontotemporal lobar degeneration and neuroinflammation. J Neuroinflammation. 2007, 4: 7-10.1186/1742-2094-4-7.PubMedCentralCrossRefPubMed
46.
go back to reference Philips T, De Muynck L, Thu HN, Weynants B, Vanacker P, Dhondt J, Sleegers K, Schelhaas HJ, Verbeek M, Vandenberghe R, et al: Microglial upregulation of progranulin as a marker of motor neuron degeneration. J Neuropathol Exp Neurol. 2010, 69: 1191-1200. 10.1097/NEN.0b013e3181fc9aea.CrossRefPubMed Philips T, De Muynck L, Thu HN, Weynants B, Vanacker P, Dhondt J, Sleegers K, Schelhaas HJ, Verbeek M, Vandenberghe R, et al: Microglial upregulation of progranulin as a marker of motor neuron degeneration. J Neuropathol Exp Neurol. 2010, 69: 1191-1200. 10.1097/NEN.0b013e3181fc9aea.CrossRefPubMed
47.
go back to reference Kigerl KA, Gensel JC, Ankeny DP, Alexander JK, Donnelly DJ, Popovich PG: Identification of two distinct macrophage subsets with divergent effects causing either neurotoxicity or regeneration in the injured mouse spinal cord. J Neurosci. 2009, 29: 13435-13444. 10.1523/JNEUROSCI.3257-09.2009.PubMedCentralCrossRefPubMed Kigerl KA, Gensel JC, Ankeny DP, Alexander JK, Donnelly DJ, Popovich PG: Identification of two distinct macrophage subsets with divergent effects causing either neurotoxicity or regeneration in the injured mouse spinal cord. J Neurosci. 2009, 29: 13435-13444. 10.1523/JNEUROSCI.3257-09.2009.PubMedCentralCrossRefPubMed
48.
go back to reference Yin F, Banerjee R, Thomas B, Zhou P, Qian L, Jia T, Ma X, Ma Y, Iadecola C, Beal MF, et al: Exaggerated inflammation, impaired host defense, and neuropathology in progranulin-deficient mice. J Exp Med. 2010, 207: 117-128. 10.1084/jem.20091568. S111-114PubMedCentralCrossRefPubMed Yin F, Banerjee R, Thomas B, Zhou P, Qian L, Jia T, Ma X, Ma Y, Iadecola C, Beal MF, et al: Exaggerated inflammation, impaired host defense, and neuropathology in progranulin-deficient mice. J Exp Med. 2010, 207: 117-128. 10.1084/jem.20091568. S111-114PubMedCentralCrossRefPubMed
49.
go back to reference Pickford F, Marcus J, Camargo LM, Xiao Q, Graham D, Mo JR, Burkhardt M, Kulkarni V, Crispino J, Hering H, Hutton M: Progranulin is a chemoattractant for microglia and stimulates their endocytic activity. Am J Pathol. 2011, 178: 284-295. 10.1016/j.ajpath.2010.11.002.PubMedCentralCrossRefPubMed Pickford F, Marcus J, Camargo LM, Xiao Q, Graham D, Mo JR, Burkhardt M, Kulkarni V, Crispino J, Hering H, Hutton M: Progranulin is a chemoattractant for microglia and stimulates their endocytic activity. Am J Pathol. 2011, 178: 284-295. 10.1016/j.ajpath.2010.11.002.PubMedCentralCrossRefPubMed
50.
go back to reference Youn BS, Bang SI, Kloting N, Park JW, Lee N, Oh JE, Pi KB, Lee TH, Ruschke K, Fasshauer M, et al: Serum progranulin concentrations may be associated with macrophage infiltration into omental adipose tissue. Diabetes. 2009, 58: 627-636.PubMedCentralCrossRefPubMed Youn BS, Bang SI, Kloting N, Park JW, Lee N, Oh JE, Pi KB, Lee TH, Ruschke K, Fasshauer M, et al: Serum progranulin concentrations may be associated with macrophage infiltration into omental adipose tissue. Diabetes. 2009, 58: 627-636.PubMedCentralCrossRefPubMed
51.
go back to reference Filer A, Bik M, Parsonage GN, Fitton J, Trebilcock E, Howlett K, Cook M, Raza K, Simmons DL, Thomas AM, et al: Galectin 3 induces a distinctive pattern of cytokine and chemokine production in rheumatoid synovial fibroblasts via selective signaling pathways. Arthritis Rheum. 2009, 60: 1604-1614. 10.1002/art.24574.PubMedCentralCrossRefPubMed Filer A, Bik M, Parsonage GN, Fitton J, Trebilcock E, Howlett K, Cook M, Raza K, Simmons DL, Thomas AM, et al: Galectin 3 induces a distinctive pattern of cytokine and chemokine production in rheumatoid synovial fibroblasts via selective signaling pathways. Arthritis Rheum. 2009, 60: 1604-1614. 10.1002/art.24574.PubMedCentralCrossRefPubMed
52.
go back to reference Narciso MS, Mietto Bde S, Marques SA, Soares CP, Mermelstein Cdos S, El-Cheikh MC, Martinez AM: Sciatic nerve regeneration is accelerated in galectin-3 knockout mice. Exp Neurol. 2009, 217: 7-15. 10.1016/j.expneurol.2009.01.008.CrossRefPubMed Narciso MS, Mietto Bde S, Marques SA, Soares CP, Mermelstein Cdos S, El-Cheikh MC, Martinez AM: Sciatic nerve regeneration is accelerated in galectin-3 knockout mice. Exp Neurol. 2009, 217: 7-15. 10.1016/j.expneurol.2009.01.008.CrossRefPubMed
53.
go back to reference Dhirapong A, Lleo A, Leung P, Gershwin ME, Liu FT: The immunological potential of galectin-1 and -3. Autoimmun Rev. 2009, 8: 360-363. 10.1016/j.autrev.2008.11.009.CrossRefPubMed Dhirapong A, Lleo A, Leung P, Gershwin ME, Liu FT: The immunological potential of galectin-1 and -3. Autoimmun Rev. 2009, 8: 360-363. 10.1016/j.autrev.2008.11.009.CrossRefPubMed
54.
go back to reference Goodman EB, Tenner AJ: Signal transduction mechanisms of C1q-mediated superoxide production. Evidence for the involvement of temporally distinct staurosporine-insensitive and sensitive pathways. J Immunol. 1992, 148: 3920-3928.PubMed Goodman EB, Tenner AJ: Signal transduction mechanisms of C1q-mediated superoxide production. Evidence for the involvement of temporally distinct staurosporine-insensitive and sensitive pathways. J Immunol. 1992, 148: 3920-3928.PubMed
55.
go back to reference Karlsson A, Follin P, Leffler H, Dahlgren C: Galectin-3 activates the NADPH-oxidase in exudated but not peripheral blood neutrophils. Blood. 1998, 91: 3430-3438.PubMed Karlsson A, Follin P, Leffler H, Dahlgren C: Galectin-3 activates the NADPH-oxidase in exudated but not peripheral blood neutrophils. Blood. 1998, 91: 3430-3438.PubMed
56.
go back to reference Fernandez GC, Ilarregui JM, Rubel CJ, Toscano MA, Gomez SA, Bompadre MB, Isturiz MA, Rabinovich GA, Palermo MS: Galectin-3 and soluble fibrinogen act in concert to modulate neutrophil activation and survival. Involvement of alternative MAPK-pathways. Glycobiology. 2005, 15: 519-27.CrossRefPubMed Fernandez GC, Ilarregui JM, Rubel CJ, Toscano MA, Gomez SA, Bompadre MB, Isturiz MA, Rabinovich GA, Palermo MS: Galectin-3 and soluble fibrinogen act in concert to modulate neutrophil activation and survival. Involvement of alternative MAPK-pathways. Glycobiology. 2005, 15: 519-27.CrossRefPubMed
57.
go back to reference Lee JH, Woo JH, Woo SU, Kim KS, Park SM, Joe EH, Jou I: The 15-deoxy-delta 12,14-prostaglandin J2 suppresses monocyte chemoattractant protein-1 expression in IFN-gamma-stimulated astrocytes through induction of MAPK phosphatase-1. J Immunol. 2008, 181: 8642-8649.CrossRefPubMed Lee JH, Woo JH, Woo SU, Kim KS, Park SM, Joe EH, Jou I: The 15-deoxy-delta 12,14-prostaglandin J2 suppresses monocyte chemoattractant protein-1 expression in IFN-gamma-stimulated astrocytes through induction of MAPK phosphatase-1. J Immunol. 2008, 181: 8642-8649.CrossRefPubMed
58.
go back to reference Olefsky JM, Glass CK: Macrophages, inflammation, and insulin resistance. Annu Rev Physiol. 2010, 72: 219-246. 10.1146/annurev-physiol-021909-135846.CrossRefPubMed Olefsky JM, Glass CK: Macrophages, inflammation, and insulin resistance. Annu Rev Physiol. 2010, 72: 219-246. 10.1146/annurev-physiol-021909-135846.CrossRefPubMed
59.
go back to reference Ni W, Zhan Y, He H, Maynard E, Balschi JA, Oettgen P: Ets-1 is a critical transcriptional regulator of reactive oxygen species and p47(phox) gene expression in response to angiotensin II. Circ Res. 2007, 101: 985-994. 10.1161/CIRCRESAHA.107.152439.CrossRefPubMed Ni W, Zhan Y, He H, Maynard E, Balschi JA, Oettgen P: Ets-1 is a critical transcriptional regulator of reactive oxygen species and p47(phox) gene expression in response to angiotensin II. Circ Res. 2007, 101: 985-994. 10.1161/CIRCRESAHA.107.152439.CrossRefPubMed
60.
go back to reference Dusi S, Donini M, Lissandrini D, Mazzi P, Bianca VD, Rossi F: Mechanisms of expression of NADPH oxidase components in human cultured monocytes: role of cytokines and transcriptional regulators involved. Eur J Immunol. 2001, 31: 929-938. 10.1002/1521-4141(200103)31:3<929::AID-IMMU929>3.0.CO;2-M.CrossRefPubMed Dusi S, Donini M, Lissandrini D, Mazzi P, Bianca VD, Rossi F: Mechanisms of expression of NADPH oxidase components in human cultured monocytes: role of cytokines and transcriptional regulators involved. Eur J Immunol. 2001, 31: 929-938. 10.1002/1521-4141(200103)31:3<929::AID-IMMU929>3.0.CO;2-M.CrossRefPubMed
61.
go back to reference Oh YT, Lee JY, Yoon H, Lee EH, Baik HH, Kim SS, Ha J, Yoon KS, Choe W, Kang I: Lipopolysaccharide induces hypoxia-inducible factor-1 alpha mRNA expression and activation via NADPH oxidase and Sp1-dependent pathway in BV2 murine microglial cells. Neurosci Lett. 2008, 431: 155-160. 10.1016/j.neulet.2007.11.033.CrossRefPubMed Oh YT, Lee JY, Yoon H, Lee EH, Baik HH, Kim SS, Ha J, Yoon KS, Choe W, Kang I: Lipopolysaccharide induces hypoxia-inducible factor-1 alpha mRNA expression and activation via NADPH oxidase and Sp1-dependent pathway in BV2 murine microglial cells. Neurosci Lett. 2008, 431: 155-160. 10.1016/j.neulet.2007.11.033.CrossRefPubMed
62.
go back to reference Wu F, Tyml K, Wilson JX: iNOS expression requires NADPH oxidase-dependent redox signaling in microvascular endothelial cells. J Cell Physiol. 2008, 217: 207-214. 10.1002/jcp.21495.PubMedCentralCrossRefPubMed Wu F, Tyml K, Wilson JX: iNOS expression requires NADPH oxidase-dependent redox signaling in microvascular endothelial cells. J Cell Physiol. 2008, 217: 207-214. 10.1002/jcp.21495.PubMedCentralCrossRefPubMed
63.
go back to reference Tang XN, Cairns B, Cairns N, Yenari MA: Apocynin improves outcome in experimental stroke with a narrow dose range. Neuroscience. 2008, 154: 556-562. 10.1016/j.neuroscience.2008.03.090.PubMedCentralCrossRefPubMed Tang XN, Cairns B, Cairns N, Yenari MA: Apocynin improves outcome in experimental stroke with a narrow dose range. Neuroscience. 2008, 154: 556-562. 10.1016/j.neuroscience.2008.03.090.PubMedCentralCrossRefPubMed
64.
go back to reference Wang Q, Tompkins KD, Simonyi A, Korthuis RJ, Sun AY, Sun GY: Apocynin protects against global cerebral ischemia-reperfusion-induced oxidative stress and injury in the gerbil hippocampus. Brain Res. 2006, 1090: 182-189. 10.1016/j.brainres.2006.03.060.CrossRefPubMed Wang Q, Tompkins KD, Simonyi A, Korthuis RJ, Sun AY, Sun GY: Apocynin protects against global cerebral ischemia-reperfusion-induced oxidative stress and injury in the gerbil hippocampus. Brain Res. 2006, 1090: 182-189. 10.1016/j.brainres.2006.03.060.CrossRefPubMed
Metadata
Title
Delayed inflammatory mRNA and protein expression after spinal cord injury
Authors
Kimberly R Byrnes
Patricia M Washington
Susan M Knoblach
Eric Hoffman
Alan I Faden
Publication date
01-12-2011
Publisher
BioMed Central
Published in
Journal of Neuroinflammation / Issue 1/2011
Electronic ISSN: 1742-2094
DOI
https://doi.org/10.1186/1742-2094-8-130

Other articles of this Issue 1/2011

Journal of Neuroinflammation 1/2011 Go to the issue