Skip to main content
Top
Published in: Cardiovascular Ultrasound 1/2012

Open Access 01-12-2012 | Research

Left ventricular strain and peak systolic velocity: responses to controlled changes in load and contractility, explored in a porcine model

Authors: Roman A’roch, Ulf Gustafsson, Göran Johansson, Jan Poelaert, Michael Haney

Published in: Cardiovascular Ultrasound | Issue 1/2012

Login to get access

Abstract

Background

Tissue velocity echocardiography is increasingly used to evaluate global and regional cardiac function. Previous studies have suggested that the quantitative measurements obtained during ejection are reliable indices of contractility, though their load-sensitivity has been studied in different settings, but still remains a matter of controversy. We sought to characterize the effects of acute load change (both preload and afterload) and change in inotropic state on peak systolic velocity and strain as a measure of LV contractility.

Methods

Thirteen anesthetized juvenile pigs were studied, using direct measurement of left ventricular pressure and volume and transthoracic echocardiography. Transient inflation of a vena cava balloon catheter produced controlled load alterations. At least eight consecutive beats in the sequence were analyzed with tissue velocity echocardiography during the load alteration and analyzed for change in peak systolic velocities and strain during same contractile status with a controlled load alteration. Two pharmacological inotropic interventions were also included to generate several myocardial contractile conditions in each animal.

Results

Peak systolic velocities reflected the drug-induced changes in contractility in both radial and longitudinal axis. During the acute load change, the peak systolic velocities remain stable when derived from signal in the longitudinal axis and from the radial axis. The peak systolic velocity parameter demonstrated no strong relation to either load or inotropic intervention, that is, it remained unchanged when load was systematically and progressively varied (peak systolic velocity, longitudinal axis, control group beat 1-5.72 ± 1.36 with beat 8–6.49 ± 1.28 cm/sec, 95% confidence interval), with the single exception of the negative inotropic intervention group where peak systolic velocity decreased a small amount during load reduction (beat 1–3.98 ± 0.92 with beat 8–2.72 ± 0.89 cm/sec). Systolic strain, however, showed a clear degree of load-dependence.

Conclusions

Peak systolic velocity appears to be load-independent as tested by beat-to-beat load reduction, while peak systolic strain appears to be load-dependent in this model. Peak systolic velocity, in a controlled experimental model where successive beats during load alteration are assessed, has a strong relation to contractility. Peak systolic velocity, but not peak strain rate, is largely independent of load, in this model. More study is needed to confirm this finding in the clinical setting.
Appendix
Available only for authorised users
Literature
1.
go back to reference Isaaz K, Thompson A, Ethevenot G, Cloez JL, Brembilla B, Pernot C: Doppler echocardiographic measurement of low velocity motion of the left ventricular posterior wall. Am J Cardiol. 1989, 64: 66-75.CrossRefPubMed Isaaz K, Thompson A, Ethevenot G, Cloez JL, Brembilla B, Pernot C: Doppler echocardiographic measurement of low velocity motion of the left ventricular posterior wall. Am J Cardiol. 1989, 64: 66-75.CrossRefPubMed
2.
go back to reference Oh JK, Hatle L, Tajik AJ, Little WC: Diastolic heart failure can be diagnosed by comprehensive two-dimensional and Doppler echocardiography. J Am Coll Cardiol. 2006, 3: 500-506.CrossRef Oh JK, Hatle L, Tajik AJ, Little WC: Diastolic heart failure can be diagnosed by comprehensive two-dimensional and Doppler echocardiography. J Am Coll Cardiol. 2006, 3: 500-506.CrossRef
3.
go back to reference Vinereanu D, Nicolaides E, Boden L, Payne N, Jones CJ, Fraser AG: Conduit arterial stiffness is associated with impaired left ventricular subendocardial function. Heart. 2003, 4: 449-450.CrossRef Vinereanu D, Nicolaides E, Boden L, Payne N, Jones CJ, Fraser AG: Conduit arterial stiffness is associated with impaired left ventricular subendocardial function. Heart. 2003, 4: 449-450.CrossRef
4.
go back to reference Weidemann F, Strotmann JM: Detection of subclinical LV dysfunction by tissue Doppler imaging. Eur Heart J. 2006, 15: 1771-1772.CrossRef Weidemann F, Strotmann JM: Detection of subclinical LV dysfunction by tissue Doppler imaging. Eur Heart J. 2006, 15: 1771-1772.CrossRef
5.
go back to reference Vignon P, Allot V, Lesage J, Martaillé JF, Aldigier JC, François B, Gastinne H: Diagnosis of left ventricular diastolic dysfunction in the setting of acute changes in loading conditions. Crit Care. 2007, 2: R43-CrossRef Vignon P, Allot V, Lesage J, Martaillé JF, Aldigier JC, François B, Gastinne H: Diagnosis of left ventricular diastolic dysfunction in the setting of acute changes in loading conditions. Crit Care. 2007, 2: R43-CrossRef
6.
go back to reference Brodin LA, van der Linden J, Olstad B: Echocardiographic functional images based on tissue velocity information. Herz. 1998, 8: 491-498.CrossRef Brodin LA, van der Linden J, Olstad B: Echocardiographic functional images based on tissue velocity information. Herz. 1998, 8: 491-498.CrossRef
7.
go back to reference Sutherland GR, Stewart MJ, Groundstroem KW, Moran CM, Fleming A, Guell-Peris FJ, Riemersma RA, Fenn LN, Fox KA, McDicken WN: Color Doppler myocardial imaging: a new technique for the assessment of myocardial function. J Am Soc Echocardiogr. 1994, 5: 441-458.CrossRef Sutherland GR, Stewart MJ, Groundstroem KW, Moran CM, Fleming A, Guell-Peris FJ, Riemersma RA, Fenn LN, Fox KA, McDicken WN: Color Doppler myocardial imaging: a new technique for the assessment of myocardial function. J Am Soc Echocardiogr. 1994, 5: 441-458.CrossRef
8.
go back to reference Brodin LA: Tissue Doppler, a fundamental tool for parametric imaging. Clin Physiol Funct Imaging. 2004, 3: 147-155.CrossRef Brodin LA: Tissue Doppler, a fundamental tool for parametric imaging. Clin Physiol Funct Imaging. 2004, 3: 147-155.CrossRef
9.
go back to reference Carabello BA: Evolution of the study of left ventricular function: everything old is new again. Circulation. 2002, 23: 2701-2703.CrossRef Carabello BA: Evolution of the study of left ventricular function: everything old is new again. Circulation. 2002, 23: 2701-2703.CrossRef
10.
go back to reference Nagueh SF, Sun H, Kopelen HA, Middleton KJ, Khoury DS: Hemodynamic determinants of the mitral annulus diastolic velocities by tissue Doppler. J Am Coll Cardiol. 2001, 1: 278-285.CrossRef Nagueh SF, Sun H, Kopelen HA, Middleton KJ, Khoury DS: Hemodynamic determinants of the mitral annulus diastolic velocities by tissue Doppler. J Am Coll Cardiol. 2001, 1: 278-285.CrossRef
11.
go back to reference Firstenberg MS, Greenberg NL, Main ML, Drinko JK, Odabashian JA, Thomas JD, Garcia MJ: Determinants of diastolic myocardial tissue Doppler velocities: influences of relaxation and preload. J Appl Physiol. 2001, 1: 299-307. Firstenberg MS, Greenberg NL, Main ML, Drinko JK, Odabashian JA, Thomas JD, Garcia MJ: Determinants of diastolic myocardial tissue Doppler velocities: influences of relaxation and preload. J Appl Physiol. 2001, 1: 299-307.
12.
go back to reference Drighil A, Madias JE, Mathewson JW, El Mosalami H, El Badaoui N, Ramdani B, Bennis A: Haemodialysis: effects of acute decrease in preload on tissue Doppler imaging indices of systolic and diastolic function of the left and right ventricles. Eur J Echocardiogr. 2008, 9: 530-535.CrossRefPubMed Drighil A, Madias JE, Mathewson JW, El Mosalami H, El Badaoui N, Ramdani B, Bennis A: Haemodialysis: effects of acute decrease in preload on tissue Doppler imaging indices of systolic and diastolic function of the left and right ventricles. Eur J Echocardiogr. 2008, 9: 530-535.CrossRefPubMed
13.
go back to reference Hayashi SY, Brodin LA, Alvestrand A, Lind B, Stenvinkel P, Mazza do Nascimento M, Qureshi AR, Saha S, Lindholm B, Seeberger A: Improvement of cardiac function after haemodialysis. Quantitative evaluation by colour tissue velocity imaging. Nephrol Dial Transplant. 2004, 19: 1497-1506.CrossRefPubMed Hayashi SY, Brodin LA, Alvestrand A, Lind B, Stenvinkel P, Mazza do Nascimento M, Qureshi AR, Saha S, Lindholm B, Seeberger A: Improvement of cardiac function after haemodialysis. Quantitative evaluation by colour tissue velocity imaging. Nephrol Dial Transplant. 2004, 19: 1497-1506.CrossRefPubMed
14.
go back to reference Govind SC, Roumina S, Brodin LA, Nowak J, Ramesh SS, Saha SK: Differing myocardial response to a single session of hemodialysis in end-stage renal disease with and without type 2 diabetes mellitus and coronary artery disease. Cardiovasc Ultrasound. 2006, 4: 9-CrossRefPubMedPubMedCentral Govind SC, Roumina S, Brodin LA, Nowak J, Ramesh SS, Saha SK: Differing myocardial response to a single session of hemodialysis in end-stage renal disease with and without type 2 diabetes mellitus and coronary artery disease. Cardiovasc Ultrasound. 2006, 4: 9-CrossRefPubMedPubMedCentral
15.
go back to reference Bjällmark A, Larsson M, Nowak J, Lind B, Hayashi SY, do Nascimento MM, Riella MC, Seeberger A, Brodin LA: Effects of hemodialysis on the cardiovascular system: quantitative analysis using wave intensity wall analysis and tissue velocity imaging. Hear Vessel. 2011, 3: 289-297.CrossRef Bjällmark A, Larsson M, Nowak J, Lind B, Hayashi SY, do Nascimento MM, Riella MC, Seeberger A, Brodin LA: Effects of hemodialysis on the cardiovascular system: quantitative analysis using wave intensity wall analysis and tissue velocity imaging. Hear Vessel. 2011, 3: 289-297.CrossRef
16.
go back to reference Brodin LA, Lind B, Lang H, Kallnar G, Söderqvist E, Van der Linden J, Hultman J: The influences of loading conditions on myocardial velocities measured by tissue Doppler. Circulation. 2000, 102 (Suppl II): 383-1865. abstract. Brodin LA, Lind B, Lang H, Kallnar G, Söderqvist E, Van der Linden J, Hultman J: The influences of loading conditions on myocardial velocities measured by tissue Doppler. Circulation. 2000, 102 (Suppl II): 383-1865. abstract.
17.
go back to reference Duan YY, Harada K, Toyono M, Ishii H, Tamura M, Takada G: Effects of acute preload reduction on myocardial velocity during isovolumic contraction and myocardial acceleration in pediatric patients. Pediatr Cardiol. 2006, 1: 32-36.CrossRef Duan YY, Harada K, Toyono M, Ishii H, Tamura M, Takada G: Effects of acute preload reduction on myocardial velocity during isovolumic contraction and myocardial acceleration in pediatric patients. Pediatr Cardiol. 2006, 1: 32-36.CrossRef
18.
go back to reference Haney MF, A’Roch R, Johansson G, Poelaert J, Biber B: Beat-to-beat change in “myocardial performance index” related to load. Acta Anaesthesiol Scand. 2007, 5: 545-552.CrossRef Haney MF, A’Roch R, Johansson G, Poelaert J, Biber B: Beat-to-beat change in “myocardial performance index” related to load. Acta Anaesthesiol Scand. 2007, 5: 545-552.CrossRef
19.
go back to reference Steendijk P, Van der Velde ET, Baan J: Left ventricular stroke volume by single and double excitation of conductance catheter in dogs. Am J Physiol. 1993, 33: H2198-H2207. Steendijk P, Van der Velde ET, Baan J: Left ventricular stroke volume by single and double excitation of conductance catheter in dogs. Am J Physiol. 1993, 33: H2198-H2207.
20.
go back to reference Steendijk P, Staal E, Jukema JW, Baan J: Hypertonic saline method accurately determines parallel conductance for dual-field conductance catheter. Am J Physiol Heart Circ Physiol. 2001, 2: H755-H763. Steendijk P, Staal E, Jukema JW, Baan J: Hypertonic saline method accurately determines parallel conductance for dual-field conductance catheter. Am J Physiol Heart Circ Physiol. 2001, 2: H755-H763.
21.
go back to reference Kass DA, Maughan WL, Guo ZM, Kono A, Sunagawa K, Sagawa K: Comparative influence of load versus inotropic states on indexes of ventricular contractility: experimental and theoretical analysis based on pressure-volume relationships. Circulation. 1987, 6: 1422-1436.CrossRef Kass DA, Maughan WL, Guo ZM, Kono A, Sunagawa K, Sagawa K: Comparative influence of load versus inotropic states on indexes of ventricular contractility: experimental and theoretical analysis based on pressure-volume relationships. Circulation. 1987, 6: 1422-1436.CrossRef
22.
go back to reference Glower DD, Spratt JA, Snow ND, Kabas JS, Davis JW, Olsen CO, Tyson GS, Sabiston DC, Rankin JS: Linearity of the Frank-Starling relationship in the intact heart: the concept of preload recruitable stroke work. Circulation. 1985, 5: 994-1009.CrossRef Glower DD, Spratt JA, Snow ND, Kabas JS, Davis JW, Olsen CO, Tyson GS, Sabiston DC, Rankin JS: Linearity of the Frank-Starling relationship in the intact heart: the concept of preload recruitable stroke work. Circulation. 1985, 5: 994-1009.CrossRef
23.
go back to reference Burkhoff D, Mirsky I, Suga H: Assessment of systolic and diastolic ventricular properties via pressure-volume analysis: a guide for clinical, translational, and basic researchers. Am J Physiol Heart Circ Physiol. 2005, 2: H501-H512.CrossRef Burkhoff D, Mirsky I, Suga H: Assessment of systolic and diastolic ventricular properties via pressure-volume analysis: a guide for clinical, translational, and basic researchers. Am J Physiol Heart Circ Physiol. 2005, 2: H501-H512.CrossRef
24.
go back to reference Matre K, Fanneløp T, Dahle GO, Heimdal A, Grong K: Radial strain gradient across the normal myocardial wall in open-chest pigs measured with doppler strain rate imaging. J Am Soc Echocardiogr. 2005, 10: 1066-1073.CrossRef Matre K, Fanneløp T, Dahle GO, Heimdal A, Grong K: Radial strain gradient across the normal myocardial wall in open-chest pigs measured with doppler strain rate imaging. J Am Soc Echocardiogr. 2005, 10: 1066-1073.CrossRef
25.
go back to reference Urheim S, Edvardsen T, Torp H, Angelsen B, Smiseth OA: Myocardial strain by Doppler echocardiography. Validation of a new method to quantify regional myocardial function. Circulation. 2000, 10: 1158-1164.CrossRef Urheim S, Edvardsen T, Torp H, Angelsen B, Smiseth OA: Myocardial strain by Doppler echocardiography. Validation of a new method to quantify regional myocardial function. Circulation. 2000, 10: 1158-1164.CrossRef
26.
go back to reference Amá R, Segers P, Roosens C, Claessens T, Verdonck P, Poelaert J: The efffects of load on systolic mitral annular velocity by tissue Doppler imaging. Anesth Analg. 2004, 99: 332-338.PubMed Amá R, Segers P, Roosens C, Claessens T, Verdonck P, Poelaert J: The efffects of load on systolic mitral annular velocity by tissue Doppler imaging. Anesth Analg. 2004, 99: 332-338.PubMed
27.
go back to reference Borlaug BA, Melenovsky V, Redfield MM, Kessler K, Chang HJ, Abraham TP, Kass DA: Ipact of arterial load and loading sequence on left ventricular tissue velocities in humans. J Am Coll Cardiol. 2007, 16: 1570-1577.CrossRef Borlaug BA, Melenovsky V, Redfield MM, Kessler K, Chang HJ, Abraham TP, Kass DA: Ipact of arterial load and loading sequence on left ventricular tissue velocities in humans. J Am Coll Cardiol. 2007, 16: 1570-1577.CrossRef
28.
go back to reference Rösner A, Bijnens B, Hansen M, How OJ, Aarsaether E, Müller S, Sutherland GR, Myrmel T: Left ventricular size determines tissue Doppler-derived longitudinal strain and strain rate. Eur J Echocardiogr. 2009, 10 (2): 271-277.CrossRefPubMed Rösner A, Bijnens B, Hansen M, How OJ, Aarsaether E, Müller S, Sutherland GR, Myrmel T: Left ventricular size determines tissue Doppler-derived longitudinal strain and strain rate. Eur J Echocardiogr. 2009, 10 (2): 271-277.CrossRefPubMed
29.
go back to reference Andersen NH, Terkelsen CJ, Sloth E, Poulsen SH: Influence of preload alterations on parameters of systolic left ventricular long-axis function: a Doppler tissue study. J Am Soc Echocardiogr. 2004, 9: 941-947.CrossRef Andersen NH, Terkelsen CJ, Sloth E, Poulsen SH: Influence of preload alterations on parameters of systolic left ventricular long-axis function: a Doppler tissue study. J Am Soc Echocardiogr. 2004, 9: 941-947.CrossRef
30.
go back to reference Burns AT, La Gerche A, D’hooge J, MacIsaac AI, Prior DL: Left ventricular strain and strain rate: characterization of the effect of load in human subjects. Eur J Echocardiogr. 2010, 3: 283-289.CrossRef Burns AT, La Gerche A, D’hooge J, MacIsaac AI, Prior DL: Left ventricular strain and strain rate: characterization of the effect of load in human subjects. Eur J Echocardiogr. 2010, 3: 283-289.CrossRef
31.
go back to reference Weidemann F, Jamal F, Sutherland GR, Claus P, Kowalski M, Hatle L, De Scheerder I, Bijnens B, Rademakers FE: Myocardial function defined by strain rate and strain during alterations in inotropic states and heart rate. Am J Physiol Heart Circ Physiol. 2002, 2: H792-CrossRef Weidemann F, Jamal F, Sutherland GR, Claus P, Kowalski M, Hatle L, De Scheerder I, Bijnens B, Rademakers FE: Myocardial function defined by strain rate and strain during alterations in inotropic states and heart rate. Am J Physiol Heart Circ Physiol. 2002, 2: H792-CrossRef
32.
go back to reference Weidemann F, Broscheit JA, Bijnens B, Claus P, Sutherland GR, Voelker W, Ertl G, Strotmann JM: How to distinguish between ischemic and nonischemic postsystolic thickening: a strain rate imaging study. Ultrasound Med Biol. 2006, 1: 53-59.CrossRef Weidemann F, Broscheit JA, Bijnens B, Claus P, Sutherland GR, Voelker W, Ertl G, Strotmann JM: How to distinguish between ischemic and nonischemic postsystolic thickening: a strain rate imaging study. Ultrasound Med Biol. 2006, 1: 53-59.CrossRef
33.
go back to reference Derumeaux G, Ovize M, Loufoua J, Pontier G, André-Fouet X, Cribier A: Assessment of nonuniformity of transmural myocardial velocities by color-coded tissue Doppler imaging: characterization of normal, ischemic, and stunned myocardium. Circulation. 2000, 12: 1390-1395.CrossRef Derumeaux G, Ovize M, Loufoua J, Pontier G, André-Fouet X, Cribier A: Assessment of nonuniformity of transmural myocardial velocities by color-coded tissue Doppler imaging: characterization of normal, ischemic, and stunned myocardium. Circulation. 2000, 12: 1390-1395.CrossRef
34.
go back to reference Sengupta PP, Krishnamoorthy VK, Korinek J, Narula J, Vannan MA, Lester SJ, Tajik JA, Seward JB, Khandheria BK, Belohlavek M: Left ventricular form and function revisited: applied translational science to cardiovascular ultrasound imaging. J Am Soc Echocardiogr. 2007, 5: 539-551.CrossRef Sengupta PP, Krishnamoorthy VK, Korinek J, Narula J, Vannan MA, Lester SJ, Tajik JA, Seward JB, Khandheria BK, Belohlavek M: Left ventricular form and function revisited: applied translational science to cardiovascular ultrasound imaging. J Am Soc Echocardiogr. 2007, 5: 539-551.CrossRef
35.
go back to reference Pislaru C, Pellikka PA: Tissue Doppler and strain-rate imaging in cardiac ultrasound imaging: valuable tools or expensive ornaments?. Expert Rev Cardiovasc Ther. 2005, 1: 1-4.CrossRef Pislaru C, Pellikka PA: Tissue Doppler and strain-rate imaging in cardiac ultrasound imaging: valuable tools or expensive ornaments?. Expert Rev Cardiovasc Ther. 2005, 1: 1-4.CrossRef
36.
go back to reference Mor-Avi V, Lang RM, Badano LP, Belohlavek M, Cardim NM, Derumeaux G, Galderisi M, Marwick T, Nagueh SF, Sengupta PP, Sicari R, Smiseth OA, Smulevitz B, Takeuchi M, Thomas JD, Vannan M, Voigt JU, Zamorano JL: Current and Evolving Echocardiographic Techniques for the Quantitative Evaluation of Cardiac Mechanics: ASE/EAE Consensus Statement on Methodology and Indications Endorsed by the Japanese Society of Echocardiography. Eur J Echocardiogr. 2011, 3: 167-205.CrossRef Mor-Avi V, Lang RM, Badano LP, Belohlavek M, Cardim NM, Derumeaux G, Galderisi M, Marwick T, Nagueh SF, Sengupta PP, Sicari R, Smiseth OA, Smulevitz B, Takeuchi M, Thomas JD, Vannan M, Voigt JU, Zamorano JL: Current and Evolving Echocardiographic Techniques for the Quantitative Evaluation of Cardiac Mechanics: ASE/EAE Consensus Statement on Methodology and Indications Endorsed by the Japanese Society of Echocardiography. Eur J Echocardiogr. 2011, 3: 167-205.CrossRef
Metadata
Title
Left ventricular strain and peak systolic velocity: responses to controlled changes in load and contractility, explored in a porcine model
Authors
Roman A’roch
Ulf Gustafsson
Göran Johansson
Jan Poelaert
Michael Haney
Publication date
01-12-2012
Publisher
BioMed Central
Published in
Cardiovascular Ultrasound / Issue 1/2012
Electronic ISSN: 1476-7120
DOI
https://doi.org/10.1186/1476-7120-10-22

Other articles of this Issue 1/2012

Cardiovascular Ultrasound 1/2012 Go to the issue