Skip to main content
Top
Published in: Heart and Vessels 3/2011

01-05-2011 | Original Article

Effects of hemodialysis on the cardiovascular system: quantitative analysis using wave intensity wall analysis and tissue velocity imaging

Authors: Anna Bjällmark, Matilda Larsson, Jacek Nowak, Britta Lind, Shirley Yumi Hayashi, Marcelo Mazza do Nascimento, Miguel C. Riella, Astrid Seeberger, Lars-Åke Brodin

Published in: Heart and Vessels | Issue 3/2011

Login to get access

Abstract

Cardiovascular disease is the leading cause of death in patients with end-stage renal disease (ESRD). The aim of this study was to investigate the changes in cardiovascular function induced by a single session of hemodialysis (HD) by the analysis of cardiovascular dynamics using wave intensity wall analysis (WIWA) and of systolic and diastolic myocardial function using tissue velocity imaging (TVI). Gray-scale cine loops of the left common carotid artery, conventional echocardiography, and TVI images of the left ventricle were acquired before and after HD in 45 patients (17 women, mean age 54 years) with ESRD. The WIWA indexes, W1 and preload-adjusted W1, W2 and preload-adjusted W2, and the TVI variables, isovolumic contraction velocity (IVCV), isovolumic contraction time (IVCT), peak systolic velocity (PSV), displacement, isovolumic relaxation velocity (IVRV), isovolumic relaxation time (IVRT), peak early diastolic velocity (E′), and peak late diastolic velocity (A′), were compared before and after HD. The WIWA measurements showed significant increases in W1 (P < 0.05) and preload-adjusted W1 (P < 0.01) after HD. W2 was significantly decreased (P < 0.05) after HD, whereas the change in preload-adjusted W2 was not significant. Systolic velocities, IVCV (P < 0.001) and PSV (P < 0.01), were increased after HD, whereas the AV-plane displacement was decreased (P < 0.01). For the measured diastolic variables, E′ was significantly decreased (P < 0.01) and IVRT was significantly prolonged (P < 0.05), after HD. A few correlations were found between WIWA and TVI variables. The WIWA and TVI measurements indicate that a single session of HD improves systolic function. The load dependency of the diastolic variables seems to be more pronounced than for the systolic variables. Preload-adjusted wave intensity indexes may contribute in the assessment of true LV contractility and relaxation.
Literature
1.
go back to reference Levey A, Eknoyan G (1999) Cardiovascular disease in chronic renal disease. Nephrol Dial Transplant 14:828–833PubMedCrossRef Levey A, Eknoyan G (1999) Cardiovascular disease in chronic renal disease. Nephrol Dial Transplant 14:828–833PubMedCrossRef
2.
go back to reference Chaignon M, Chen W, Tarazi R, Nakamoto S, Salcedo E (1982) Acute effects of hemodialysis on echographic-determined cardiac performance: improved contractility resulting from serum increased calcium with reduced potassium despite hypovolemic-reduced cardiac output. Am Heart J 103:374–378PubMedCrossRef Chaignon M, Chen W, Tarazi R, Nakamoto S, Salcedo E (1982) Acute effects of hemodialysis on echographic-determined cardiac performance: improved contractility resulting from serum increased calcium with reduced potassium despite hypovolemic-reduced cardiac output. Am Heart J 103:374–378PubMedCrossRef
3.
go back to reference Gilmartin J, Duffy B, Finnegan P, McCready N (1983) Non invasive study of left ventricular function in chronic renal failure before and after hemodialysis. Clin Nephrol 20:55–60PubMed Gilmartin J, Duffy B, Finnegan P, McCready N (1983) Non invasive study of left ventricular function in chronic renal failure before and after hemodialysis. Clin Nephrol 20:55–60PubMed
4.
go back to reference Tomson C (1990) Echocardiographic assessment of systolic function in dialysis patients. Nephrol Dial Transplant 5:325–331PubMed Tomson C (1990) Echocardiographic assessment of systolic function in dialysis patients. Nephrol Dial Transplant 5:325–331PubMed
5.
go back to reference Hayashi SY, Brodin L-Å, Alvestrand A, Lind B, Stenvinkel P, Nascimento MMd, Qureshi AR, Saha S, Lindholm B, Seeberger A (2004) Improvement of cardiac function after haemodialysis. Quantitative evaluation by colour tissue velocity imaging. Nephrol Dial Transplant 19:1497–1506PubMedCrossRef Hayashi SY, Brodin L-Å, Alvestrand A, Lind B, Stenvinkel P, Nascimento MMd, Qureshi AR, Saha S, Lindholm B, Seeberger A (2004) Improvement of cardiac function after haemodialysis. Quantitative evaluation by colour tissue velocity imaging. Nephrol Dial Transplant 19:1497–1506PubMedCrossRef
6.
go back to reference Oğuzhan A, Arınç H, Abacı A, Topsakal R, Eryol NK, Özdoğru İ, Basar E, Ergin A (2005) Preload dependence of Doppler tissue imaging derived indexes of left ventricular diastolic function. Echocardiography 22:320–325PubMedCrossRef Oğuzhan A, Arınç H, Abacı A, Topsakal R, Eryol NK, Özdoğru İ, Basar E, Ergin A (2005) Preload dependence of Doppler tissue imaging derived indexes of left ventricular diastolic function. Echocardiography 22:320–325PubMedCrossRef
7.
go back to reference Blacher J, Guerin AP, Pannier B, Marchais SJ, Safar ME, London GM (1999) Impact of aortic stiffness on survival in end-stage renal disease. Circulation 99:2434–2439PubMed Blacher J, Guerin AP, Pannier B, Marchais SJ, Safar ME, London GM (1999) Impact of aortic stiffness on survival in end-stage renal disease. Circulation 99:2434–2439PubMed
8.
go back to reference Guerin AP, Blacher J, Pannier B, Marchais SJ, Safar ME, London GM (2001) Impact of aortic stiffness attenuation on survival of patients in end-stage renal failure. Circulation 103:987–992PubMed Guerin AP, Blacher J, Pannier B, Marchais SJ, Safar ME, London GM (2001) Impact of aortic stiffness attenuation on survival of patients in end-stage renal failure. Circulation 103:987–992PubMed
9.
go back to reference Vuurmans JLT, Boer WH, Bos W-JW, Blankestijn PJ, Koomans HA (2002) Contribution of volume overload and angiotensin II to the increased pulse wave velocity of hemodialysis patients. J Am Soc Nephrol 13:177–183 Vuurmans JLT, Boer WH, Bos W-JW, Blankestijn PJ, Koomans HA (2002) Contribution of volume overload and angiotensin II to the increased pulse wave velocity of hemodialysis patients. J Am Soc Nephrol 13:177–183
10.
go back to reference Covic A, Goldsmith DJA, Panaghiu L, Covic M, Sedor J (2000) Analysis of the effect of hemodialysis on peripheral and central arterial pressure waveforms. Kidney Int 57:2634–2643PubMedCrossRef Covic A, Goldsmith DJA, Panaghiu L, Covic M, Sedor J (2000) Analysis of the effect of hemodialysis on peripheral and central arterial pressure waveforms. Kidney Int 57:2634–2643PubMedCrossRef
11.
go back to reference Kosch M, Levers A, Barenbrock M, Matzkies F, Schaefer RM, Kisters K, Rahn K-H, Hausberg M (2001) Acute effects of haemodialysis on endothelial function and large artery elasticity. Nephrol Dial Transplant 16:1663–1668PubMedCrossRef Kosch M, Levers A, Barenbrock M, Matzkies F, Schaefer RM, Kisters K, Rahn K-H, Hausberg M (2001) Acute effects of haemodialysis on endothelial function and large artery elasticity. Nephrol Dial Transplant 16:1663–1668PubMedCrossRef
12.
go back to reference Lin Y, Yu W, Chen C (2005) Acute vs chronic volume overload on arterial stiffness in haemodialysis patients. J Hum Hypertens 19:425–427PubMedCrossRef Lin Y, Yu W, Chen C (2005) Acute vs chronic volume overload on arterial stiffness in haemodialysis patients. J Hum Hypertens 19:425–427PubMedCrossRef
13.
go back to reference Parker K, Jones C (1990) Forward and backward running waves in the arteries: analysis using the method of characteristics. J Biomech Eng 112:322–326PubMedCrossRef Parker K, Jones C (1990) Forward and backward running waves in the arteries: analysis using the method of characteristics. J Biomech Eng 112:322–326PubMedCrossRef
14.
go back to reference Harada A, Okada T, Sugawara M, Niki K (2000) Development of a non-invasive real-time measurement system of wave intensity. IEEE Ultrasonics Symp 1517–1520 Harada A, Okada T, Sugawara M, Niki K (2000) Development of a non-invasive real-time measurement system of wave intensity. IEEE Ultrasonics Symp 1517–1520
15.
go back to reference Larsson M, Bjällmark A, Lind B, Balzano R, Peolsson M, Winter R, Brodin L-Å (2009) Wave intensity wall analysis––a novel non invasive method to measure wave intensity. Heart Vessels 24:357–365PubMedCrossRef Larsson M, Bjällmark A, Lind B, Balzano R, Peolsson M, Winter R, Brodin L-Å (2009) Wave intensity wall analysis––a novel non invasive method to measure wave intensity. Heart Vessels 24:357–365PubMedCrossRef
16.
go back to reference Ohte N, Narita H, Sugawara M, Niki K, Okada T, Harada A, Hayano J, Kimura G (2003) Clinical usefulness of carotid arterial wave intensity in assessing left ventricular systolic and early diastolic performance. Heart Vessels 18:107–111PubMedCrossRef Ohte N, Narita H, Sugawara M, Niki K, Okada T, Harada A, Hayano J, Kimura G (2003) Clinical usefulness of carotid arterial wave intensity in assessing left ventricular systolic and early diastolic performance. Heart Vessels 18:107–111PubMedCrossRef
17.
go back to reference Sugawara M, Niki K, Ohte N, Okada T, Harada A (2009) Clinical usefulness of wave intensity analysis. Med Biol Eng Comput 47:197–206PubMedCrossRef Sugawara M, Niki K, Ohte N, Okada T, Harada A (2009) Clinical usefulness of wave intensity analysis. Med Biol Eng Comput 47:197–206PubMedCrossRef
18.
go back to reference Little W (1985) The left ventricular dP/dt max-end-diastolic volume relation in closed-chest dogs. Circ Res 56:808–815PubMed Little W (1985) The left ventricular dP/dt max-end-diastolic volume relation in closed-chest dogs. Circ Res 56:808–815PubMed
19.
go back to reference Nakayama M, Itoh H, Oikawa K, Tajima A, Koike A, Aizawa T, Fu L, Miyake F (2005) Preload-adjusted 2 wave-intensity peaks reflect simultaneous assessment of left ventricular contractility and relaxation. Circulation journal 69:683–687PubMedCrossRef Nakayama M, Itoh H, Oikawa K, Tajima A, Koike A, Aizawa T, Fu L, Miyake F (2005) Preload-adjusted 2 wave-intensity peaks reflect simultaneous assessment of left ventricular contractility and relaxation. Circulation journal 69:683–687PubMedCrossRef
20.
go back to reference Sugawara M, Uchida K, Kondoh Y, Magosaki N, KN K, Jones C, Sugimachi M, Sunagawa K (1997) Aortic blood momentum––the more the better for the ejecting heart in vivo? Cardiovasc Res 33:433–446PubMedCrossRef Sugawara M, Uchida K, Kondoh Y, Magosaki N, KN K, Jones C, Sugimachi M, Sunagawa K (1997) Aortic blood momentum––the more the better for the ejecting heart in vivo? Cardiovasc Res 33:433–446PubMedCrossRef
21.
go back to reference Lind B, Nowak J, Cain P, Quintana M, Brodin L-Å (2004) Left ventricular isovolumic velocity and duration variables calculated from colour-coded myocardial velocity images in normal individuals. Eur J Echocardiogr 5:284–293PubMedCrossRef Lind B, Nowak J, Cain P, Quintana M, Brodin L-Å (2004) Left ventricular isovolumic velocity and duration variables calculated from colour-coded myocardial velocity images in normal individuals. Eur J Echocardiogr 5:284–293PubMedCrossRef
22.
go back to reference Chrysohoou C, Pitsavos C, Barbetseas J, Kotroyiannis I, Brili S, Vasiliadou K, Papadimitriou L, Stefanadis C (2009) Chronic systemic inflammation accompanies impaired ventricular diastolic function, detected by Doppler imaging, in patients with newly diagnosed systolic heart failure (Hellenic Heart Failure Study). Heart Vessels 24:22–26PubMedCrossRef Chrysohoou C, Pitsavos C, Barbetseas J, Kotroyiannis I, Brili S, Vasiliadou K, Papadimitriou L, Stefanadis C (2009) Chronic systemic inflammation accompanies impaired ventricular diastolic function, detected by Doppler imaging, in patients with newly diagnosed systolic heart failure (Hellenic Heart Failure Study). Heart Vessels 24:22–26PubMedCrossRef
23.
go back to reference Gunes Y, Guntekin U, Tuncer M, Sahin M (2009) Improved left and right ventricular functions with trimetazidine in patients with heart failure: a tissue Doppler study. Heart Vessels 24:277–282PubMedCrossRef Gunes Y, Guntekin U, Tuncer M, Sahin M (2009) Improved left and right ventricular functions with trimetazidine in patients with heart failure: a tissue Doppler study. Heart Vessels 24:277–282PubMedCrossRef
24.
go back to reference Duan YY, Harada K, Toyono M, Ishii H, Tamura M, Takada G (2006) Effects of acute preload reduction on myocardial velocity during isovolumic contraction and myocardial acceleration in pediatric patients. Pediatr Cardiol 27:32–36PubMedCrossRef Duan YY, Harada K, Toyono M, Ishii H, Tamura M, Takada G (2006) Effects of acute preload reduction on myocardial velocity during isovolumic contraction and myocardial acceleration in pediatric patients. Pediatr Cardiol 27:32–36PubMedCrossRef
25.
go back to reference Suga H, Sagawa K, Shoukas A (1973) Load independence of the instantaneous pressure–volume ratio of the canine left ventricle and effects of epinephrine and heart rate on the ratio. Circ Res 32:314–322PubMed Suga H, Sagawa K, Shoukas A (1973) Load independence of the instantaneous pressure–volume ratio of the canine left ventricle and effects of epinephrine and heart rate on the ratio. Circ Res 32:314–322PubMed
26.
go back to reference Kass D, Beyar R (1991) Evaluation of contractile state by maximal ventricular power divided by the square of end-diastolic volume. Circulation 84:1698–1708PubMed Kass D, Beyar R (1991) Evaluation of contractile state by maximal ventricular power divided by the square of end-diastolic volume. Circulation 84:1698–1708PubMed
27.
go back to reference Drighil A, Madias JE, Mathewson JW, Mosalami HE, Badaoui NE, Ramdani B, Bennis A (2008) Haemodialysis: effects of acute decrease in preload on tissue Doppler imaging indices of systolic and diastolic function of the left and right ventricles. Eur J Echocardiogr 9:530–535PubMedCrossRef Drighil A, Madias JE, Mathewson JW, Mosalami HE, Badaoui NE, Ramdani B, Bennis A (2008) Haemodialysis: effects of acute decrease in preload on tissue Doppler imaging indices of systolic and diastolic function of the left and right ventricles. Eur J Echocardiogr 9:530–535PubMedCrossRef
28.
go back to reference Graham R, Gelman J, Donelan L, Mottram P, Peverill R (2003) Effect of preload reduction by haemodialysis on new indices of diastolic function. Clin Sci 105:395–397CrossRef Graham R, Gelman J, Donelan L, Mottram P, Peverill R (2003) Effect of preload reduction by haemodialysis on new indices of diastolic function. Clin Sci 105:395–397CrossRef
29.
go back to reference Gaballa M, Lind B, Storaa C, Brodin L-Å (2001) Intra-and Interobserver reproducibility in off-line extracted cardiac tissue Doppler velocity measurements and derived variables. In: Engineering in Medicine and Biology Society. Proceedings of the 23rd Annual International Conference of the IEEE, vol 1, pp 160–162 Gaballa M, Lind B, Storaa C, Brodin L-Å (2001) Intra-and Interobserver reproducibility in off-line extracted cardiac tissue Doppler velocity measurements and derived variables. In: Engineering in Medicine and Biology Society. Proceedings of the 23rd Annual International Conference of the IEEE, vol 1, pp 160–162
30.
go back to reference Cho G-Y, Chan J, Leano R, Strudwick M, Marwick TH (2006) Comparison of two-dimensional speckle and tissue velocity based strain and validation with harmonic phase magnetic resonance imaging. Am J Cardiol 97:1661–1666PubMedCrossRef Cho G-Y, Chan J, Leano R, Strudwick M, Marwick TH (2006) Comparison of two-dimensional speckle and tissue velocity based strain and validation with harmonic phase magnetic resonance imaging. Am J Cardiol 97:1661–1666PubMedCrossRef
31.
go back to reference Sjøli B, Ørn S, Grenne B, Ihlen H, Edvardsen T, Brunvand H (2009) Diagnostic capability and reproducibility of strain by Doppler and by speckle tracking in patients with acute myocardial infarction. JACC Cardiovasc Imaging 2:24–33PubMedCrossRef Sjøli B, Ørn S, Grenne B, Ihlen H, Edvardsen T, Brunvand H (2009) Diagnostic capability and reproducibility of strain by Doppler and by speckle tracking in patients with acute myocardial infarction. JACC Cardiovasc Imaging 2:24–33PubMedCrossRef
32.
go back to reference Niki K, Sugawara M, Chang D, Harada A, Okada T, Sakai R, Uchida K, Tanaka R, Mumford CE (2002) A new noninvasive measurement system for wave intensity: evaluation of carotid arterial wave intensity and reproducibility. Heart Vessels 17:12–21PubMedCrossRef Niki K, Sugawara M, Chang D, Harada A, Okada T, Sakai R, Uchida K, Tanaka R, Mumford CE (2002) A new noninvasive measurement system for wave intensity: evaluation of carotid arterial wave intensity and reproducibility. Heart Vessels 17:12–21PubMedCrossRef
33.
go back to reference Fraser A, Payne N, Mädler C, Janerot-Sjøberg B, Lind B, Grocott-Mason R, Ionescu A, Florescu N, Wilkenshoff U, Lancellotti P, Wütte M, Brodin L, Investigators M (2003) Feasibility and reproducibility of off-line tissue Doppler measurement of regional myocardial function during dobutamine stress echocardiography. Eur J Echocardiogr 4:43–53PubMedCrossRef Fraser A, Payne N, Mädler C, Janerot-Sjøberg B, Lind B, Grocott-Mason R, Ionescu A, Florescu N, Wilkenshoff U, Lancellotti P, Wütte M, Brodin L, Investigators M (2003) Feasibility and reproducibility of off-line tissue Doppler measurement of regional myocardial function during dobutamine stress echocardiography. Eur J Echocardiogr 4:43–53PubMedCrossRef
34.
go back to reference Schuster P, Faerestrand S, Ohm O, Martens D, Torkildsen R, Øyehaug O (2004) Feasibility of color Doppler tissue velocity imaging for assessment of regional timing of left ventricular longitudinal movement. Scand Cardiovasc J 38:39–45PubMedCrossRef Schuster P, Faerestrand S, Ohm O, Martens D, Torkildsen R, Øyehaug O (2004) Feasibility of color Doppler tissue velocity imaging for assessment of regional timing of left ventricular longitudinal movement. Scand Cardiovasc J 38:39–45PubMedCrossRef
Metadata
Title
Effects of hemodialysis on the cardiovascular system: quantitative analysis using wave intensity wall analysis and tissue velocity imaging
Authors
Anna Bjällmark
Matilda Larsson
Jacek Nowak
Britta Lind
Shirley Yumi Hayashi
Marcelo Mazza do Nascimento
Miguel C. Riella
Astrid Seeberger
Lars-Åke Brodin
Publication date
01-05-2011
Publisher
Springer Japan
Published in
Heart and Vessels / Issue 3/2011
Print ISSN: 0910-8327
Electronic ISSN: 1615-2573
DOI
https://doi.org/10.1007/s00380-010-0050-z

Other articles of this Issue 3/2011

Heart and Vessels 3/2011 Go to the issue