Skip to main content
Top
Published in: Molecular Cancer 1/2014

Open Access 01-12-2014 | Research

β-alanine suppresses malignant breast epithelial cell aggressiveness through alterations in metabolism and cellular acidity in vitro

Authors: Roger A Vaughan, Nicholas P Gannon, Randi Garcia-Smith, Yamhilette Licon-Munoz, Miguel A Barberena, Marco Bisoffi, Kristina A Trujillo

Published in: Molecular Cancer | Issue 1/2014

Login to get access

Abstract

Background

Deregulated energetics is a property of most cancer cells. This phenomenon, known as the Warburg Effect or aerobic glycolysis, is characterized by increased glucose uptake, lactate export and extracellular acidification, even in the presence of oxygen. β-alanine is a non-essential amino acid that has previously been shown to be metabolized into carnosine, which functions as an intracellular buffer. Because of this buffering capacity, we investigated the effects of β-alanine on the metabolic cancerous phenotype.

Methods

Non-malignant MCF-10a and malignant MCF-7 breast epithelial cells were treated with β-alanine at 100 mM for 24 hours. Aerobic glycolysis was quantified by measuring extracellular acidification rate (ECAR) and oxidative metabolism was quantified by measuring oxygen consumption rate (OCR). mRNA of metabolism-related genes was quantified by qRT-PCR with corresponding protein expression quantified by immunoblotting, or by flow cytometry which was verified by confocal microscopy. Mitochondrial content was quantified using a mitochondria-specific dye and measured by flow cytometry.

Results

Cells treated with β-alanine displayed significantly suppressed basal and peak ECAR (aerobic glycolysis), with simultaneous increase in glucose transporter 1 (GLUT1). Additionally, cells treated with β-alanine exhibited significantly reduced basal and peak OCR (oxidative metabolism), which was accompanied by reduction in mitochondrial content with subsequent suppression of genes which promote mitochondrial biosynthesis. Suppression of glycolytic and oxidative metabolism by β-alanine resulted in the reduction of total metabolic rate, although cell viability was not affected. Because β-alanine treatment reduces extracellular acidity, a constituent of the invasive microenvironment that promotes progression, we investigated the effect of β-alanine on breast cell viability and migration. β-alanine was shown to reduce both cell migration and proliferation without acting in a cytotoxic fashion. Moreover, β-alanine significantly increased malignant cell sensitivity to doxorubicin, suggesting a potential role as a co-therapeutic agent.

Conclusion

Taken together, our results suggest that β-alanine may elicit several anti-tumor effects. Our observations support the need for further investigation into the mechanism(s) of action and specificity of β-alanine as a co-therapeutic agent in the treatment of breast tumors.
Appendix
Available only for authorised users
Literature
1.
go back to reference Hanahan D, Weinberg RA: Hallmarks of cancer: the next generation. Cell. 2011, 144: 646-674. 10.1016/j.cell.2011.02.013CrossRefPubMed Hanahan D, Weinberg RA: Hallmarks of cancer: the next generation. Cell. 2011, 144: 646-674. 10.1016/j.cell.2011.02.013CrossRefPubMed
2.
go back to reference Sotgia F, Whitaker-Menezes D, Martinez-Outschoorn UE, Flomenberg N, Birbe RC, Witkiewicz AK, Howell A, Philp NJ, Pestell RG, Lisanti MP: Mitochondrial metabolism in cancer metastasis Visualizing tumor cell mitochondria and the “reverse Warburg effect” in positive lymph node tissue. Cell Cycle. 2012, 11: 1445-1454. 10.4161/cc.19841PubMedCentralCrossRefPubMed Sotgia F, Whitaker-Menezes D, Martinez-Outschoorn UE, Flomenberg N, Birbe RC, Witkiewicz AK, Howell A, Philp NJ, Pestell RG, Lisanti MP: Mitochondrial metabolism in cancer metastasis Visualizing tumor cell mitochondria and the “reverse Warburg effect” in positive lymph node tissue. Cell Cycle. 2012, 11: 1445-1454. 10.4161/cc.19841PubMedCentralCrossRefPubMed
3.
go back to reference Witkiewicz AK, Whitaker-Menezes D, Dasgupta A, Philp NJ, Lin Z, Gandara R, Sneddon S, Martinez-Outschoorn UE, Sotgia F, Lisanti MP: Using the “reverse Warburg effect” to identify high-risk breast cancer patients Stromal MCT4 predicts poor clinical outcome in triple-negative breast cancers. Cell Cycle. 2012, 11: 1108-1117. 10.4161/cc.11.6.19530PubMedCentralCrossRefPubMed Witkiewicz AK, Whitaker-Menezes D, Dasgupta A, Philp NJ, Lin Z, Gandara R, Sneddon S, Martinez-Outschoorn UE, Sotgia F, Lisanti MP: Using the “reverse Warburg effect” to identify high-risk breast cancer patients Stromal MCT4 predicts poor clinical outcome in triple-negative breast cancers. Cell Cycle. 2012, 11: 1108-1117. 10.4161/cc.11.6.19530PubMedCentralCrossRefPubMed
4.
go back to reference Gaunitz F, Hipkiss AR: Carnosine and cancer: a perspective. Amino Acids. 2012, 43: 135-142. 10.1007/s00726-012-1271-5CrossRefPubMed Gaunitz F, Hipkiss AR: Carnosine and cancer: a perspective. Amino Acids. 2012, 43: 135-142. 10.1007/s00726-012-1271-5CrossRefPubMed
5.
6.
go back to reference Gatenby RA, Gillies RJ: Why do cancers have high aerobic glycolysis?. Nat Rev Cancer. 2004, 4: 891-899. 10.1038/nrc1478CrossRefPubMed Gatenby RA, Gillies RJ: Why do cancers have high aerobic glycolysis?. Nat Rev Cancer. 2004, 4: 891-899. 10.1038/nrc1478CrossRefPubMed
7.
go back to reference Simon SM, Schindler M: Cell biological mechanisms of multidrug-resistance in tumors. Proc Natl Acad Sci U S A. 1994, 91: 3497-3504. 10.1073/pnas.91.9.3497PubMedCentralCrossRefPubMed Simon SM, Schindler M: Cell biological mechanisms of multidrug-resistance in tumors. Proc Natl Acad Sci U S A. 1994, 91: 3497-3504. 10.1073/pnas.91.9.3497PubMedCentralCrossRefPubMed
8.
go back to reference Raghunand N, He X, van Sluis R, Mahoney B, Baggett B, Taylor CW, Paine-Murrieta G, Roe D, Bhujwalla ZM, Gillies RJ: Enhancement of chemotherapy by manipulation of tumour pH. Br J Cancer. 1999, 80: 1005-1011. 10.1038/sj.bjc.6690455PubMedCentralCrossRefPubMed Raghunand N, He X, van Sluis R, Mahoney B, Baggett B, Taylor CW, Paine-Murrieta G, Roe D, Bhujwalla ZM, Gillies RJ: Enhancement of chemotherapy by manipulation of tumour pH. Br J Cancer. 1999, 80: 1005-1011. 10.1038/sj.bjc.6690455PubMedCentralCrossRefPubMed
9.
go back to reference Caruso J, Charles J, Unruh K, Giebel R, Learmonth L, Potter W: Ergogenic effects of beta-alanine and carnosine: proposed future research to quantify their efficacy. Nutrients. 2012, 4: 585-601. 10.3390/nu4070585PubMedCentralCrossRefPubMed Caruso J, Charles J, Unruh K, Giebel R, Learmonth L, Potter W: Ergogenic effects of beta-alanine and carnosine: proposed future research to quantify their efficacy. Nutrients. 2012, 4: 585-601. 10.3390/nu4070585PubMedCentralCrossRefPubMed
10.
go back to reference Jordan T, Lukaszuk J, Misic M, Umoren J: Effect of beta-alanine supplementation on the onset of blood lactate accumulation (OBLA) during treadmill running: pre/post 2 treatment experimental design. J Int Soc Sports Nutr. 2010, 7: 20- 10.1186/1550-2783-7-20PubMedCentralCrossRefPubMed Jordan T, Lukaszuk J, Misic M, Umoren J: Effect of beta-alanine supplementation on the onset of blood lactate accumulation (OBLA) during treadmill running: pre/post 2 treatment experimental design. J Int Soc Sports Nutr. 2010, 7: 20- 10.1186/1550-2783-7-20PubMedCentralCrossRefPubMed
11.
go back to reference Asperger A, Renner C, Menzel M, Gebhardt R, Meixensberger J, Gaunitz F: Identification of factors involved in the anti-tumor activity of carnosine on glioblastomas using a proteomics approach. Cancer Invest. 2011, 29: 272-281. 10.3109/07357907.2010.550666CrossRefPubMed Asperger A, Renner C, Menzel M, Gebhardt R, Meixensberger J, Gaunitz F: Identification of factors involved in the anti-tumor activity of carnosine on glioblastomas using a proteomics approach. Cancer Invest. 2011, 29: 272-281. 10.3109/07357907.2010.550666CrossRefPubMed
12.
go back to reference Renner C, Seyffarth A, de Arriba SG, Meixensberger J, Gebhardt R, Gaunitz F: Carnosine inhibits growth of cells isolated from human glioblastoma multiforme. Int J Pept Res Ther. 2008, 14: 127-135. 10.1007/s10989-007-9121-0.CrossRef Renner C, Seyffarth A, de Arriba SG, Meixensberger J, Gebhardt R, Gaunitz F: Carnosine inhibits growth of cells isolated from human glioblastoma multiforme. Int J Pept Res Ther. 2008, 14: 127-135. 10.1007/s10989-007-9121-0.CrossRef
13.
go back to reference Renner C, Zemitzsch N, Fuchs B, Geiger KD, Hermes M, Hengstler J, Gebhardt R, Meixensberger J, Gaunitz F: Carnosine retards tumor growth in vivo in an NIH3T3-HER2/neu mouse model. Mol Cancer. 2010, 9: 2- 10.1186/1476-4598-9-2PubMedCentralCrossRefPubMed Renner C, Zemitzsch N, Fuchs B, Geiger KD, Hermes M, Hengstler J, Gebhardt R, Meixensberger J, Gaunitz F: Carnosine retards tumor growth in vivo in an NIH3T3-HER2/neu mouse model. Mol Cancer. 2010, 9: 2- 10.1186/1476-4598-9-2PubMedCentralCrossRefPubMed
14.
go back to reference Renner C, Asperger A, Seyffarth A, Meixensberger J, Gebhardt R, Gaunitz F: Carnosine inhibits ATP production in cells from malignant glioma. Neurol Res. 2010, 32: 101-105.CrossRefPubMed Renner C, Asperger A, Seyffarth A, Meixensberger J, Gebhardt R, Gaunitz F: Carnosine inhibits ATP production in cells from malignant glioma. Neurol Res. 2010, 32: 101-105.CrossRefPubMed
15.
go back to reference Holliday R, McFarland GA: Inhibition of the growth of transformed and neoplastic cells by the dipeptide carnosine. Br J Cancer. 1996, 73: 966-971. 10.1038/bjc.1996.189PubMedCentralCrossRefPubMed Holliday R, McFarland GA: Inhibition of the growth of transformed and neoplastic cells by the dipeptide carnosine. Br J Cancer. 1996, 73: 966-971. 10.1038/bjc.1996.189PubMedCentralCrossRefPubMed
16.
go back to reference Wikstrom JD, Sereda SB, Stiles L, Elorza A, Allister EM, Neilson A, Ferrick DA, Wheeler MB, Shirihai OS: A novel high-throughput assay for islet respiration reveals uncoupling of rodent and human islets. Plos One. 2012, 7: 5-CrossRef Wikstrom JD, Sereda SB, Stiles L, Elorza A, Allister EM, Neilson A, Ferrick DA, Wheeler MB, Shirihai OS: A novel high-throughput assay for islet respiration reveals uncoupling of rodent and human islets. Plos One. 2012, 7: 5-CrossRef
17.
go back to reference Giulivi C, Ross-Inta C, Horton AA, Luckhart S: Metabolic pathways in Anopheles stephensi mitochondria. Biochem J. 2008, 415: 309-316. 10.1042/BJ20080973CrossRefPubMed Giulivi C, Ross-Inta C, Horton AA, Luckhart S: Metabolic pathways in Anopheles stephensi mitochondria. Biochem J. 2008, 415: 309-316. 10.1042/BJ20080973CrossRefPubMed
18.
go back to reference Vaughan RA, Garcia-Smith R, Dorsey J, Griffith JK, Bisoffi M, Trujillo KA: Tumor necrosis factor alpha induced warburg-like metabolism and is reversed by anti-inflammatory curcumin in breast epithelial cells. Int J Cancer. 2013, 133: 2504-2510. 10.1002/ijc.28264CrossRefPubMed Vaughan RA, Garcia-Smith R, Dorsey J, Griffith JK, Bisoffi M, Trujillo KA: Tumor necrosis factor alpha induced warburg-like metabolism and is reversed by anti-inflammatory curcumin in breast epithelial cells. Int J Cancer. 2013, 133: 2504-2510. 10.1002/ijc.28264CrossRefPubMed
19.
go back to reference Vaughan RA, Garcia-Smith R, Trujillo KA, Bisoffi M: Tumor necrosis factor alpha increases aerobic glycolysis and reduces oxidative metabolism in prostate epithelial cells. The Prostate. 2013, 73: 1538-1546. 10.1002/pros.22703CrossRefPubMed Vaughan RA, Garcia-Smith R, Trujillo KA, Bisoffi M: Tumor necrosis factor alpha increases aerobic glycolysis and reduces oxidative metabolism in prostate epithelial cells. The Prostate. 2013, 73: 1538-1546. 10.1002/pros.22703CrossRefPubMed
20.
go back to reference Pfaffl MW: A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 2001, 29: e25- 10.1093/nar/29.4.e25CrossRef Pfaffl MW: A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 2001, 29: e25- 10.1093/nar/29.4.e25CrossRef
21.
go back to reference Trujillo KA, Heaphy CM, Mai M, Vargas KM, Jones AC, Phung V, Butler KS, Joste NE, Bisoffi M, Griffith JK: Markers of fibrosis and epithelial to mesenchymal transition demonstrate field cancerization in histologically normal tissue adjacent to breast tumors. Int J Cancer. 2011, 129: 1310-1321. 10.1002/ijc.25788PubMedCentralCrossRefPubMed Trujillo KA, Heaphy CM, Mai M, Vargas KM, Jones AC, Phung V, Butler KS, Joste NE, Bisoffi M, Griffith JK: Markers of fibrosis and epithelial to mesenchymal transition demonstrate field cancerization in histologically normal tissue adjacent to breast tumors. Int J Cancer. 2011, 129: 1310-1321. 10.1002/ijc.25788PubMedCentralCrossRefPubMed
22.
go back to reference Trujillo KA, Hines WC, Vargas KM, Jones AC, Joste NE, Bisoffi M, Griffith JK: Breast field cancerization: isolation and comparison of telomerase-expressing cells in tumor and tumor adjacent, histologically normal breast tissue. Mol Cancer Res. 2011, 9: 1209-1221. 10.1158/1541-7786.MCR-10-0424PubMedCentralCrossRefPubMed Trujillo KA, Hines WC, Vargas KM, Jones AC, Joste NE, Bisoffi M, Griffith JK: Breast field cancerization: isolation and comparison of telomerase-expressing cells in tumor and tumor adjacent, histologically normal breast tissue. Mol Cancer Res. 2011, 9: 1209-1221. 10.1158/1541-7786.MCR-10-0424PubMedCentralCrossRefPubMed
23.
go back to reference Wu G, Lu J, Gua J, Huang M, Gan L, Chen X, Wang Y: Synergistic anti-cancer activity of the combination of dihydroartemisinin and doxorubicin in breast cancer cells. Pharmacol Rep. 2013, 65: 453-459.CrossRefPubMed Wu G, Lu J, Gua J, Huang M, Gan L, Chen X, Wang Y: Synergistic anti-cancer activity of the combination of dihydroartemisinin and doxorubicin in breast cancer cells. Pharmacol Rep. 2013, 65: 453-459.CrossRefPubMed
24.
go back to reference Baguet A, Koppo K, Pottier A, Derave W: Beta-Alanine supplementation reduces acidosis but not oxygen uptake response during high-intensity cycling exercise. Eur J Appl Physiol. 2010, 108: 495-503. 10.1007/s00421-009-1225-0CrossRefPubMed Baguet A, Koppo K, Pottier A, Derave W: Beta-Alanine supplementation reduces acidosis but not oxygen uptake response during high-intensity cycling exercise. Eur J Appl Physiol. 2010, 108: 495-503. 10.1007/s00421-009-1225-0CrossRefPubMed
25.
go back to reference Rofstad EK, Mathiesen B, Kindem K, Galappathi K: Acidic extracellular pH promotes experimental metastasis of human melanoma cells in athymic nude mice. Cancer Res. 2006, 66: 6699-6707. 10.1158/0008-5472.CAN-06-0983CrossRefPubMed Rofstad EK, Mathiesen B, Kindem K, Galappathi K: Acidic extracellular pH promotes experimental metastasis of human melanoma cells in athymic nude mice. Cancer Res. 2006, 66: 6699-6707. 10.1158/0008-5472.CAN-06-0983CrossRefPubMed
26.
go back to reference Kato Y, Lambert CA, Colige AC, Mineur P, Noel A, Frankenne F, Foidart JM, Baba M, Hata R, Miyazaki K, Tsukuda M: Acidic extracellular pH induces matrix metalloproteinase-9 expression in mouse metastatic melanoma cells through the phospholipase D-mitogen-activated protein kinase signaling. J Biol Chem. 2005, 280: 10938-10944. 10.1074/jbc.M411313200CrossRefPubMed Kato Y, Lambert CA, Colige AC, Mineur P, Noel A, Frankenne F, Foidart JM, Baba M, Hata R, Miyazaki K, Tsukuda M: Acidic extracellular pH induces matrix metalloproteinase-9 expression in mouse metastatic melanoma cells through the phospholipase D-mitogen-activated protein kinase signaling. J Biol Chem. 2005, 280: 10938-10944. 10.1074/jbc.M411313200CrossRefPubMed
27.
go back to reference Harris RC, Tallon MJ, Dunnett M, Boobis L, Coakley J, Kim HJ, Fallowfield JL, Hill CA, Sale C, Wise JA: The absorption of orally supplied beta-alanine and its effect on muscle carnosine synthesis in human vastus lateralis. Amino Acids. 2006, 30: 279-289. 10.1007/s00726-006-0299-9CrossRefPubMed Harris RC, Tallon MJ, Dunnett M, Boobis L, Coakley J, Kim HJ, Fallowfield JL, Hill CA, Sale C, Wise JA: The absorption of orally supplied beta-alanine and its effect on muscle carnosine synthesis in human vastus lateralis. Amino Acids. 2006, 30: 279-289. 10.1007/s00726-006-0299-9CrossRefPubMed
Metadata
Title
β-alanine suppresses malignant breast epithelial cell aggressiveness through alterations in metabolism and cellular acidity in vitro
Authors
Roger A Vaughan
Nicholas P Gannon
Randi Garcia-Smith
Yamhilette Licon-Munoz
Miguel A Barberena
Marco Bisoffi
Kristina A Trujillo
Publication date
01-12-2014
Publisher
BioMed Central
Published in
Molecular Cancer / Issue 1/2014
Electronic ISSN: 1476-4598
DOI
https://doi.org/10.1186/1476-4598-13-14

Other articles of this Issue 1/2014

Molecular Cancer 1/2014 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine