Skip to main content
Top
Published in: Breast Cancer Research 1/2008

01-02-2008 | Review

Sugar and fat – that's where it's at: metabolic changes in tumors

Authors: Christian D Young, Steven M Anderson

Published in: Breast Cancer Research | Issue 1/2008

Login to get access

Abstract

Tumor cells exhibit an altered metabolism, characterized by increased glucose uptake and elevated glycolysis, which was first recognized by Otto Warburg 70 years ago. Warburg originally hypothesized that these metabolic changes reflected damage to mitochondrial oxidative phosphorylation. Although hypoxia and hypoxia inducible factor can induce transcriptional changes that stimulate glucose transport and glycolysis, it is clear that these changes can occur in cultured tumor or transformed cells cultured under normoxic conditions, and thus there must be genetic alterations independent of hypoxia that can stimulate aerobic glycolysis. In recent years it has become clear that loss of p53 and activation of Akt can induce all or part of the metabolic changes reflected in the Warburg effect. Likewise, changes in expression of lactate dehydrogenase and other glycolytic control enzymes can contribute to increased or altered glycolysis. It is also clear that changes in lipid biosynthesis occur in tumor cells to support increased membrane biosynthesis and perhaps the altered energy needs of the cells. Changes in fatty acid synthase, Spot 14, Akt, and DecR1 (2,4-dienoylcoenzyme A reductase) may underlie altered lipid metabolism in tumor cells and contribute to the ability of tumor cells to proliferate or metastasize. Although these advances provide new therapeutic targets that merit exploration, there remain critical questions to be explored at the mechanistic level; this work may yield insights into tumor cell biology and identify additional therapeutic targets.
Appendix
Available only for authorised users
Literature
1.
go back to reference Warburg O: The Metabolism of Tumors. 1930, London: Constable Warburg O: The Metabolism of Tumors. 1930, London: Constable
2.
go back to reference Pasteur L: Experiences et vues nouvelles sur la nature des fermentations. Comp Rend Acad Sci. 1861, 52: 1260-1264. Pasteur L: Experiences et vues nouvelles sur la nature des fermentations. Comp Rend Acad Sci. 1861, 52: 1260-1264.
3.
go back to reference Warburg O: On the origin of cancer cells. Science. 1956, 123: 309-314. 10.1126/science.123.3191.309.CrossRefPubMed Warburg O: On the origin of cancer cells. Science. 1956, 123: 309-314. 10.1126/science.123.3191.309.CrossRefPubMed
4.
go back to reference Zhang H, Gao P, Fukuda R, Kumar G, Krishnamachary B, Zeller KI, Dang CV, Semenza GL: HIF-1 inhibits mitochondrial biogenesis and cellular respiration in VHL-deficient renal cell carcinoma by repression of c-myc activity. Cancer Cell. 2007, 11: 407-420. 10.1016/j.ccr.2007.04.001.CrossRefPubMed Zhang H, Gao P, Fukuda R, Kumar G, Krishnamachary B, Zeller KI, Dang CV, Semenza GL: HIF-1 inhibits mitochondrial biogenesis and cellular respiration in VHL-deficient renal cell carcinoma by repression of c-myc activity. Cancer Cell. 2007, 11: 407-420. 10.1016/j.ccr.2007.04.001.CrossRefPubMed
5.
go back to reference Papandreou I, Cairns RA, Fontana L, Lim AL, Denko NC: HIF-1 mediates adaptation to hypoxia by actively downregulating mitochondrial oxygen consumption. Cell Metabolism. 2006, 3: 187-197. 10.1016/j.cmet.2006.01.012.CrossRefPubMed Papandreou I, Cairns RA, Fontana L, Lim AL, Denko NC: HIF-1 mediates adaptation to hypoxia by actively downregulating mitochondrial oxygen consumption. Cell Metabolism. 2006, 3: 187-197. 10.1016/j.cmet.2006.01.012.CrossRefPubMed
6.
go back to reference Kim Jw, Tchernyshyov I, Semenza GL, Dang CV: HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia. Cell Metabolism. 2006, 3: 177-185. 10.1016/j.cmet.2006.02.002.CrossRefPubMed Kim Jw, Tchernyshyov I, Semenza GL, Dang CV: HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia. Cell Metabolism. 2006, 3: 177-185. 10.1016/j.cmet.2006.02.002.CrossRefPubMed
7.
go back to reference Semenza G: Signal transduction to hypoxia-inducible factor 1. Biochem Pharmacol. 2002, 64: 993-998. 10.1016/S0006-2952(02)01168-1.CrossRefPubMed Semenza G: Signal transduction to hypoxia-inducible factor 1. Biochem Pharmacol. 2002, 64: 993-998. 10.1016/S0006-2952(02)01168-1.CrossRefPubMed
8.
go back to reference Semenza GL, Artemov D, Bedi A, Bhujwalla Z, Chiles K, Feldser D, Laughner E, Ravi R, Simons J, Taghavi P, Zhong H: 'The metabolism of tumours': 70 years later. Novartis Found Symp. 2001, 240: 251-260.CrossRefPubMed Semenza GL, Artemov D, Bedi A, Bhujwalla Z, Chiles K, Feldser D, Laughner E, Ravi R, Simons J, Taghavi P, Zhong H: 'The metabolism of tumours': 70 years later. Novartis Found Symp. 2001, 240: 251-260.CrossRefPubMed
10.
go back to reference Gordan JD, Simon MC: Hypoxia-inducible factors: central regulators of the tumor phenotype. Curr Opin Genet Dev. 2007, 17: 71-77. 10.1016/j.gde.2006.12.006.CrossRefPubMedPubMedCentral Gordan JD, Simon MC: Hypoxia-inducible factors: central regulators of the tumor phenotype. Curr Opin Genet Dev. 2007, 17: 71-77. 10.1016/j.gde.2006.12.006.CrossRefPubMedPubMedCentral
11.
go back to reference Gordan JD, Thompson CB, Simon MC: HIF and c-Myc: sibling rivals for control of cancer cell metabolism and proliferation. Cancer Cell. 2007, 12: 108-113. 10.1016/j.ccr.2007.07.006.CrossRefPubMedPubMedCentral Gordan JD, Thompson CB, Simon MC: HIF and c-Myc: sibling rivals for control of cancer cell metabolism and proliferation. Cancer Cell. 2007, 12: 108-113. 10.1016/j.ccr.2007.07.006.CrossRefPubMedPubMedCentral
12.
go back to reference LUM JJ, Bui T, Gruber M, Gordan JD, DeBerardinis RJ, Covello KL, Simon MC, Thompson CB: The transcription factor HIF-1α plays a critical role in the growth factor-dependent regulation of both aerobic and anaerobic glycolysis. Genes Dev. 2007, 21: 1037-1049. 10.1101/gad.1529107.CrossRefPubMedPubMedCentral LUM JJ, Bui T, Gruber M, Gordan JD, DeBerardinis RJ, Covello KL, Simon MC, Thompson CB: The transcription factor HIF-1α plays a critical role in the growth factor-dependent regulation of both aerobic and anaerobic glycolysis. Genes Dev. 2007, 21: 1037-1049. 10.1101/gad.1529107.CrossRefPubMedPubMedCentral
13.
go back to reference Tran A, Pio BS, Khatibi B, Czernin J, Phelps ME, Silverman DHS: 18F-FDG PET for staging breast cancer in patients with inner-quadrant versus outer-quadrant tumors: comparison with long-term clinical outcome. J Nucl Med. 2005, 46: 1455-1459.PubMed Tran A, Pio BS, Khatibi B, Czernin J, Phelps ME, Silverman DHS: 18F-FDG PET for staging breast cancer in patients with inner-quadrant versus outer-quadrant tumors: comparison with long-term clinical outcome. J Nucl Med. 2005, 46: 1455-1459.PubMed
14.
go back to reference Fueger B, Weber W, Quon A, Crawford T, Allen-Auerbach M, Halpern B, Ratib O, Phelps M, Czernin J: Performance of 2-deoxy-2-[F-18]fluoro-d-glucose positron emission tomography and integrated PET/CT in restaged breast cancer patients. Mol Imaging Biol. 2005, 7: 369-376. 10.1007/s11307-005-0013-4.CrossRefPubMed Fueger B, Weber W, Quon A, Crawford T, Allen-Auerbach M, Halpern B, Ratib O, Phelps M, Czernin J: Performance of 2-deoxy-2-[F-18]fluoro-d-glucose positron emission tomography and integrated PET/CT in restaged breast cancer patients. Mol Imaging Biol. 2005, 7: 369-376. 10.1007/s11307-005-0013-4.CrossRefPubMed
15.
go back to reference Czernin J, Phelps ME: Positron emission tomography scanning: current and Future applications. Ann Rev Med. 2002, 53: 89-112. 10.1146/annurev.med.53.082901.104028.CrossRefPubMed Czernin J, Phelps ME: Positron emission tomography scanning: current and Future applications. Ann Rev Med. 2002, 53: 89-112. 10.1146/annurev.med.53.082901.104028.CrossRefPubMed
16.
go back to reference Yap CS, Seltzer MA, Schiepers C, Gambhir SS, Rao J, Phelps ME, Valk PE, Czernin J: Impact of whole-body 18F-FDG PET on staging and managing patients with breast cancer: the referring physician's perspective. J Nucl Med. 2001, 42: 1334-1337.PubMed Yap CS, Seltzer MA, Schiepers C, Gambhir SS, Rao J, Phelps ME, Valk PE, Czernin J: Impact of whole-body 18F-FDG PET on staging and managing patients with breast cancer: the referring physician's perspective. J Nucl Med. 2001, 42: 1334-1337.PubMed
17.
go back to reference Lopez-Rios F, Sanchez-Arago M, Garcia-Garcia E, Ortega AD, Berrendero JR, Pozo-Rodriguez F, Lopez-Encuentra A, Ballestin C, Cuezva JM: Loss of the mitochondrial bioenergetic capacity underlies the glucose avidity of carcinomas. Cancer Res. 2007, 67: 9013-9017. 10.1158/0008-5472.CAN-07-1678.CrossRefPubMed Lopez-Rios F, Sanchez-Arago M, Garcia-Garcia E, Ortega AD, Berrendero JR, Pozo-Rodriguez F, Lopez-Encuentra A, Ballestin C, Cuezva JM: Loss of the mitochondrial bioenergetic capacity underlies the glucose avidity of carcinomas. Cancer Res. 2007, 67: 9013-9017. 10.1158/0008-5472.CAN-07-1678.CrossRefPubMed
18.
go back to reference Elstrom RL, Bauer DE, Buzzai M, Karnauskas R, Harris MH, Plas DR, Zhuang H, Cinalli RM, Alavi A, Rudin CM, Thompson CB: Akt stimulates aerobic glycolysis in cancer cells. Cancer Res. 2004, 64: 3892-3899. 10.1158/0008-5472.CAN-03-2904.CrossRefPubMed Elstrom RL, Bauer DE, Buzzai M, Karnauskas R, Harris MH, Plas DR, Zhuang H, Cinalli RM, Alavi A, Rudin CM, Thompson CB: Akt stimulates aerobic glycolysis in cancer cells. Cancer Res. 2004, 64: 3892-3899. 10.1158/0008-5472.CAN-03-2904.CrossRefPubMed
19.
go back to reference Hill MM, Clark SF, Tucker DF, Birnbaum MJ, James DE, Macaulay SL: A role for protein kinase Bbeta/Akt2 in insulin-stimulated GLUT4 translocation in adipocytes. Mol Cell Biol. 1999, 11: 7771-7781.CrossRef Hill MM, Clark SF, Tucker DF, Birnbaum MJ, James DE, Macaulay SL: A role for protein kinase Bbeta/Akt2 in insulin-stimulated GLUT4 translocation in adipocytes. Mol Cell Biol. 1999, 11: 7771-7781.CrossRef
20.
go back to reference Vander Heiden MG, Plas DR, Rathmell JC, Fox CJ, Harris MH, Thompson CB: Growth factors can influence cell growth and survival through effects on glucose metabolism. Mol Cell Biol. 2001, 21: 5899-5912. 10.1128/MCB.21.17.5899-5912.2001.CrossRefPubMedPubMedCentral Vander Heiden MG, Plas DR, Rathmell JC, Fox CJ, Harris MH, Thompson CB: Growth factors can influence cell growth and survival through effects on glucose metabolism. Mol Cell Biol. 2001, 21: 5899-5912. 10.1128/MCB.21.17.5899-5912.2001.CrossRefPubMedPubMedCentral
21.
go back to reference Edinger A, Thompson CB: Akt maintains cell size and survival by increasing mTOR-dependent nutrient uptake. Mol Biol Cell. 2002, 13: 2276-2288. 10.1091/mbc.01-12-0584.CrossRefPubMedPubMedCentral Edinger A, Thompson CB: Akt maintains cell size and survival by increasing mTOR-dependent nutrient uptake. Mol Biol Cell. 2002, 13: 2276-2288. 10.1091/mbc.01-12-0584.CrossRefPubMedPubMedCentral
22.
go back to reference Bentley J, Itchayanan D, Barnes K, McIntosh E, Tang X, Downes CP, Holman GD, Whetton AD, Owen-Lynch PJ, Baldwin SA: Interleukin-3-mediated cell survival signals include phosphatidylinositol 3-kinase-dependent translocation of the glucose transporter GLUT1 to the cell surface. J Biol Chem. 2003, 278: 39337-39348. 10.1074/jbc.M305689200.CrossRefPubMed Bentley J, Itchayanan D, Barnes K, McIntosh E, Tang X, Downes CP, Holman GD, Whetton AD, Owen-Lynch PJ, Baldwin SA: Interleukin-3-mediated cell survival signals include phosphatidylinositol 3-kinase-dependent translocation of the glucose transporter GLUT1 to the cell surface. J Biol Chem. 2003, 278: 39337-39348. 10.1074/jbc.M305689200.CrossRefPubMed
23.
go back to reference Rathmell JC, Fox CJ, Plas DR, Hammerman PS, Cinalli RM, Thompson CB: Akt-directed glucose metabolism can prevent Bax conformation change and promote growth factor-independent survival. Mol Cell Biol. 2003, 23: 7315-7328. 10.1128/MCB.23.20.7315-7328.2003.CrossRefPubMedPubMedCentral Rathmell JC, Fox CJ, Plas DR, Hammerman PS, Cinalli RM, Thompson CB: Akt-directed glucose metabolism can prevent Bax conformation change and promote growth factor-independent survival. Mol Cell Biol. 2003, 23: 7315-7328. 10.1128/MCB.23.20.7315-7328.2003.CrossRefPubMedPubMedCentral
24.
go back to reference Boxer RB, Stairs DB, Dugan KD, Notarfrancesco KL, Portocarrero CP, Keister BA, Belka GK, Cho H, Rathmell JC, Thompson CB, Birnbaum MJ, Chodosh LA: Isoform-specific requirement for Akt1 in the developmental regulation of cellular metabolism during lactation. Cell Metab. 2006, 4: 475-490. 10.1016/j.cmet.2006.10.011.CrossRefPubMed Boxer RB, Stairs DB, Dugan KD, Notarfrancesco KL, Portocarrero CP, Keister BA, Belka GK, Cho H, Rathmell JC, Thompson CB, Birnbaum MJ, Chodosh LA: Isoform-specific requirement for Akt1 in the developmental regulation of cellular metabolism during lactation. Cell Metab. 2006, 4: 475-490. 10.1016/j.cmet.2006.10.011.CrossRefPubMed
25.
go back to reference Ursini-Siegel J, Schade B, Cardiff RD, Muller WJ: Insights from transgenic mouse models of ERBB2-induced breast cancer. Nat Rev Cancer. 2007, 7: 389-397. 10.1038/nrc2127.CrossRefPubMed Ursini-Siegel J, Schade B, Cardiff RD, Muller WJ: Insights from transgenic mouse models of ERBB2-induced breast cancer. Nat Rev Cancer. 2007, 7: 389-397. 10.1038/nrc2127.CrossRefPubMed
26.
go back to reference Cantley LC, Neel BG: New insights into tumor supression: PTEN suppresses tumor formation by restraining the phosphoinositide 3-kinase/AKT pathway. Proc Natl Acad Sci USA. 1999, 96: 4240-4245. 10.1073/pnas.96.8.4240.CrossRefPubMedPubMedCentral Cantley LC, Neel BG: New insights into tumor supression: PTEN suppresses tumor formation by restraining the phosphoinositide 3-kinase/AKT pathway. Proc Natl Acad Sci USA. 1999, 96: 4240-4245. 10.1073/pnas.96.8.4240.CrossRefPubMedPubMedCentral
27.
go back to reference Bader AG, Kang S, Zhao L, Vogt PK: Oncogenic PI3K deregulates transcription and translation. Nat Rev Cancer. 2005, 5: 921-929. 10.1038/nrc1753.CrossRefPubMed Bader AG, Kang S, Zhao L, Vogt PK: Oncogenic PI3K deregulates transcription and translation. Nat Rev Cancer. 2005, 5: 921-929. 10.1038/nrc1753.CrossRefPubMed
28.
go back to reference Carpten JD, Faber AL, Horn C, Donoho GP, Briggs SL, Robbins CM, Hostetter G, Boguslawski S, Moses TY, Savage S, Uhlik M, Lin A, Du J, Qian YW, Zeckner DJ, Tucker-Kellogg G, Touchman J, Patel K, Mousses S, Bittner M, Schevitz R, Lai MH, Blanchard KL, Thomas JE: A transforming mutation in the pleckstrin homology domain of AKT1 in cancer. Nature. 2007, 448: 439-444. 10.1038/nature05933.CrossRefPubMed Carpten JD, Faber AL, Horn C, Donoho GP, Briggs SL, Robbins CM, Hostetter G, Boguslawski S, Moses TY, Savage S, Uhlik M, Lin A, Du J, Qian YW, Zeckner DJ, Tucker-Kellogg G, Touchman J, Patel K, Mousses S, Bittner M, Schevitz R, Lai MH, Blanchard KL, Thomas JE: A transforming mutation in the pleckstrin homology domain of AKT1 in cancer. Nature. 2007, 448: 439-444. 10.1038/nature05933.CrossRefPubMed
29.
go back to reference Godoy A, Ulloa V, Rodriguez F, Reincke K, Yanez AJ, Garcia MDLA, Medina RA, Carrasco M, Barberis S, Castro T, martinez F, Koch X, Vera JC, Poblete MT, Figueroa CD, Peruzzo B, Perez F, Nualart F: Differential subcellular distribution of glucose transporters GLUT1-6 and GLUT9 in human cancer: Ultrastructural localization of GLUT1 and GLUT5 in breast tumor tisues. J Cell Physiol. 2006, 207: 614-627. 10.1002/jcp.20606.CrossRefPubMed Godoy A, Ulloa V, Rodriguez F, Reincke K, Yanez AJ, Garcia MDLA, Medina RA, Carrasco M, Barberis S, Castro T, martinez F, Koch X, Vera JC, Poblete MT, Figueroa CD, Peruzzo B, Perez F, Nualart F: Differential subcellular distribution of glucose transporters GLUT1-6 and GLUT9 in human cancer: Ultrastructural localization of GLUT1 and GLUT5 in breast tumor tisues. J Cell Physiol. 2006, 207: 614-627. 10.1002/jcp.20606.CrossRefPubMed
30.
go back to reference Robey RB, Hay N: Mitochondrial hexokinases, novel mediators of the antiapoptotic effects of growth factors and Akt. Oncogene. 2006, 25: 4683-4696. 10.1038/sj.onc.1209595.CrossRefPubMed Robey RB, Hay N: Mitochondrial hexokinases, novel mediators of the antiapoptotic effects of growth factors and Akt. Oncogene. 2006, 25: 4683-4696. 10.1038/sj.onc.1209595.CrossRefPubMed
31.
go back to reference Majewski N, Nogueira V, Robey RB, Hay N: Akt Inhibits apoptosis downstream of BID cleavage via a glucose-dependent mechanism involving mitochondrial hexokinases. Mol Cell Biol. 2004, 24: 730-740. 10.1128/MCB.24.2.730-740.2004.CrossRefPubMedPubMedCentral Majewski N, Nogueira V, Robey RB, Hay N: Akt Inhibits apoptosis downstream of BID cleavage via a glucose-dependent mechanism involving mitochondrial hexokinases. Mol Cell Biol. 2004, 24: 730-740. 10.1128/MCB.24.2.730-740.2004.CrossRefPubMedPubMedCentral
32.
go back to reference Majewski N, Nogueira V, Bhaskar P, Coy PE, Skeen JE, Gottlob K, Chandel NS, Thompson CB, Robey RB, Hay N: Hexokinase-mitochondria interaction mediated by Akt Is required to inhibit apoptosis in the presence or absence of Bax and Bak. Mol Cell. 2004, 16: 819-830. 10.1016/j.molcel.2004.11.014.CrossRefPubMed Majewski N, Nogueira V, Bhaskar P, Coy PE, Skeen JE, Gottlob K, Chandel NS, Thompson CB, Robey RB, Hay N: Hexokinase-mitochondria interaction mediated by Akt Is required to inhibit apoptosis in the presence or absence of Bax and Bak. Mol Cell. 2004, 16: 819-830. 10.1016/j.molcel.2004.11.014.CrossRefPubMed
33.
go back to reference Gottlob K, Majewski N, Kennedy S, Kandel E, Robey RB, Hay N: Inhibition of early apoptotic events by Akt/PKB is dependent on the first committed step of glycolysis and mitochondrial hexokinase. Genes Dev. 2001, 15: 1406-1418. 10.1101/gad.889901.CrossRefPubMedPubMedCentral Gottlob K, Majewski N, Kennedy S, Kandel E, Robey RB, Hay N: Inhibition of early apoptotic events by Akt/PKB is dependent on the first committed step of glycolysis and mitochondrial hexokinase. Genes Dev. 2001, 15: 1406-1418. 10.1101/gad.889901.CrossRefPubMedPubMedCentral
34.
go back to reference Berwick DC, Hers I, Heesom KJ, Moule SK, Tavare JM: The identification of ATP-citrate lyase as a protein kinase B (Akt) substrate in primary adipocytes. J Biol Chem. 2002, 277: 33895-33900. 10.1074/jbc.M204681200.CrossRefPubMed Berwick DC, Hers I, Heesom KJ, Moule SK, Tavare JM: The identification of ATP-citrate lyase as a protein kinase B (Akt) substrate in primary adipocytes. J Biol Chem. 2002, 277: 33895-33900. 10.1074/jbc.M204681200.CrossRefPubMed
35.
go back to reference Bauer DE, Hatzivassiliou G, Zhao F, Andreadis C, Thompson CB: ATP citrate lyase is an important component of cell growth and transformation. Oncogene. 2005, 24: 6314-6322. 10.1038/sj.onc.1208773.CrossRefPubMed Bauer DE, Hatzivassiliou G, Zhao F, Andreadis C, Thompson CB: ATP citrate lyase is an important component of cell growth and transformation. Oncogene. 2005, 24: 6314-6322. 10.1038/sj.onc.1208773.CrossRefPubMed
36.
go back to reference DeBerardinis RJ, Lum JJ, Thompson CB: Phosphatidylinositol 3-kinase-dependent modulation of carnitine palmitoyltransferase 1A expression regulates lipid metabolism during hematopoietic cell growth. J Biol Chem. 2006, 281: 37372-37380. 10.1074/jbc.M608372200.CrossRefPubMed DeBerardinis RJ, Lum JJ, Thompson CB: Phosphatidylinositol 3-kinase-dependent modulation of carnitine palmitoyltransferase 1A expression regulates lipid metabolism during hematopoietic cell growth. J Biol Chem. 2006, 281: 37372-37380. 10.1074/jbc.M608372200.CrossRefPubMed
37.
go back to reference Pelicano H, Xu Rh, Du M, Feng L, Sasaki R, Carew JS, Hu Y, Ramdas L, Hu L, Keating MJ, Zhang W, Plunkett W, Huang P: Mitochondrial respiration defects in cancer cells cause activation of Akt survival pathway through a redox-mediated mechanism. J Cell Biol. 2006, 175: 913-923. 10.1083/jcb.200512100.CrossRefPubMedPubMedCentral Pelicano H, Xu Rh, Du M, Feng L, Sasaki R, Carew JS, Hu Y, Ramdas L, Hu L, Keating MJ, Zhang W, Plunkett W, Huang P: Mitochondrial respiration defects in cancer cells cause activation of Akt survival pathway through a redox-mediated mechanism. J Cell Biol. 2006, 175: 913-923. 10.1083/jcb.200512100.CrossRefPubMedPubMedCentral
38.
go back to reference Vogelstein B, Lane D, Levine AJ: Surfing the p53 network. Nature. 2000, 408: 307-310. 10.1038/35042675.CrossRefPubMed Vogelstein B, Lane D, Levine AJ: Surfing the p53 network. Nature. 2000, 408: 307-310. 10.1038/35042675.CrossRefPubMed
39.
go back to reference Jones RG, Plas DR, Kubek S, Buzzai M, Mu J, Xu Y, Birnbaum MJ, Thompson CB: AMP-activated protein kinase induces a p53-dependent metabolic checkpoint. Mol Cell. 2005, 18: 283-293. 10.1016/j.molcel.2005.03.027.CrossRefPubMed Jones RG, Plas DR, Kubek S, Buzzai M, Mu J, Xu Y, Birnbaum MJ, Thompson CB: AMP-activated protein kinase induces a p53-dependent metabolic checkpoint. Mol Cell. 2005, 18: 283-293. 10.1016/j.molcel.2005.03.027.CrossRefPubMed
41.
go back to reference Carling D: The AMP-activated protein kinase cascade: a unifying system for energy control. Trends Biochem Sci. 2004, 29: 18-24. 10.1016/j.tibs.2003.11.005.CrossRefPubMed Carling D: The AMP-activated protein kinase cascade: a unifying system for energy control. Trends Biochem Sci. 2004, 29: 18-24. 10.1016/j.tibs.2003.11.005.CrossRefPubMed
42.
go back to reference Feng Z, Zhang H, Levine AJ, Jin S: The coordinate regulation of the p53 and mTOR pathways in cells. Proc Natl Acad Sci. 2005, 102: 8204-8209. 10.1073/pnas.0502857102.CrossRefPubMedPubMedCentral Feng Z, Zhang H, Levine AJ, Jin S: The coordinate regulation of the p53 and mTOR pathways in cells. Proc Natl Acad Sci. 2005, 102: 8204-8209. 10.1073/pnas.0502857102.CrossRefPubMedPubMedCentral
43.
go back to reference Matoba S, Kang JG, Patino WD, Wragg A, Boehm M, Gavrilova O, Hurley PJ, Bunz F, Hwang PM: p53 Regulates mitochondrial respiration. Science. 2006, 312: 1650-1653. 10.1126/science.1126863.CrossRefPubMed Matoba S, Kang JG, Patino WD, Wragg A, Boehm M, Gavrilova O, Hurley PJ, Bunz F, Hwang PM: p53 Regulates mitochondrial respiration. Science. 2006, 312: 1650-1653. 10.1126/science.1126863.CrossRefPubMed
44.
go back to reference Bensaad K, Tsuruta A, Selak MA, Vidal MNC, Nakano K, Bartrons R, Gottlieb E, Vousden KH: TIGAR, a p53-inducible regulator of glycolysis and apoptosis. Cell. 2006, 126: 107-120. 10.1016/j.cell.2006.05.036.CrossRefPubMed Bensaad K, Tsuruta A, Selak MA, Vidal MNC, Nakano K, Bartrons R, Gottlieb E, Vousden KH: TIGAR, a p53-inducible regulator of glycolysis and apoptosis. Cell. 2006, 126: 107-120. 10.1016/j.cell.2006.05.036.CrossRefPubMed
45.
go back to reference Kondoh H, Lleonart ME, Gil J, Wang J, Degan P, Peters G, Martinez D, Carnero A, Beach D: Glycolytic enzymes can modulate cellular life span. Cancer Res. 2005, 65: 177-185.PubMed Kondoh H, Lleonart ME, Gil J, Wang J, Degan P, Peters G, Martinez D, Carnero A, Beach D: Glycolytic enzymes can modulate cellular life span. Cancer Res. 2005, 65: 177-185.PubMed
46.
go back to reference Engel M, Mazurek S, Eigenbrodt E, Welter C: Phosphoglycerate mutase-derived polypeptide inhibits glycolytic flux and induces cell growth arrest in tumor cell lines. J Biol Chem. 2004, 279: 35803-35812. 10.1074/jbc.M402768200.CrossRefPubMed Engel M, Mazurek S, Eigenbrodt E, Welter C: Phosphoglycerate mutase-derived polypeptide inhibits glycolytic flux and induces cell growth arrest in tumor cell lines. J Biol Chem. 2004, 279: 35803-35812. 10.1074/jbc.M402768200.CrossRefPubMed
47.
go back to reference Fantin VR, St-Pierre J, Leder P: Attenuation of LDH-A expression uncovers a link between glycolysis, mitochondrial physiology, and tumor maintenance. Cancer Cell. 2006, 9: 425-434. 10.1016/j.ccr.2006.04.023.CrossRefPubMed Fantin VR, St-Pierre J, Leder P: Attenuation of LDH-A expression uncovers a link between glycolysis, mitochondrial physiology, and tumor maintenance. Cancer Cell. 2006, 9: 425-434. 10.1016/j.ccr.2006.04.023.CrossRefPubMed
48.
go back to reference Shim H, Dolde C, Lewis BC, Wu CS, Dang G, Jungmann RA, laFavera R, Dang CV: c-Myc transactivation of LDH-A: implications for tumor metabolism and growth. Proc Natl Acad Sci USA. 1997, 94: 6658-6663. 10.1073/pnas.94.13.6658.CrossRefPubMedPubMedCentral Shim H, Dolde C, Lewis BC, Wu CS, Dang G, Jungmann RA, laFavera R, Dang CV: c-Myc transactivation of LDH-A: implications for tumor metabolism and growth. Proc Natl Acad Sci USA. 1997, 94: 6658-6663. 10.1073/pnas.94.13.6658.CrossRefPubMedPubMedCentral
49.
go back to reference Dang CV, Semenza GL: Oncogenic alterations of metabolism. Trends Biochem Sci. 1999, 24: 68-72. 10.1016/S0968-0004(98)01344-9.CrossRefPubMed Dang CV, Semenza GL: Oncogenic alterations of metabolism. Trends Biochem Sci. 1999, 24: 68-72. 10.1016/S0968-0004(98)01344-9.CrossRefPubMed
50.
go back to reference Mazurek S, Boschek CB, Hugo F, Eigenbrodt E: Pyruvate kinase type M2 and its role in tumor growth and spreading. Semin Cancer Biol. 2005, 15: 300-308. 10.1016/j.semcancer.2005.04.009.CrossRefPubMed Mazurek S, Boschek CB, Hugo F, Eigenbrodt E: Pyruvate kinase type M2 and its role in tumor growth and spreading. Semin Cancer Biol. 2005, 15: 300-308. 10.1016/j.semcancer.2005.04.009.CrossRefPubMed
51.
go back to reference Medes G, Thomas A, Weinhouse S: Metabolism of neoplastic tissue IV: a study of lipid synthesis in neoplastic tissue slices in vitro. Cancer Res. 1953, 13: 27-29.PubMed Medes G, Thomas A, Weinhouse S: Metabolism of neoplastic tissue IV: a study of lipid synthesis in neoplastic tissue slices in vitro. Cancer Res. 1953, 13: 27-29.PubMed
52.
go back to reference Ookhtens M, Kannan R, Lyon I, Baker N: Liver and adipose tissue contributions to newly formed fatty acids in an ascites tumor. Am J Physiol Regul Integr Comp Physiol. 1984, 247: R146-R153. Ookhtens M, Kannan R, Lyon I, Baker N: Liver and adipose tissue contributions to newly formed fatty acids in an ascites tumor. Am J Physiol Regul Integr Comp Physiol. 1984, 247: R146-R153.
53.
go back to reference Sabine JR, Abraham S, Chaikoff IL: Control of lipid metabolism in hepatomas: insensitivity of rate of fatty acid and cholesterol synthesis by mouse hepatome BW7756 to fasting and to feedback control. Cancer Res. 1967, 27: 793-799.PubMed Sabine JR, Abraham S, Chaikoff IL: Control of lipid metabolism in hepatomas: insensitivity of rate of fatty acid and cholesterol synthesis by mouse hepatome BW7756 to fasting and to feedback control. Cancer Res. 1967, 27: 793-799.PubMed
54.
go back to reference Szutowicz A, Kwiatkowski J, Angielski S: Lipogenic and glycolytic anzyme activites in carcinoma and nonmalignant diseases of the human breast. Br J Cancer. 1979, 39: 681-687.CrossRefPubMedPubMedCentral Szutowicz A, Kwiatkowski J, Angielski S: Lipogenic and glycolytic anzyme activites in carcinoma and nonmalignant diseases of the human breast. Br J Cancer. 1979, 39: 681-687.CrossRefPubMedPubMedCentral
55.
go back to reference Kuhajda FP: Fatty-acid synthase and human cancer: new perspectives on its role in tumor biology. Nutrition. 2000, 16: 202-208. 10.1016/S0899-9007(99)00266-X.CrossRefPubMed Kuhajda FP: Fatty-acid synthase and human cancer: new perspectives on its role in tumor biology. Nutrition. 2000, 16: 202-208. 10.1016/S0899-9007(99)00266-X.CrossRefPubMed
56.
go back to reference Kuhajda FP, Jenner K, Wood FD, Hennigar RA, Jacobs LB, Dick JD, Pasternack GR: Fatty acid synthesis: a potential selctive taret for antineoplastic therapy. Proc Natl Acad Sci USA. 1994, 91: 6379-6383. 10.1073/pnas.91.14.6379.CrossRefPubMedPubMedCentral Kuhajda FP, Jenner K, Wood FD, Hennigar RA, Jacobs LB, Dick JD, Pasternack GR: Fatty acid synthesis: a potential selctive taret for antineoplastic therapy. Proc Natl Acad Sci USA. 1994, 91: 6379-6383. 10.1073/pnas.91.14.6379.CrossRefPubMedPubMedCentral
57.
go back to reference Swinnen JV, Vanderhoydonc F, Elgamal AA, Eelen M, Vercaeren I, Joniau S, Van Poppel H, Baert L, Goossens K, Heyns W, Verhovoeven G: Selective activation of the fatty acid synthesis pathway in human prostate cancer. Int J Cancer. 2000, 88: 176-179. 10.1002/1097-0215(20001015)88:2<176::AID-IJC5>3.0.CO;2-3.CrossRefPubMed Swinnen JV, Vanderhoydonc F, Elgamal AA, Eelen M, Vercaeren I, Joniau S, Van Poppel H, Baert L, Goossens K, Heyns W, Verhovoeven G: Selective activation of the fatty acid synthesis pathway in human prostate cancer. Int J Cancer. 2000, 88: 176-179. 10.1002/1097-0215(20001015)88:2<176::AID-IJC5>3.0.CO;2-3.CrossRefPubMed
58.
go back to reference Rossi S, Graner E, Febbo P, Weinstein L, Bhattacharya N, Onody T, Bubley G, Balk S, Loda M: Fatty acid synthase expression defines distinct molecular signatures in prostate cancer. Mol Cancer Res. 2003, 1: 707-715.PubMed Rossi S, Graner E, Febbo P, Weinstein L, Bhattacharya N, Onody T, Bubley G, Balk S, Loda M: Fatty acid synthase expression defines distinct molecular signatures in prostate cancer. Mol Cancer Res. 2003, 1: 707-715.PubMed
59.
go back to reference Swinnen JV, Van Veldhoven PP, Timmermans L, De Schrijver E, Brusselmans K, Vanderhoydonc F, Van de Sande T, Heemers H, Heyns W, Verhoeven G: Fatty acid synthase drives the synthesis of phospholipids partitioning into detergent-resistant membrane microdomains. Biochem Biophys Res Commun. 2003, 302: 898-903. 10.1016/S0006-291X(03)00265-1.CrossRefPubMed Swinnen JV, Van Veldhoven PP, Timmermans L, De Schrijver E, Brusselmans K, Vanderhoydonc F, Van de Sande T, Heemers H, Heyns W, Verhoeven G: Fatty acid synthase drives the synthesis of phospholipids partitioning into detergent-resistant membrane microdomains. Biochem Biophys Res Commun. 2003, 302: 898-903. 10.1016/S0006-291X(03)00265-1.CrossRefPubMed
60.
go back to reference De Schrijver E, Brusselmans K, Heyns W, Verhoeven G, Swinnen JV: RNA interference-mediated silencing of the fatty acid synthase gene attenuates growth and induces morphological changes and apoptosis of LNCaP prostate cancer cells. Cancer Res. 2003, 63: 3799-3804.PubMed De Schrijver E, Brusselmans K, Heyns W, Verhoeven G, Swinnen JV: RNA interference-mediated silencing of the fatty acid synthase gene attenuates growth and induces morphological changes and apoptosis of LNCaP prostate cancer cells. Cancer Res. 2003, 63: 3799-3804.PubMed
61.
go back to reference Brusselmans K, De Schrijver E, Verhoeven G, Swinnen JV: RNA interference-mediated silencing of the acetyl-CoA-carboxylase-α gene induces growth inhibition and apoptosis of prostate cancer cells. Cancer Res. 2005, 65: 6719-6725. 10.1158/0008-5472.CAN-05-0571.CrossRefPubMed Brusselmans K, De Schrijver E, Verhoeven G, Swinnen JV: RNA interference-mediated silencing of the acetyl-CoA-carboxylase-α gene induces growth inhibition and apoptosis of prostate cancer cells. Cancer Res. 2005, 65: 6719-6725. 10.1158/0008-5472.CAN-05-0571.CrossRefPubMed
62.
go back to reference Kuhajda FP, Piantadosi S, Pasternack GR: Haptoglobin-related protein (Hpr) epitopes in breast cacner as a predictor of recurrance of the disease. N Engl J Med. 1989, 321: 636-641.CrossRefPubMed Kuhajda FP, Piantadosi S, Pasternack GR: Haptoglobin-related protein (Hpr) epitopes in breast cacner as a predictor of recurrance of the disease. N Engl J Med. 1989, 321: 636-641.CrossRefPubMed
63.
go back to reference Ursini-Siegel J, Rajput AB, Lu H, Sanguin-Gendreau V, Zuo D, Papavasiliou V, Lavoie C, Turpin J, Cianflone K, Huntsman DG, Muller WJ: Elevated expression of DecR1 impairs ErbB2/Neu-induced mammary tumor development. Mol Cell Biol. 2007, 27: 6361-6371. 10.1128/MCB.00686-07.CrossRefPubMedPubMedCentral Ursini-Siegel J, Rajput AB, Lu H, Sanguin-Gendreau V, Zuo D, Papavasiliou V, Lavoie C, Turpin J, Cianflone K, Huntsman DG, Muller WJ: Elevated expression of DecR1 impairs ErbB2/Neu-induced mammary tumor development. Mol Cell Biol. 2007, 27: 6361-6371. 10.1128/MCB.00686-07.CrossRefPubMedPubMedCentral
64.
go back to reference Seelig S, Liaw C, Towle H, Oppenheimer J: Thyroid hormone attenuates and augments hepatic gene expression at a pre-translactional level. Proc Natl Acad Sci USA. 1981, 78: 4733-4737. 10.1073/pnas.78.8.4733.CrossRefPubMedPubMedCentral Seelig S, Liaw C, Towle H, Oppenheimer J: Thyroid hormone attenuates and augments hepatic gene expression at a pre-translactional level. Proc Natl Acad Sci USA. 1981, 78: 4733-4737. 10.1073/pnas.78.8.4733.CrossRefPubMedPubMedCentral
65.
go back to reference Kinlaw WB, Tron P, Friedmann AS: Nuclear localization and hepatic zonation of rat 'spot 14' protein: immunohistochemical investigation employing anti-fusion protein antibodies. Endocrinology. 1992, 131: 3120-3122. 10.1210/en.131.6.3120.CrossRefPubMed Kinlaw WB, Tron P, Friedmann AS: Nuclear localization and hepatic zonation of rat 'spot 14' protein: immunohistochemical investigation employing anti-fusion protein antibodies. Endocrinology. 1992, 131: 3120-3122. 10.1210/en.131.6.3120.CrossRefPubMed
66.
go back to reference Kinlaw WB, Church JL, Harmon J, Mariash CN: Direct evidence for a role of the 'Spot 14' protein in the regulation of lipid synthesis. J Biol Chem. 1995, 270: 16615-16618. 10.1074/jbc.270.28.16615.CrossRefPubMed Kinlaw WB, Church JL, Harmon J, Mariash CN: Direct evidence for a role of the 'Spot 14' protein in the regulation of lipid synthesis. J Biol Chem. 1995, 270: 16615-16618. 10.1074/jbc.270.28.16615.CrossRefPubMed
67.
go back to reference Zhu Q, Anderson GW, Mucha GT, Parks EJ, Metkowski JK, Mariash CN: The Spot 14 protein is required for de novo lipid synthesis in the lactating mammary gland. Endocrinology. 2005, 146: 3343-3350. 10.1210/en.2005-0204.CrossRefPubMed Zhu Q, Anderson GW, Mucha GT, Parks EJ, Metkowski JK, Mariash CN: The Spot 14 protein is required for de novo lipid synthesis in the lactating mammary gland. Endocrinology. 2005, 146: 3343-3350. 10.1210/en.2005-0204.CrossRefPubMed
68.
go back to reference Schwertfeger KL, McManaman JL, Palmer CA, Neville MC, Anderson SM: Expression of constitutively activated Akt in the mammary gland leads to excess lipid synthesis during pregnancy and lactation. J Lipid Res. 2003, 44: 1100-1112. 10.1194/jlr.M300045-JLR200.CrossRefPubMed Schwertfeger KL, McManaman JL, Palmer CA, Neville MC, Anderson SM: Expression of constitutively activated Akt in the mammary gland leads to excess lipid synthesis during pregnancy and lactation. J Lipid Res. 2003, 44: 1100-1112. 10.1194/jlr.M300045-JLR200.CrossRefPubMed
69.
go back to reference Sundqvist A, goechea-Alonso MT, Ye X, Lukiyanchuk V, Jin J, Harper JW, Ericsson J: Control of lipid metabolism by phosphorylation-dependent degradation of the SREBP family of transcription factors by SCFFbw7. Cell Metab. 2005, 1: 379-391. 10.1016/j.cmet.2005.04.010.CrossRefPubMed Sundqvist A, goechea-Alonso MT, Ye X, Lukiyanchuk V, Jin J, Harper JW, Ericsson J: Control of lipid metabolism by phosphorylation-dependent degradation of the SREBP family of transcription factors by SCFFbw7. Cell Metab. 2005, 1: 379-391. 10.1016/j.cmet.2005.04.010.CrossRefPubMed
70.
go back to reference Wendy AW, Gary NS, Peter MM, Bernard FC, Jennifer JG, William BK: Expression of Spot 14 (THRSP) predicts disease free survival in invasive breast cancer: immunohistochemical analysis of a new molecular marker. Breast Cancer Res Treat. 2006, 98: 231-240. 10.1007/s10549-005-9154-z.CrossRef Wendy AW, Gary NS, Peter MM, Bernard FC, Jennifer JG, William BK: Expression of Spot 14 (THRSP) predicts disease free survival in invasive breast cancer: immunohistochemical analysis of a new molecular marker. Breast Cancer Res Treat. 2006, 98: 231-240. 10.1007/s10549-005-9154-z.CrossRef
71.
go back to reference Kinlaw WB, Quinn JL, Wells WA, Roser-Jones C, Moncur JT: Spot 14: a marker of aggressive breast cancer and a potential therapeutic target. Endocrinology. 2006, 147: 4048-4055. 10.1210/en.2006-0463.CrossRefPubMed Kinlaw WB, Quinn JL, Wells WA, Roser-Jones C, Moncur JT: Spot 14: a marker of aggressive breast cancer and a potential therapeutic target. Endocrinology. 2006, 147: 4048-4055. 10.1210/en.2006-0463.CrossRefPubMed
Metadata
Title
Sugar and fat – that's where it's at: metabolic changes in tumors
Authors
Christian D Young
Steven M Anderson
Publication date
01-02-2008
Publisher
BioMed Central
Published in
Breast Cancer Research / Issue 1/2008
Electronic ISSN: 1465-542X
DOI
https://doi.org/10.1186/bcr1852

Other articles of this Issue 1/2008

Breast Cancer Research 1/2008 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine