Skip to main content
Top
Published in: Molecular Cancer 1/2014

Open Access 01-12-2014 | Review

Dynamics of double strand breaks and chromosomal translocations

Authors: Olga V Iarovaia, Mikhail Rubtsov, Elena Ioudinkova, Tatiana Tsfasman, Sergey V Razin, Yegor S Vassetzky

Published in: Molecular Cancer | Issue 1/2014

Login to get access

Abstract

Chromosomal translocations are a major cause of cancer. At the same time, the mechanisms that lead to specific chromosomal translocations that associate different gene regions remain largely unknown. Translocations are induced by double strand breaks (DSBs) in DNA. Here we review recent data on the mechanisms of generation, mobility and repair of DSBs and stress the importance of the nuclear organization in this process.
Appendix
Available only for authorised users
Literature
1.
go back to reference Boveri T: Concerning the origin of malignant tumours by Theodor Boveri. Translated and annotated by Henry Harris. J Cell Sci. 1914, 121 (Suppl 1): 1-84. Boveri T: Concerning the origin of malignant tumours by Theodor Boveri. Translated and annotated by Henry Harris. J Cell Sci. 1914, 121 (Suppl 1): 1-84.
2.
go back to reference Lieber MR: Pathological and physiological double-strand breaks: roles in cancer, aging, and the immune system. Am J Pathol. 1998, 153: 1323-1332. 10.1016/S0002-9440(10)65716-1PubMedCentralCrossRefPubMed Lieber MR: Pathological and physiological double-strand breaks: roles in cancer, aging, and the immune system. Am J Pathol. 1998, 153: 1323-1332. 10.1016/S0002-9440(10)65716-1PubMedCentralCrossRefPubMed
3.
go back to reference Meaburn KJ, Misteli T, Soutoglou E: Spatial genome organization in the formation of chromosomal translocations. Semin Cancer Biol. 2007, 17: 80-90. 10.1016/j.semcancer.2006.10.008PubMedCentralCrossRefPubMed Meaburn KJ, Misteli T, Soutoglou E: Spatial genome organization in the formation of chromosomal translocations. Semin Cancer Biol. 2007, 17: 80-90. 10.1016/j.semcancer.2006.10.008PubMedCentralCrossRefPubMed
4.
go back to reference Nikiforova MN, Stringer JR, Blough R, Medvedovic M, Fagin JA, Nikiforov YE: Proximity of chromosomal loci that participate in radiation-induced rearrangements in human cells. Science. 2000, 290: 138-141. 10.1126/science.290.5489.138CrossRefPubMed Nikiforova MN, Stringer JR, Blough R, Medvedovic M, Fagin JA, Nikiforov YE: Proximity of chromosomal loci that participate in radiation-induced rearrangements in human cells. Science. 2000, 290: 138-141. 10.1126/science.290.5489.138CrossRefPubMed
5.
go back to reference Osborne CS, Chakalova L, Mitchell JA, Horton A, Wood AL, Bolland DJ, Corcoran AE, Fraser P: Myc dynamically and preferentially relocates to a transcription factory occupied by Igh. PLoS Biol. 2007, 5: e192- 10.1371/journal.pbio.0050192PubMedCentralCrossRefPubMed Osborne CS, Chakalova L, Mitchell JA, Horton A, Wood AL, Bolland DJ, Corcoran AE, Fraser P: Myc dynamically and preferentially relocates to a transcription factory occupied by Igh. PLoS Biol. 2007, 5: e192- 10.1371/journal.pbio.0050192PubMedCentralCrossRefPubMed
6.
go back to reference Falk M, Lukasova E, Kozubek S: Higher-order chromatin structure in DSB induction, repair and misrepair. Mutat Res. 2010, 704: 88-100. 10.1016/j.mrrev.2010.01.013CrossRefPubMed Falk M, Lukasova E, Kozubek S: Higher-order chromatin structure in DSB induction, repair and misrepair. Mutat Res. 2010, 704: 88-100. 10.1016/j.mrrev.2010.01.013CrossRefPubMed
7.
go back to reference Razin SV, Petrov A, Hair A, Vassetzky YS: Chromatin domains and territories: flexibly rigid. Crit Rev Eukaryot Gene Expr. 2004, 14: 79-88. 10.1615/CritRevEukaryotGeneExpr.v14.i12.50CrossRefPubMed Razin SV, Petrov A, Hair A, Vassetzky YS: Chromatin domains and territories: flexibly rigid. Crit Rev Eukaryot Gene Expr. 2004, 14: 79-88. 10.1615/CritRevEukaryotGeneExpr.v14.i12.50CrossRefPubMed
8.
go back to reference Glukhov SI, Rubtsov MA, Alexeyevsky DA, Alexeevski AV, Razin SV, Iarovaia OV: The broken MLL gene is frequently located outside the inherent chromosome territory in human lymphoid cells treated with DNA topoisomerase II poison etoposide. PLoS One. 2013, 8: e75871- 10.1371/journal.pone.0075871PubMedCentralCrossRefPubMed Glukhov SI, Rubtsov MA, Alexeyevsky DA, Alexeevski AV, Razin SV, Iarovaia OV: The broken MLL gene is frequently located outside the inherent chromosome territory in human lymphoid cells treated with DNA topoisomerase II poison etoposide. PLoS One. 2013, 8: e75871- 10.1371/journal.pone.0075871PubMedCentralCrossRefPubMed
9.
go back to reference Pfeiffer P, Goedecke W, Obe G: Mechanisms of DNA double-strand break repair and their potential to induce chromosomal aberrations. Mutagenesis. 2000, 15: 289-302. 10.1093/mutage/15.4.289CrossRefPubMed Pfeiffer P, Goedecke W, Obe G: Mechanisms of DNA double-strand break repair and their potential to induce chromosomal aberrations. Mutagenesis. 2000, 15: 289-302. 10.1093/mutage/15.4.289CrossRefPubMed
10.
go back to reference Maizels N: Immunoglobulin gene diversification. Annu Rev Genet. 2005, 39: 23-46. 10.1146/annurev.genet.39.073003.110544CrossRefPubMed Maizels N: Immunoglobulin gene diversification. Annu Rev Genet. 2005, 39: 23-46. 10.1146/annurev.genet.39.073003.110544CrossRefPubMed
11.
go back to reference Weitzman MD, Lilley CE, Chaurushiya MS: Genomes in conflict: maintaining genome integrity during virus infection. Annu Rev Microbiol. 2010, 64: 61-81. 10.1146/annurev.micro.112408.134016CrossRefPubMed Weitzman MD, Lilley CE, Chaurushiya MS: Genomes in conflict: maintaining genome integrity during virus infection. Annu Rev Microbiol. 2010, 64: 61-81. 10.1146/annurev.micro.112408.134016CrossRefPubMed
12.
go back to reference Keeney S, Neale MJ: Initiation of meiotic recombination by formation of DNA double-strand breaks: mechanism and regulation. Biochem Soc Trans. 2006, 34: 523-525. 10.1042/BST0340523CrossRefPubMed Keeney S, Neale MJ: Initiation of meiotic recombination by formation of DNA double-strand breaks: mechanism and regulation. Biochem Soc Trans. 2006, 34: 523-525. 10.1042/BST0340523CrossRefPubMed
13.
go back to reference Brugmans L, Kanaar R, Essers J: Analysis of DNA double-strand break repair pathways in mice. Mutat Res. 2007, 614: 95-108. 10.1016/j.mrfmmm.2006.01.022CrossRefPubMed Brugmans L, Kanaar R, Essers J: Analysis of DNA double-strand break repair pathways in mice. Mutat Res. 2007, 614: 95-108. 10.1016/j.mrfmmm.2006.01.022CrossRefPubMed
14.
go back to reference Lieber MR: The mechanism of double-strand DNA break repair by the nonhomologous DNA end-joining pathway. Annu Rev Biochem. 2010, 79: 181-211. 10.1146/annurev.biochem.052308.093131PubMedCentralCrossRefPubMed Lieber MR: The mechanism of double-strand DNA break repair by the nonhomologous DNA end-joining pathway. Annu Rev Biochem. 2010, 79: 181-211. 10.1146/annurev.biochem.052308.093131PubMedCentralCrossRefPubMed
15.
go back to reference Alt FW, Zhang Y, Meng FL, Guo C, Schwer B: Mechanisms of programmed DNA lesions and genomic instability in the immune system. Cell. 2013, 152: 417-429. 10.1016/j.cell.2013.01.007PubMedCentralCrossRefPubMed Alt FW, Zhang Y, Meng FL, Guo C, Schwer B: Mechanisms of programmed DNA lesions and genomic instability in the immune system. Cell. 2013, 152: 417-429. 10.1016/j.cell.2013.01.007PubMedCentralCrossRefPubMed
16.
go back to reference Gostissa M, Alt FW, Chiarle R: Mechanisms that promote and suppress chromosomal translocations in lymphocytes. Annu Rev Immunol. 2011, 29: 319-350. 10.1146/annurev-immunol-031210-101329CrossRefPubMed Gostissa M, Alt FW, Chiarle R: Mechanisms that promote and suppress chromosomal translocations in lymphocytes. Annu Rev Immunol. 2011, 29: 319-350. 10.1146/annurev-immunol-031210-101329CrossRefPubMed
17.
go back to reference Kruhlak MJ, Celeste A, Dellaire G, Fernandez-Capetillo O, Muller WG, McNally JG, Bazett-Jones DP, Nussenzweig A: Changes in chromatin structure and mobility in living cells at sites of DNA double-strand breaks. J Cell Biol. 2006, 172: 823-834. 10.1083/jcb.200510015PubMedCentralCrossRefPubMed Kruhlak MJ, Celeste A, Dellaire G, Fernandez-Capetillo O, Muller WG, McNally JG, Bazett-Jones DP, Nussenzweig A: Changes in chromatin structure and mobility in living cells at sites of DNA double-strand breaks. J Cell Biol. 2006, 172: 823-834. 10.1083/jcb.200510015PubMedCentralCrossRefPubMed
18.
go back to reference Falk M, Lukasova E, Gabrielova B, Ondrej V, Kozubek S: Chromatin dynamics during DSB repair. Biochim Biophys Acta. 2007, 1773: 1534-1545. 10.1016/j.bbamcr.2007.07.002CrossRefPubMed Falk M, Lukasova E, Gabrielova B, Ondrej V, Kozubek S: Chromatin dynamics during DSB repair. Biochim Biophys Acta. 2007, 1773: 1534-1545. 10.1016/j.bbamcr.2007.07.002CrossRefPubMed
19.
go back to reference Jakob B, Splinter J, Durante M, Taucher-Scholz G: Live cell microscopy analysis of radiation-induced DNA double-strand break motion. Proc Natl Acad Sci U S A. 2009, 106: 3172-3177. 10.1073/pnas.0810987106PubMedCentralCrossRefPubMed Jakob B, Splinter J, Durante M, Taucher-Scholz G: Live cell microscopy analysis of radiation-induced DNA double-strand break motion. Proc Natl Acad Sci U S A. 2009, 106: 3172-3177. 10.1073/pnas.0810987106PubMedCentralCrossRefPubMed
20.
go back to reference Nelms BE, Maser RS, MacKay JF, Lagally MG, Petrini JH: In situ visualization of DNA double-strand break repair in human fibroblasts. Science. 1998, 280: 590-592. 10.1126/science.280.5363.590CrossRefPubMed Nelms BE, Maser RS, MacKay JF, Lagally MG, Petrini JH: In situ visualization of DNA double-strand break repair in human fibroblasts. Science. 1998, 280: 590-592. 10.1126/science.280.5363.590CrossRefPubMed
21.
go back to reference Soutoglou E, Dorn JF, Sengupta K, Jasin M, Nussenzweig A, Ried T, Danuser G, Misteli T: Positional stability of single double-strand breaks in mammalian cells. Nat Cell Biol. 2007, 9: 675-682. 10.1038/ncb1591PubMedCentralCrossRefPubMed Soutoglou E, Dorn JF, Sengupta K, Jasin M, Nussenzweig A, Ried T, Danuser G, Misteli T: Positional stability of single double-strand breaks in mammalian cells. Nat Cell Biol. 2007, 9: 675-682. 10.1038/ncb1591PubMedCentralCrossRefPubMed
22.
go back to reference Dion V, Kalck V, Horigome C, Towbin BD, Gasser SM: Increased mobility of double-strand breaks requires Mec1, Rad9 and the homologous recombination machinery. Nat Cell Biol. 2012, 14: 502-509. 10.1038/ncb2465CrossRefPubMed Dion V, Kalck V, Horigome C, Towbin BD, Gasser SM: Increased mobility of double-strand breaks requires Mec1, Rad9 and the homologous recombination machinery. Nat Cell Biol. 2012, 14: 502-509. 10.1038/ncb2465CrossRefPubMed
23.
go back to reference Aten JA, Stap J, Krawczyk PM, Van Oven CH, Hoebe RA, Essers J, Kanaar R: Dynamics of DNA double-strand breaks revealed by clustering of damaged chromosome domains. Science. 2004, 303: 92-95. 10.1126/science.1088845CrossRefPubMed Aten JA, Stap J, Krawczyk PM, Van Oven CH, Hoebe RA, Essers J, Kanaar R: Dynamics of DNA double-strand breaks revealed by clustering of damaged chromosome domains. Science. 2004, 303: 92-95. 10.1126/science.1088845CrossRefPubMed
24.
go back to reference Mine-Hattab J, Rothstein R: Increased chromosome mobility facilitates homology search during recombination. Nat Cell Biol. 2012, 14: 510-517. 10.1038/ncb2472CrossRefPubMed Mine-Hattab J, Rothstein R: Increased chromosome mobility facilitates homology search during recombination. Nat Cell Biol. 2012, 14: 510-517. 10.1038/ncb2472CrossRefPubMed
25.
go back to reference Soutoglou E, Misteli T: Mobility and immobility of chromatin in transcription and genome stability. Curr Opin Genet Dev. 2007, 17: 435-442. 10.1016/j.gde.2007.08.004PubMedCentralCrossRefPubMed Soutoglou E, Misteli T: Mobility and immobility of chromatin in transcription and genome stability. Curr Opin Genet Dev. 2007, 17: 435-442. 10.1016/j.gde.2007.08.004PubMedCentralCrossRefPubMed
26.
go back to reference Mine-Hattab J, Rothstein R: DNA in motion during double-strand break repair. Trends Cell Biol. 2013, 23: 529-536. 10.1016/j.tcb.2013.05.006CrossRefPubMed Mine-Hattab J, Rothstein R: DNA in motion during double-strand break repair. Trends Cell Biol. 2013, 23: 529-536. 10.1016/j.tcb.2013.05.006CrossRefPubMed
27.
go back to reference Foray N, Colin C: Relationship between radiosensitivity, initial DNA damage, apoptosis and gene expression: between reproducible works and technical artefacts. Breast. 2013, 22: 185- 10.1016/j.breast.2013.01.008CrossRefPubMed Foray N, Colin C: Relationship between radiosensitivity, initial DNA damage, apoptosis and gene expression: between reproducible works and technical artefacts. Breast. 2013, 22: 185- 10.1016/j.breast.2013.01.008CrossRefPubMed
28.
go back to reference Prise KM, Ahnstrom G, Belli M, Carlsson J, Frankenberg D, Kiefer J, Lobrich M, Michael BD, Nygren J, Simone G, Stenerlow B: A review of dsb induction data for varying quality radiations. Int J Radiat Biol. 1998, 74: 173-184. 10.1080/095530098141564CrossRefPubMed Prise KM, Ahnstrom G, Belli M, Carlsson J, Frankenberg D, Kiefer J, Lobrich M, Michael BD, Nygren J, Simone G, Stenerlow B: A review of dsb induction data for varying quality radiations. Int J Radiat Biol. 1998, 74: 173-184. 10.1080/095530098141564CrossRefPubMed
29.
go back to reference Krawczyk PM, Stap J, Hoebe RA, Van Oven CH, Kanaar R, Aten JA: Analysis of the mobility of DNA double-strand break-containing chromosome domains in living mammalian cells. Methods Mol Biol. 2008, 463: 309-320. 10.1007/978-1-59745-406-3_19CrossRefPubMed Krawczyk PM, Stap J, Hoebe RA, Van Oven CH, Kanaar R, Aten JA: Analysis of the mobility of DNA double-strand break-containing chromosome domains in living mammalian cells. Methods Mol Biol. 2008, 463: 309-320. 10.1007/978-1-59745-406-3_19CrossRefPubMed
30.
go back to reference Roukos V, Voss TC, Schmidt CK, Lee S, Wangsa D, Misteli T: Spatial dynamics of chromosome translocations in living cells. Science. 2013, 341: 660-664. 10.1126/science.1237150CrossRefPubMed Roukos V, Voss TC, Schmidt CK, Lee S, Wangsa D, Misteli T: Spatial dynamics of chromosome translocations in living cells. Science. 2013, 341: 660-664. 10.1126/science.1237150CrossRefPubMed
31.
go back to reference Henikoff S: Conspiracy of silence among repeated transgenes. Bioessays. 1998, 20: 532-535. 10.1002/(SICI)1521-1878(199807)20:7<532::AID-BIES3>3.0.CO;2-MCrossRefPubMed Henikoff S: Conspiracy of silence among repeated transgenes. Bioessays. 1998, 20: 532-535. 10.1002/(SICI)1521-1878(199807)20:7<532::AID-BIES3>3.0.CO;2-MCrossRefPubMed
32.
go back to reference Dubarry M, Loiodice I, Chen CL, Thermes C, Taddei A: Tight protein-DNA interactions favor gene silencing. Genes Dev. 2011, 25: 1365-1370. 10.1101/gad.611011PubMedCentralCrossRefPubMed Dubarry M, Loiodice I, Chen CL, Thermes C, Taddei A: Tight protein-DNA interactions favor gene silencing. Genes Dev. 2011, 25: 1365-1370. 10.1101/gad.611011PubMedCentralCrossRefPubMed
33.
go back to reference Lisby M, Mortensen UH, Rothstein R: Colocalization of multiple DNA double-strand breaks at a single Rad52 repair centre. Nat Cell Biol. 2003, 5: 572-577. 10.1038/ncb997CrossRefPubMed Lisby M, Mortensen UH, Rothstein R: Colocalization of multiple DNA double-strand breaks at a single Rad52 repair centre. Nat Cell Biol. 2003, 5: 572-577. 10.1038/ncb997CrossRefPubMed
34.
go back to reference Oza P, Peterson CL: Opening the DNA repair toolbox: localization of DNA double strand breaks to the nuclear periphery. Cell Cycle. 2010, 9: 43-49. 10.4161/cc.9.1.10317CrossRefPubMed Oza P, Peterson CL: Opening the DNA repair toolbox: localization of DNA double strand breaks to the nuclear periphery. Cell Cycle. 2010, 9: 43-49. 10.4161/cc.9.1.10317CrossRefPubMed
35.
go back to reference Therizols P, Fairhead C, Cabal GG, Genovesio A, Olivo-Marin JC, Dujon B, Fabre E: Telomere tethering at the nuclear periphery is essential for efficient DNA double strand break repair in subtelomeric region. J Cell Biol. 2006, 172: 189-199. 10.1083/jcb.200505159PubMedCentralCrossRefPubMed Therizols P, Fairhead C, Cabal GG, Genovesio A, Olivo-Marin JC, Dujon B, Fabre E: Telomere tethering at the nuclear periphery is essential for efficient DNA double strand break repair in subtelomeric region. J Cell Biol. 2006, 172: 189-199. 10.1083/jcb.200505159PubMedCentralCrossRefPubMed
36.
go back to reference Taddei A, Van Houwe G, Hediger F, Kalck V, Cubizolles F, Schober H, Gasser SM: Nuclear pore association confers optimal expression levels for an inducible yeast gene. Nature. 2006, 441: 774-778. 10.1038/nature04845CrossRefPubMed Taddei A, Van Houwe G, Hediger F, Kalck V, Cubizolles F, Schober H, Gasser SM: Nuclear pore association confers optimal expression levels for an inducible yeast gene. Nature. 2006, 441: 774-778. 10.1038/nature04845CrossRefPubMed
37.
go back to reference Oza P, Jaspersen SL, Miele A, Dekker J, Peterson CL: Mechanisms that regulate localization of a DNA double-strand break to the nuclear periphery. Genes Dev. 2009, 23: 912-927. 10.1101/gad.1782209PubMedCentralCrossRefPubMed Oza P, Jaspersen SL, Miele A, Dekker J, Peterson CL: Mechanisms that regulate localization of a DNA double-strand break to the nuclear periphery. Genes Dev. 2009, 23: 912-927. 10.1101/gad.1782209PubMedCentralCrossRefPubMed
38.
go back to reference Falk M, Lukasova E, Stefancikova L, Baranova E, Falkova I, Jezkova L, Davidkova M, Bacikova A, Vachelova J, Michaelidesova A, Kozubek S: Heterochromatinization associated with cell differentiation as a model to study DNA double strand break induction and repair in the context of higher-order chromatin structure. Appl Radiat Isot. 2014, 83 Pt B: 177-185.CrossRefPubMed Falk M, Lukasova E, Stefancikova L, Baranova E, Falkova I, Jezkova L, Davidkova M, Bacikova A, Vachelova J, Michaelidesova A, Kozubek S: Heterochromatinization associated with cell differentiation as a model to study DNA double strand break induction and repair in the context of higher-order chromatin structure. Appl Radiat Isot. 2014, 83 Pt B: 177-185.CrossRefPubMed
39.
go back to reference Kaye JA, Melo JA, Cheung SK, Vaze MB, Haber JE, Toczyski DP: DNA breaks promote genomic instability by impeding proper chromosome segregation. Curr Biol. 2004, 14: 2096-2106. 10.1016/j.cub.2004.10.051CrossRefPubMed Kaye JA, Melo JA, Cheung SK, Vaze MB, Haber JE, Toczyski DP: DNA breaks promote genomic instability by impeding proper chromosome segregation. Curr Biol. 2004, 14: 2096-2106. 10.1016/j.cub.2004.10.051CrossRefPubMed
40.
go back to reference Lobachev K, Vitriol E, Stemple J, Resnick MA, Bloom K: Chromosome fragmentation after induction of a double-strand break is an active process prevented by the RMX repair complex. Curr Biol. 2004, 14: 2107-2112. 10.1016/j.cub.2004.11.051CrossRefPubMed Lobachev K, Vitriol E, Stemple J, Resnick MA, Bloom K: Chromosome fragmentation after induction of a double-strand break is an active process prevented by the RMX repair complex. Curr Biol. 2004, 14: 2107-2112. 10.1016/j.cub.2004.11.051CrossRefPubMed
41.
go back to reference Nakai W, Westmoreland J, Yeh E, Bloom K, Resnick MA: Chromosome integrity at a double-strand break requires exonuclease 1 and MRX. DNA Repair (Amst). 2011, 10: 102-110. 10.1016/j.dnarep.2010.10.004CrossRef Nakai W, Westmoreland J, Yeh E, Bloom K, Resnick MA: Chromosome integrity at a double-strand break requires exonuclease 1 and MRX. DNA Repair (Amst). 2011, 10: 102-110. 10.1016/j.dnarep.2010.10.004CrossRef
42.
go back to reference Krawczyk PM, Stap J, Van Oven C, Hoebe R, Aten JA: Clustering of double strand break-containing chromosome domains is not inhibited by inactivation of major repair proteins. Radiat Prot Dosimetry. 2006, 122: 150-153.CrossRefPubMed Krawczyk PM, Stap J, Van Oven C, Hoebe R, Aten JA: Clustering of double strand break-containing chromosome domains is not inhibited by inactivation of major repair proteins. Radiat Prot Dosimetry. 2006, 122: 150-153.CrossRefPubMed
44.
45.
go back to reference Bao Y: Chromatin response to DNA double-strand break damage. Epigenomics. 2011, 3: 307-321. 10.2217/epi.11.14CrossRefPubMed Bao Y: Chromatin response to DNA double-strand break damage. Epigenomics. 2011, 3: 307-321. 10.2217/epi.11.14CrossRefPubMed
46.
go back to reference Shi L, Oberdoerffer P: Chromatin dynamics in DNA double-strand break repair. Biochim Biophys Acta. 1819, 2012: 811-819. Shi L, Oberdoerffer P: Chromatin dynamics in DNA double-strand break repair. Biochim Biophys Acta. 1819, 2012: 811-819.
47.
go back to reference Seeber A, Hauer M, Gasser SM: Nucleosome remodelers in double-strand break repair. Curr Opin Genet Dev. 2013, 23: 174-184. 10.1016/j.gde.2012.12.008CrossRefPubMed Seeber A, Hauer M, Gasser SM: Nucleosome remodelers in double-strand break repair. Curr Opin Genet Dev. 2013, 23: 174-184. 10.1016/j.gde.2012.12.008CrossRefPubMed
49.
go back to reference Gospodinov A, Herceg Z: Chromatin structure in double strand break repair. DNA Repair (Amst). 2013, 12: 800-810. 10.1016/j.dnarep.2013.07.006CrossRef Gospodinov A, Herceg Z: Chromatin structure in double strand break repair. DNA Repair (Amst). 2013, 12: 800-810. 10.1016/j.dnarep.2013.07.006CrossRef
50.
go back to reference Neumann FR, Dion V, Gehlen LR, Tsai-Pflugfelder M, Schmid R, Taddei A, Gasser SM: Targeted INO80 enhances subnuclear chromatin movement and ectopic homologous recombination. Genes Dev. 2012, 26: 369-383. 10.1101/gad.176156.111PubMedCentralCrossRefPubMed Neumann FR, Dion V, Gehlen LR, Tsai-Pflugfelder M, Schmid R, Taddei A, Gasser SM: Targeted INO80 enhances subnuclear chromatin movement and ectopic homologous recombination. Genes Dev. 2012, 26: 369-383. 10.1101/gad.176156.111PubMedCentralCrossRefPubMed
51.
go back to reference Xu Y, Sun Y, Jiang X, Ayrapetov MK, Moskwa P, Yang S, Weinstock DM, Price BD: The p400 ATPase regulates nucleosome stability and chromatin ubiquitination during DNA repair. J Cell Biol. 2010, 191: 31-43. 10.1083/jcb.201001160PubMedCentralCrossRefPubMed Xu Y, Sun Y, Jiang X, Ayrapetov MK, Moskwa P, Yang S, Weinstock DM, Price BD: The p400 ATPase regulates nucleosome stability and chromatin ubiquitination during DNA repair. J Cell Biol. 2010, 191: 31-43. 10.1083/jcb.201001160PubMedCentralCrossRefPubMed
53.
go back to reference Zhu Q, Wani AA: Histone modifications: crucial elements for damage response and chromatin restoration. J Cell Physiol. 2010, 223: 283-288.PubMedCentralPubMed Zhu Q, Wani AA: Histone modifications: crucial elements for damage response and chromatin restoration. J Cell Physiol. 2010, 223: 283-288.PubMedCentralPubMed
54.
go back to reference Smeenk G, Van Attikum H: The chromatin response to DNA breaks: leaving a mark on genome integrity. Annu Rev Biochem. 2013, 82: 55-80. 10.1146/annurev-biochem-061809-174504CrossRefPubMed Smeenk G, Van Attikum H: The chromatin response to DNA breaks: leaving a mark on genome integrity. Annu Rev Biochem. 2013, 82: 55-80. 10.1146/annurev-biochem-061809-174504CrossRefPubMed
55.
go back to reference Downs JA, Lowndes NF, Jackson SP: A role for Saccharomyces cerevisiae histone H2A in DNA repair. Nature. 2000, 408: 1001-1004. 10.1038/35050000CrossRefPubMed Downs JA, Lowndes NF, Jackson SP: A role for Saccharomyces cerevisiae histone H2A in DNA repair. Nature. 2000, 408: 1001-1004. 10.1038/35050000CrossRefPubMed
56.
go back to reference Kalocsay M, Hiller NJ, Jentsch S: Chromosome-wide Rad51 spreading and SUMO-H2A.Z-dependent chromosome fixation in response to a persistent DNA double-strand break. Mol Cell. 2009, 33: 335-343. 10.1016/j.molcel.2009.01.016CrossRefPubMed Kalocsay M, Hiller NJ, Jentsch S: Chromosome-wide Rad51 spreading and SUMO-H2A.Z-dependent chromosome fixation in response to a persistent DNA double-strand break. Mol Cell. 2009, 33: 335-343. 10.1016/j.molcel.2009.01.016CrossRefPubMed
57.
go back to reference Robinson PJ, An W, Routh A, Martino F, Chapman L, Roeder RG, Rhodes D: 30 nm chromatin fibre decompaction requires both H4-K16 acetylation and linker histone eviction. J Mol Biol. 2008, 381: 816-825. 10.1016/j.jmb.2008.04.050CrossRefPubMed Robinson PJ, An W, Routh A, Martino F, Chapman L, Roeder RG, Rhodes D: 30 nm chromatin fibre decompaction requires both H4-K16 acetylation and linker histone eviction. J Mol Biol. 2008, 381: 816-825. 10.1016/j.jmb.2008.04.050CrossRefPubMed
58.
go back to reference Krawczyk PM, Borovski T, Stap J, Cijsouw T, Ten Cate R, Medema JP, Kanaar R, Franken NA, Aten JA: Chromatin mobility is increased at sites of DNA double-strand breaks. J Cell Sci. 2012, 125: 2127-2133. 10.1242/jcs.089847CrossRefPubMed Krawczyk PM, Borovski T, Stap J, Cijsouw T, Ten Cate R, Medema JP, Kanaar R, Franken NA, Aten JA: Chromatin mobility is increased at sites of DNA double-strand breaks. J Cell Sci. 2012, 125: 2127-2133. 10.1242/jcs.089847CrossRefPubMed
59.
go back to reference Razin SV, Iarovaia OV, Sjakste N, Sjakste T, Bagdoniene L, Rynditch AV, Eivazova ER, Lipinski M, Vassetzky YS: Chromatin domains and regulation of transcription. J Mol Biol. 2007, 369: 597-607. 10.1016/j.jmb.2007.04.003CrossRefPubMed Razin SV, Iarovaia OV, Sjakste N, Sjakste T, Bagdoniene L, Rynditch AV, Eivazova ER, Lipinski M, Vassetzky YS: Chromatin domains and regulation of transcription. J Mol Biol. 2007, 369: 597-607. 10.1016/j.jmb.2007.04.003CrossRefPubMed
60.
go back to reference Razin SV, Iarovaia OV, Vassetzky YS: A requiem to the nuclear matrix: from a controversial concept to 3D organization of the nucleus. Chromosoma. 2014, 123: doi:10.1007/s00412-00014-00459-00418, Razin SV, Iarovaia OV, Vassetzky YS: A requiem to the nuclear matrix: from a controversial concept to 3D organization of the nucleus. Chromosoma. 2014, 123: doi:10.1007/s00412-00014-00459-00418,
61.
go back to reference Guelen L, Pagie L, Brasset E, Meuleman W, Faza MB, Talhout W, Eussen BH, De Klein A, Wessels L, De Laat W, Van Steensel B: Domain organization of human chromosomes revealed by mapping of nuclear lamina interactions. Nature. 2008, 453: 948-951. 10.1038/nature06947CrossRefPubMed Guelen L, Pagie L, Brasset E, Meuleman W, Faza MB, Talhout W, Eussen BH, De Klein A, Wessels L, De Laat W, Van Steensel B: Domain organization of human chromosomes revealed by mapping of nuclear lamina interactions. Nature. 2008, 453: 948-951. 10.1038/nature06947CrossRefPubMed
62.
go back to reference Lieberman-Aiden E, Van Berkum NL, Williams L, Imakaev M, Ragoczy T, Telling A, Amit I, Lajoie BR, Sabo PJ, Dorschner MO, Sandstrom R, Bernstein B, Bender MA, Groudine M, Gnirke A, Stamatoyannopoulos J, Mirny LA, Lander ES, Dekker J: Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science. 2009, 326: 289-293. 10.1126/science.1181369PubMedCentralCrossRefPubMed Lieberman-Aiden E, Van Berkum NL, Williams L, Imakaev M, Ragoczy T, Telling A, Amit I, Lajoie BR, Sabo PJ, Dorschner MO, Sandstrom R, Bernstein B, Bender MA, Groudine M, Gnirke A, Stamatoyannopoulos J, Mirny LA, Lander ES, Dekker J: Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science. 2009, 326: 289-293. 10.1126/science.1181369PubMedCentralCrossRefPubMed
65.
go back to reference Millau JF, Gaudreau L: CTCF, cohesin, and histone variants: connecting the genome. Biochem Cell Biol. 2011, 89: 505-513. 10.1139/o11-052CrossRefPubMed Millau JF, Gaudreau L: CTCF, cohesin, and histone variants: connecting the genome. Biochem Cell Biol. 2011, 89: 505-513. 10.1139/o11-052CrossRefPubMed
66.
go back to reference Feinauer CJ, Hofmann A, Goldt S, Liu L, Mate G, Heermann DW: Zinc finger proteins and the 3D organization of chromosomes. Adv Protein Chem Struct Biol. 2013, 90: 67-117.CrossRefPubMed Feinauer CJ, Hofmann A, Goldt S, Liu L, Mate G, Heermann DW: Zinc finger proteins and the 3D organization of chromosomes. Adv Protein Chem Struct Biol. 2013, 90: 67-117.CrossRefPubMed
67.
go back to reference Dowen JM, Young RA: SMC complexes link gene expression and genome architecture. Curr Opin Genet Dev. 2014, 25C: 131-137.CrossRef Dowen JM, Young RA: SMC complexes link gene expression and genome architecture. Curr Opin Genet Dev. 2014, 25C: 131-137.CrossRef
68.
go back to reference Mahen R, Hattori H, Lee M, Sharma P, Jeyasekharan AD, Venkitaraman AR: A-type lamins maintain the positional stability of DNA damage repair foci in mammalian nuclei. PLoS One. 2013, 8: e61893- 10.1371/journal.pone.0061893PubMedCentralCrossRefPubMed Mahen R, Hattori H, Lee M, Sharma P, Jeyasekharan AD, Venkitaraman AR: A-type lamins maintain the positional stability of DNA damage repair foci in mammalian nuclei. PLoS One. 2013, 8: e61893- 10.1371/journal.pone.0061893PubMedCentralCrossRefPubMed
69.
go back to reference Burden DA, Osheroff N: Mechanism of action of eukaryotic topoisomerase II and drugs targeted to the enzyme. Biochim Biophys Acta. 1998, 1400: 139-154. 10.1016/S0167-4781(98)00132-8CrossRefPubMed Burden DA, Osheroff N: Mechanism of action of eukaryotic topoisomerase II and drugs targeted to the enzyme. Biochim Biophys Acta. 1998, 1400: 139-154. 10.1016/S0167-4781(98)00132-8CrossRefPubMed
70.
go back to reference Austin CA, Marsh KL: Eukaryotic DNA topoisomerase II beta. Bioessays. 1998, 20: 215-226. 10.1002/(SICI)1521-1878(199803)20:3<215::AID-BIES5>3.0.CO;2-QCrossRefPubMed Austin CA, Marsh KL: Eukaryotic DNA topoisomerase II beta. Bioessays. 1998, 20: 215-226. 10.1002/(SICI)1521-1878(199803)20:3<215::AID-BIES5>3.0.CO;2-QCrossRefPubMed
71.
go back to reference Fortune JM, Osheroff N: Topoisomerase II as a target for anticancer drugs: when enzymes stop being nice. Prog Nucleic Acid Res Mol Biol. 2000, 64: 221-253.CrossRefPubMed Fortune JM, Osheroff N: Topoisomerase II as a target for anticancer drugs: when enzymes stop being nice. Prog Nucleic Acid Res Mol Biol. 2000, 64: 221-253.CrossRefPubMed
72.
go back to reference Wilstermann AM, Osheroff N: Stabilization of eukaryotic topoisomerase II-DNA cleavage complexes. Curr Top Med Chem. 2003, 3: 321-338. 10.2174/1568026033452519CrossRefPubMed Wilstermann AM, Osheroff N: Stabilization of eukaryotic topoisomerase II-DNA cleavage complexes. Curr Top Med Chem. 2003, 3: 321-338. 10.2174/1568026033452519CrossRefPubMed
73.
go back to reference Montecucco A, Biamonti G: Cellular response to etoposide treatment. Cancer Lett. 2007, 252: 9-18. 10.1016/j.canlet.2006.11.005CrossRefPubMed Montecucco A, Biamonti G: Cellular response to etoposide treatment. Cancer Lett. 2007, 252: 9-18. 10.1016/j.canlet.2006.11.005CrossRefPubMed
74.
go back to reference Pui CH, Relling MV: Topoisomerase II inhibitor-related acute myeloid leukaemia. Br J Haematol. 2000, 109: 13-23. 10.1046/j.1365-2141.2000.01843.xCrossRefPubMed Pui CH, Relling MV: Topoisomerase II inhibitor-related acute myeloid leukaemia. Br J Haematol. 2000, 109: 13-23. 10.1046/j.1365-2141.2000.01843.xCrossRefPubMed
75.
go back to reference Ezoe S: Secondary leukemia associated with the anti-cancer agent, etoposide, a topoisomerase II inhibitor. Int J Environ Res Public Health. 2012, 9: 2444-2453. 10.3390/ijerph9072444PubMedCentralCrossRefPubMed Ezoe S: Secondary leukemia associated with the anti-cancer agent, etoposide, a topoisomerase II inhibitor. Int J Environ Res Public Health. 2012, 9: 2444-2453. 10.3390/ijerph9072444PubMedCentralCrossRefPubMed
76.
go back to reference Cowell IG, Austin CA: Mechanism of generation of therapy related leukemia in response to anti-topoisomerase II agents. Int J Environ Res Public Health. 2012, 9: 2075-2091. 10.3390/ijerph9062075PubMedCentralCrossRefPubMed Cowell IG, Austin CA: Mechanism of generation of therapy related leukemia in response to anti-topoisomerase II agents. Int J Environ Res Public Health. 2012, 9: 2075-2091. 10.3390/ijerph9062075PubMedCentralCrossRefPubMed
77.
go back to reference Aplan PD, Chervinsky DS, Stanulla M, Burhans WC: Site-specific DNA cleavage within the MLL breakpoint cluster region induced by topoisomerase II inhibitors. Blood. 1996, 87: 2649-2658.PubMed Aplan PD, Chervinsky DS, Stanulla M, Burhans WC: Site-specific DNA cleavage within the MLL breakpoint cluster region induced by topoisomerase II inhibitors. Blood. 1996, 87: 2649-2658.PubMed
78.
go back to reference Bystritskiy AA, Razin SV: Breakpoint clusters: reason or consequence?. Crit Rev Eukaryot Gene Expr. 2004, 14: 65-77. 10.1615/CritRevEukaryotGeneExpr.v14.i12.40CrossRefPubMed Bystritskiy AA, Razin SV: Breakpoint clusters: reason or consequence?. Crit Rev Eukaryot Gene Expr. 2004, 14: 65-77. 10.1615/CritRevEukaryotGeneExpr.v14.i12.40CrossRefPubMed
79.
go back to reference Hawtin RE, Stockett DE, Wong OK, Lundin C, Helleday T, Fox JA: Homologous recombination repair is essential for repair of vosaroxin-induced DNA double-strand breaks. Oncotarget. 2010, 1: 606-619.PubMedCentralCrossRefPubMed Hawtin RE, Stockett DE, Wong OK, Lundin C, Helleday T, Fox JA: Homologous recombination repair is essential for repair of vosaroxin-induced DNA double-strand breaks. Oncotarget. 2010, 1: 606-619.PubMedCentralCrossRefPubMed
80.
go back to reference Heisig P: Type II topoisomerases–inhibitors, repair mechanisms and mutations. Mutagenesis. 2009, 24: 465-469. 10.1093/mutage/gep035CrossRefPubMed Heisig P: Type II topoisomerases–inhibitors, repair mechanisms and mutations. Mutagenesis. 2009, 24: 465-469. 10.1093/mutage/gep035CrossRefPubMed
81.
go back to reference Yang Z, Waldman AS, Wyatt MD: Expression and regulation of RAD51 mediate cellular responses to chemotherapeutics. Biochem Pharmacol. 2012, 83: 741-746. 10.1016/j.bcp.2011.12.022PubMedCentralCrossRefPubMed Yang Z, Waldman AS, Wyatt MD: Expression and regulation of RAD51 mediate cellular responses to chemotherapeutics. Biochem Pharmacol. 2012, 83: 741-746. 10.1016/j.bcp.2011.12.022PubMedCentralCrossRefPubMed
82.
go back to reference Kantidze OL, Razin SV: Chemotherapy-related secondary leukemias: a role for DNA repair by error-prone non-homologous end joining in topoisomerase II - Induced chromosomal rearrangements. Gene. 2007, 391: 76-79. 10.1016/j.gene.2006.12.006CrossRefPubMed Kantidze OL, Razin SV: Chemotherapy-related secondary leukemias: a role for DNA repair by error-prone non-homologous end joining in topoisomerase II - Induced chromosomal rearrangements. Gene. 2007, 391: 76-79. 10.1016/j.gene.2006.12.006CrossRefPubMed
83.
go back to reference Iliakis G: Backup pathways of NHEJ in cells of higher eukaryotes: cell cycle dependence. Radiother Oncol. 2009, 92: 310-315. 10.1016/j.radonc.2009.06.024CrossRefPubMed Iliakis G: Backup pathways of NHEJ in cells of higher eukaryotes: cell cycle dependence. Radiother Oncol. 2009, 92: 310-315. 10.1016/j.radonc.2009.06.024CrossRefPubMed
84.
go back to reference Umanskaya ON, Lebedeva SS, Gavrilov AA, Bystritskiy AA, Razin SV: Inhibition of DNA topoisomerase II may trigger illegitimate recombination in living cells: Experiments with a model system. J Cell Biochem. 2006, 99: 598-608. 10.1002/jcb.20938CrossRefPubMed Umanskaya ON, Lebedeva SS, Gavrilov AA, Bystritskiy AA, Razin SV: Inhibition of DNA topoisomerase II may trigger illegitimate recombination in living cells: Experiments with a model system. J Cell Biochem. 2006, 99: 598-608. 10.1002/jcb.20938CrossRefPubMed
85.
go back to reference Rowley JD, Olney HJ: International workshop on the relationship of prior therapy to balanced chromosome aberrations in therapy-related myelodysplastic syndromes and acute leukemia: overview report. Genes Chromosomes Cancer. 2002, 33: 331-345. 10.1002/gcc.10040CrossRefPubMed Rowley JD, Olney HJ: International workshop on the relationship of prior therapy to balanced chromosome aberrations in therapy-related myelodysplastic syndromes and acute leukemia: overview report. Genes Chromosomes Cancer. 2002, 33: 331-345. 10.1002/gcc.10040CrossRefPubMed
86.
go back to reference Felix CA: Secondary leukemias induced by topoisomerase-targeted drugs. Biochim Biophys Acta. 1998, 1400: 233-255. 10.1016/S0167-4781(98)00139-0CrossRefPubMed Felix CA: Secondary leukemias induced by topoisomerase-targeted drugs. Biochim Biophys Acta. 1998, 1400: 233-255. 10.1016/S0167-4781(98)00139-0CrossRefPubMed
87.
go back to reference Rubtsov MA, Terekhov SM, Razin SV, Iarovaia OV: Repositioning of ETO gene in cells treated with VP-16, an inhibitor of DNA-topoisomerase II. J Cell Biochem. 2008, 104: 692-699. 10.1002/jcb.21656CrossRefPubMed Rubtsov MA, Terekhov SM, Razin SV, Iarovaia OV: Repositioning of ETO gene in cells treated with VP-16, an inhibitor of DNA-topoisomerase II. J Cell Biochem. 2008, 104: 692-699. 10.1002/jcb.21656CrossRefPubMed
88.
go back to reference Smith KA, Cowell IG, Zhang Y, Sondka Z, Austin CA: The role of topoisomerase II beta on breakage and proximity of RUNX1 to partner alleles RUNX1T1 and EVI1. Genes Chromosomes Cancer. 2014, 53: 117-128. 10.1002/gcc.22124CrossRefPubMed Smith KA, Cowell IG, Zhang Y, Sondka Z, Austin CA: The role of topoisomerase II beta on breakage and proximity of RUNX1 to partner alleles RUNX1T1 and EVI1. Genes Chromosomes Cancer. 2014, 53: 117-128. 10.1002/gcc.22124CrossRefPubMed
89.
go back to reference Gue M, Sun JS, Boudier T: Simultaneous localization of MLL, AF4 and ENL genes in interphase nuclei by 3D-FISH: MLL translocation revisited. BMC Cancer. 2006, 6: 20- 10.1186/1471-2407-6-20PubMedCentralCrossRefPubMed Gue M, Sun JS, Boudier T: Simultaneous localization of MLL, AF4 and ENL genes in interphase nuclei by 3D-FISH: MLL translocation revisited. BMC Cancer. 2006, 6: 20- 10.1186/1471-2407-6-20PubMedCentralCrossRefPubMed
90.
go back to reference Cowell IG, Sondka Z, Smith K, Lee KC, Manville CM, Sidorczuk-Lesthuruge M, Rance HA, Padget K, Jackson GH, Adachi N, Austin CA: Model for MLL translocations in therapy-related leukemia involving topoisomerase IIbeta-mediated DNA strand breaks and gene proximity. Proc Natl Acad Sci U S A. 2012, 109: 8989-8994. 10.1073/pnas.1204406109PubMedCentralCrossRefPubMed Cowell IG, Sondka Z, Smith K, Lee KC, Manville CM, Sidorczuk-Lesthuruge M, Rance HA, Padget K, Jackson GH, Adachi N, Austin CA: Model for MLL translocations in therapy-related leukemia involving topoisomerase IIbeta-mediated DNA strand breaks and gene proximity. Proc Natl Acad Sci U S A. 2012, 109: 8989-8994. 10.1073/pnas.1204406109PubMedCentralCrossRefPubMed
91.
go back to reference Do TU, Ho B, Shih SJ, Vaughan A: Zinc finger nuclease induced DNA double stranded breaks and rearrangements in MLL. Mutat Res. 2012, 740: 34-42. 10.1016/j.mrfmmm.2012.12.006PubMedCentralCrossRefPubMed Do TU, Ho B, Shih SJ, Vaughan A: Zinc finger nuclease induced DNA double stranded breaks and rearrangements in MLL. Mutat Res. 2012, 740: 34-42. 10.1016/j.mrfmmm.2012.12.006PubMedCentralCrossRefPubMed
92.
go back to reference Xiao H, Mao Y, Desai SD, Zhou N, Ting CY, Hwang J, Liu LF: The topoisomerase IIbeta circular clamp arrests transcription and signals a 26S proteasome pathway. Proc Natl Acad Sci U S A. 2003, 100: 3239-3244. 10.1073/pnas.0736401100PubMedCentralCrossRefPubMed Xiao H, Mao Y, Desai SD, Zhou N, Ting CY, Hwang J, Liu LF: The topoisomerase IIbeta circular clamp arrests transcription and signals a 26S proteasome pathway. Proc Natl Acad Sci U S A. 2003, 100: 3239-3244. 10.1073/pnas.0736401100PubMedCentralCrossRefPubMed
93.
go back to reference Zhang A, Lyu YL, Lin CP, Zhou N, Azarova AM, Wood LM, Liu LF: A protease pathway for the repair of topoisomerase II-DNA covalent complexes. J Biol Chem. 2006, 281: 35997-36003. 10.1074/jbc.M604149200CrossRefPubMed Zhang A, Lyu YL, Lin CP, Zhou N, Azarova AM, Wood LM, Liu LF: A protease pathway for the repair of topoisomerase II-DNA covalent complexes. J Biol Chem. 2006, 281: 35997-36003. 10.1074/jbc.M604149200CrossRefPubMed
94.
go back to reference Mirault ME, Boucher P, Tremblay A: Nucleotide-resolution mapping of topoisomerase-mediated and apoptotic DNA strand scissions at or near an MLL translocation hotspot. Am J Hum Genet. 2006, 79: 779-791. 10.1086/507791PubMedCentralCrossRefPubMed Mirault ME, Boucher P, Tremblay A: Nucleotide-resolution mapping of topoisomerase-mediated and apoptotic DNA strand scissions at or near an MLL translocation hotspot. Am J Hum Genet. 2006, 79: 779-791. 10.1086/507791PubMedCentralCrossRefPubMed
95.
go back to reference Meyer C, Hofmann J, Burmeister T, Groger D, Park TS, Emerenciano M, Pombo De Oliveira M, Renneville A, Villarese P, Macintyre E, Cavé H, Clappier E, Mass-Malo K, Zuna J, Trka J, De Braekeleer E, De Braekeleer M, Oh SH, Tsaur G, Fechina L, van der Velden VH, van Dongen JJ, Delabesse E, Binato R, Silva ML, Kustanovich A, Aleinikova O, Harris MH, Lund-Aho T, Juvonen V: The MLL recombinome of acute leukemias in 2013. Leukemia. 2013, 27: 2165-2176. 10.1038/leu.2013.135PubMedCentralCrossRefPubMed Meyer C, Hofmann J, Burmeister T, Groger D, Park TS, Emerenciano M, Pombo De Oliveira M, Renneville A, Villarese P, Macintyre E, Cavé H, Clappier E, Mass-Malo K, Zuna J, Trka J, De Braekeleer E, De Braekeleer M, Oh SH, Tsaur G, Fechina L, van der Velden VH, van Dongen JJ, Delabesse E, Binato R, Silva ML, Kustanovich A, Aleinikova O, Harris MH, Lund-Aho T, Juvonen V: The MLL recombinome of acute leukemias in 2013. Leukemia. 2013, 27: 2165-2176. 10.1038/leu.2013.135PubMedCentralCrossRefPubMed
96.
go back to reference Mitelman F, Johansson B, Mertens F: The impact of translocations and gene fusions on cancer causation. Nat Rev Cancer. 2007, 7: 233-245. 10.1038/nrc2091CrossRefPubMed Mitelman F, Johansson B, Mertens F: The impact of translocations and gene fusions on cancer causation. Nat Rev Cancer. 2007, 7: 233-245. 10.1038/nrc2091CrossRefPubMed
97.
go back to reference Ali H, Daser A, Dear P, Wood H, Rabbitts P, Rabbitts T: Nonreciprocal chromosomal translocations in renal cancer involve multiple DSBs and NHEJ associated with breakpoint inversion but not necessarily with transcription. Genes Chromosomes Cancer. 2013, 52: 402-409. 10.1002/gcc.22038CrossRefPubMed Ali H, Daser A, Dear P, Wood H, Rabbitts P, Rabbitts T: Nonreciprocal chromosomal translocations in renal cancer involve multiple DSBs and NHEJ associated with breakpoint inversion but not necessarily with transcription. Genes Chromosomes Cancer. 2013, 52: 402-409. 10.1002/gcc.22038CrossRefPubMed
98.
go back to reference Artandi SE, Chang S, Lee SL, Alson S, Gottlieb GJ, Chin L, DePinho RA: Telomere dysfunction promotes non-reciprocal translocations and epithelial cancers in mice. Nature. 2000, 406: 641-645. 10.1038/35020592CrossRefPubMed Artandi SE, Chang S, Lee SL, Alson S, Gottlieb GJ, Chin L, DePinho RA: Telomere dysfunction promotes non-reciprocal translocations and epithelial cancers in mice. Nature. 2000, 406: 641-645. 10.1038/35020592CrossRefPubMed
99.
go back to reference Anderson RM, Stevens DL, Goodhead DT: M-FISH analysis shows that complex chromosome aberrations induced by alpha -particle tracks are cumulative products of localized rearrangements. Proc Natl Acad Sci U S A. 2002, 99: 12167-12172. 10.1073/pnas.182426799PubMedCentralCrossRefPubMed Anderson RM, Stevens DL, Goodhead DT: M-FISH analysis shows that complex chromosome aberrations induced by alpha -particle tracks are cumulative products of localized rearrangements. Proc Natl Acad Sci U S A. 2002, 99: 12167-12172. 10.1073/pnas.182426799PubMedCentralCrossRefPubMed
Metadata
Title
Dynamics of double strand breaks and chromosomal translocations
Authors
Olga V Iarovaia
Mikhail Rubtsov
Elena Ioudinkova
Tatiana Tsfasman
Sergey V Razin
Yegor S Vassetzky
Publication date
01-12-2014
Publisher
BioMed Central
Published in
Molecular Cancer / Issue 1/2014
Electronic ISSN: 1476-4598
DOI
https://doi.org/10.1186/1476-4598-13-249

Other articles of this Issue 1/2014

Molecular Cancer 1/2014 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine