Skip to main content
Top
Published in: Cardiovascular Diabetology 1/2012

Open Access 01-12-2012 | Review

Vascular stem cells in diabetic complications: evidence for a role in the pathogenesis and the therapeutic promise

Authors: Emily C Keats, Zia A Khan

Published in: Cardiovascular Diabetology | Issue 1/2012

Login to get access

Abstract

Long standing diabetes leads to structural and functional alterations in both the micro- and the macro-vasculature. Vascular endothelial cells (ECs) are the primary target of the hyperglycemia-induced adverse effects. Vascular stem cells that give rise to endothelial progenitor cells (EPCs) and mesenchymal progenitor cells (MPCs) represent an attractive target for cell therapy for diabetic patients. A number of studies have reported EPC dysfunction as a novel participant in the culmination of the diabetic complications. The controversy behind the identity of EPCs and the similarity between these progenitor cells to hematopoietic cells has led to conflicting results. MPCs, on the other hand, have not been examined for a potential role in the pathogenesis of the complications. These multipotent cells, however, do show a therapeutic role. In this article, we summarize the vascular changes that occur in diabetic complications highlighting some of the common features, the key findings that illustrate an important role of vascular stem cells (VSCs) in the pathogenesis of chronic diabetic complications, and provide mechanisms by which these cells can be used for therapy.
Appendix
Available only for authorised users
Literature
1.
go back to reference Amos AF, McCarty DJ, Zimmet P: The rising global burden of diabetes and its complications: estimates and projections to the year 2010. Diabet Med. 1997, 14 (Suppl 5): S1-S85.PubMed Amos AF, McCarty DJ, Zimmet P: The rising global burden of diabetes and its complications: estimates and projections to the year 2010. Diabet Med. 1997, 14 (Suppl 5): S1-S85.PubMed
2.
go back to reference An economic tsunami, the cost of diabetes in Canada. Book An economic tsunami, the cost of diabetes in Canada. 2009, (Editor ed.^eds.). City: Canadian Diabetes Association An economic tsunami, the cost of diabetes in Canada. Book An economic tsunami, the cost of diabetes in Canada. 2009, (Editor ed.^eds.). City: Canadian Diabetes Association
3.
go back to reference 2011 National Diabetes Fact Sheet, National Center for Chronic Disease Prevention and Health Promotion. Book 2011 National Diabetes Fact Sheet, National Center for Chronic Disease Prevention and Health Promotion. 2011, (Editor ed.^eds.), vol. 2011. City: American Diabetes Association 2011 National Diabetes Fact Sheet, National Center for Chronic Disease Prevention and Health Promotion. Book 2011 National Diabetes Fact Sheet, National Center for Chronic Disease Prevention and Health Promotion. 2011, (Editor ed.^eds.), vol. 2011. City: American Diabetes Association
4.
go back to reference King H, Rewers M: Global estimates for prevalence of diabetes mellitus and impaired glucose tolerance in adults. WHO Ad Hoc Diabetes Reporting Group. Diabetes Care. 1993, 16: 157-177. 10.2337/diacare.16.1.157.CrossRefPubMed King H, Rewers M: Global estimates for prevalence of diabetes mellitus and impaired glucose tolerance in adults. WHO Ad Hoc Diabetes Reporting Group. Diabetes Care. 1993, 16: 157-177. 10.2337/diacare.16.1.157.CrossRefPubMed
5.
go back to reference Engerman R, Bloodworth JM, Nelson S: Relationship of microvascular disease in diabetes to metabolic control. Diabetes. 1977, 26: 760-769. 10.2337/diabetes.26.8.760.CrossRefPubMed Engerman R, Bloodworth JM, Nelson S: Relationship of microvascular disease in diabetes to metabolic control. Diabetes. 1977, 26: 760-769. 10.2337/diabetes.26.8.760.CrossRefPubMed
6.
go back to reference Albers JW, Herman WH, Pop-Busui R, Feldman EL, Martin CL, Cleary PA, Waberski BH, Lachin JM: Effect of prior intensive insulin treatment during the Diabetes Control and Complications Trial (DCCT) on peripheral neuropathy in type 1 diabetes during the Epidemiology of Diabetes Interventions and Complications (EDIC) Study. Diabetes Care. 33: 1090-1096. Albers JW, Herman WH, Pop-Busui R, Feldman EL, Martin CL, Cleary PA, Waberski BH, Lachin JM: Effect of prior intensive insulin treatment during the Diabetes Control and Complications Trial (DCCT) on peripheral neuropathy in type 1 diabetes during the Epidemiology of Diabetes Interventions and Complications (EDIC) Study. Diabetes Care. 33: 1090-1096.
7.
go back to reference Ratner RE: Glycemic control in the prevention of diabetic complications. Clin Cornerstone. 2001, 4: 24-37. 10.1016/S1098-3597(01)90027-4.CrossRefPubMed Ratner RE: Glycemic control in the prevention of diabetic complications. Clin Cornerstone. 2001, 4: 24-37. 10.1016/S1098-3597(01)90027-4.CrossRefPubMed
9.
go back to reference Cines DB, Pollak ES, Buck CA, Loscalzo J, Zimmerman GA, McEver RP, Pober JS, Wick TM, Konkle BA, Schwartz BS, et al: Endothelial cells in physiology and in the pathophysiology of vascular disorders. Blood. 1998, 91: 3527-3561.PubMed Cines DB, Pollak ES, Buck CA, Loscalzo J, Zimmerman GA, McEver RP, Pober JS, Wick TM, Konkle BA, Schwartz BS, et al: Endothelial cells in physiology and in the pathophysiology of vascular disorders. Blood. 1998, 91: 3527-3561.PubMed
10.
go back to reference Joost HG, Thorens B: The extended GLUT-family of sugar/polyol transport facilitators: nomenclature, sequence characteristics, and potential function of its novel members (review). Mol Membr Biol. 2001, 18: 247-256. 10.1080/09687680110090456.CrossRefPubMed Joost HG, Thorens B: The extended GLUT-family of sugar/polyol transport facilitators: nomenclature, sequence characteristics, and potential function of its novel members (review). Mol Membr Biol. 2001, 18: 247-256. 10.1080/09687680110090456.CrossRefPubMed
11.
go back to reference Augustin R: The protein family of glucose transport facilitators: Its not only about glucose after all. IUBMB Life. , 62: 315-333. Augustin R: The protein family of glucose transport facilitators: Its not only about glucose after all. IUBMB Life. , 62: 315-333.
12.
go back to reference Thorens B, Mueckler M: Glucose transporters in the 21st Century. Am J Physiol Endocrinol Metab. , 298: E141-E145. Thorens B, Mueckler M: Glucose transporters in the 21st Century. Am J Physiol Endocrinol Metab. , 298: E141-E145.
13.
go back to reference Mandarino LJ, Finlayson J, Hassell JR: High glucose downregulates glucose transport activity in retinal capillary pericytes but not endothelial cells. Invest Ophthalmol Vis Sci. 1994, 35: 964-972.PubMed Mandarino LJ, Finlayson J, Hassell JR: High glucose downregulates glucose transport activity in retinal capillary pericytes but not endothelial cells. Invest Ophthalmol Vis Sci. 1994, 35: 964-972.PubMed
14.
go back to reference Kaiser N, Sasson S, Feener EP, Boukobza-Vardi N, Higashi S, Moller DE, Davidheiser S, Przybylski RJ, King GL: Differential regulation of glucose transport and transporters by glucose in vascular endothelial and smooth muscle cells. Diabetes. 1993, 42: 80-89. 10.2337/diabetes.42.1.80.CrossRefPubMed Kaiser N, Sasson S, Feener EP, Boukobza-Vardi N, Higashi S, Moller DE, Davidheiser S, Przybylski RJ, King GL: Differential regulation of glucose transport and transporters by glucose in vascular endothelial and smooth muscle cells. Diabetes. 1993, 42: 80-89. 10.2337/diabetes.42.1.80.CrossRefPubMed
15.
go back to reference Wertheimer E, Sasson S, Cerasi E, Ben-Neriah Y: The ubiquitous glucose transporter GLUT-1 belongs to the glucose-regulated protein family of stress-inducible proteins. Proc Natl Acad Sci U S A. 1991, 88: 2525-2529. 10.1073/pnas.88.6.2525.PubMedCentralCrossRefPubMed Wertheimer E, Sasson S, Cerasi E, Ben-Neriah Y: The ubiquitous glucose transporter GLUT-1 belongs to the glucose-regulated protein family of stress-inducible proteins. Proc Natl Acad Sci U S A. 1991, 88: 2525-2529. 10.1073/pnas.88.6.2525.PubMedCentralCrossRefPubMed
16.
go back to reference Takagi H, King GL, Aiello LP: Hypoxia upregulates glucose transport activity through an adenosine-mediated increase of GLUT1 expression in retinal capillary endothelial cells. Diabetes. 1998, 47: 1480-1488. 10.2337/diabetes.47.9.1480.CrossRefPubMed Takagi H, King GL, Aiello LP: Hypoxia upregulates glucose transport activity through an adenosine-mediated increase of GLUT1 expression in retinal capillary endothelial cells. Diabetes. 1998, 47: 1480-1488. 10.2337/diabetes.47.9.1480.CrossRefPubMed
17.
go back to reference Brownlee M: Biochemistry and molecular cell biology of diabetic complications. Nature. 2001, 414: 813-820. 10.1038/414813a.CrossRefPubMed Brownlee M: Biochemistry and molecular cell biology of diabetic complications. Nature. 2001, 414: 813-820. 10.1038/414813a.CrossRefPubMed
18.
go back to reference Khan ZA, Chakrabarti S: Therapeutic targeting of endothelial dysfunction in chronic diabetic complications. Recent Pat Cardiovasc Drug Discov. 2006, 1: 167-175. 10.2174/157489006777442531.CrossRefPubMed Khan ZA, Chakrabarti S: Therapeutic targeting of endothelial dysfunction in chronic diabetic complications. Recent Pat Cardiovasc Drug Discov. 2006, 1: 167-175. 10.2174/157489006777442531.CrossRefPubMed
19.
go back to reference Khan ZA, Farhangkhoee H, Mahon JL, Bere L, Gonder JR, Chan BM, Uniyal S, Chakrabarti S: Endothelins: regulators of extracellular matrix protein production in diabetes. Exp Biol Med (Maywood). 2006, 231: 1022-1029. Khan ZA, Farhangkhoee H, Mahon JL, Bere L, Gonder JR, Chan BM, Uniyal S, Chakrabarti S: Endothelins: regulators of extracellular matrix protein production in diabetes. Exp Biol Med (Maywood). 2006, 231: 1022-1029.
20.
go back to reference Cagliero E, Maiello M, Boeri D, Roy S, Lorenzi M: Increased expression of basement membrane components in human endothelial cells cultured in high glucose. J Clin Invest. 1988, 82: 735-738. 10.1172/JCI113655.PubMedCentralCrossRefPubMed Cagliero E, Maiello M, Boeri D, Roy S, Lorenzi M: Increased expression of basement membrane components in human endothelial cells cultured in high glucose. J Clin Invest. 1988, 82: 735-738. 10.1172/JCI113655.PubMedCentralCrossRefPubMed
21.
go back to reference Graier WF, Grubenthal I, Dittrich P, Wascher TC, Kostner GM: Intracellular mechanism of high D-glucose-induced modulation of vascular cell proliferation. Eur J Pharmacol. 1995, 294: 221-229. 10.1016/0014-2999(95)00534-X.CrossRefPubMed Graier WF, Grubenthal I, Dittrich P, Wascher TC, Kostner GM: Intracellular mechanism of high D-glucose-induced modulation of vascular cell proliferation. Eur J Pharmacol. 1995, 294: 221-229. 10.1016/0014-2999(95)00534-X.CrossRefPubMed
22.
go back to reference Du XL, Sui GZ, Stockklauser-Farber K, Weiss J, Zink S, Schwippert B, Wu QX, Tschope D, Rosen P: Introduction of apoptosis by high proinsulin and glucose in cultured human umbilical vein endothelial cells is mediated by reactive oxygen species. Diabetologia. 1998, 41: 249-256. 10.1007/s001250050900.CrossRefPubMed Du XL, Sui GZ, Stockklauser-Farber K, Weiss J, Zink S, Schwippert B, Wu QX, Tschope D, Rosen P: Introduction of apoptosis by high proinsulin and glucose in cultured human umbilical vein endothelial cells is mediated by reactive oxygen species. Diabetologia. 1998, 41: 249-256. 10.1007/s001250050900.CrossRefPubMed
23.
go back to reference Lorenzi M, Cagliero E, Toledo S: Glucose toxicity for human endothelial cells in culture. Delayed replication, disturbed cell cycle, and accelerated death. Diabetes. 1985, 34: 621-627. 10.2337/diabetes.34.7.621.CrossRefPubMed Lorenzi M, Cagliero E, Toledo S: Glucose toxicity for human endothelial cells in culture. Delayed replication, disturbed cell cycle, and accelerated death. Diabetes. 1985, 34: 621-627. 10.2337/diabetes.34.7.621.CrossRefPubMed
24.
go back to reference Baumgartner-Parzer SM, Wagner L, Pettermann M, Grillari J, Gessl A, Waldhausl W: High-glucosetriggered apoptosis in cultured endothelial cells. Diabetes. 1995, 44: 1323-1327. 10.2337/diabetes.44.11.1323.CrossRefPubMed Baumgartner-Parzer SM, Wagner L, Pettermann M, Grillari J, Gessl A, Waldhausl W: High-glucosetriggered apoptosis in cultured endothelial cells. Diabetes. 1995, 44: 1323-1327. 10.2337/diabetes.44.11.1323.CrossRefPubMed
25.
go back to reference Yang Z, Mo X, Gong Q, Pan Q, Yang X, Cai W, Li C, Ma JX, He Y, Gao G: Critical effect of VEGF in the process of endothelial cell apoptosis induced by high glucose. Apoptosis. 2008, 13: 1331-1343. 10.1007/s10495-008-0257-y.CrossRefPubMed Yang Z, Mo X, Gong Q, Pan Q, Yang X, Cai W, Li C, Ma JX, He Y, Gao G: Critical effect of VEGF in the process of endothelial cell apoptosis induced by high glucose. Apoptosis. 2008, 13: 1331-1343. 10.1007/s10495-008-0257-y.CrossRefPubMed
26.
go back to reference Favaro E, Miceli I, Bussolati B, Schmitt-Ney M, Cavallo Perin P, Camussi G, Zanone MM: Hyperglycemia induces apoptosis of human pancreatic islet endothelial cells: effects of pravastatin on the Akt survival pathway. Am J Pathol. 2008, 173: 442-450. 10.2353/ajpath.2008.080238.PubMedCentralCrossRefPubMed Favaro E, Miceli I, Bussolati B, Schmitt-Ney M, Cavallo Perin P, Camussi G, Zanone MM: Hyperglycemia induces apoptosis of human pancreatic islet endothelial cells: effects of pravastatin on the Akt survival pathway. Am J Pathol. 2008, 173: 442-450. 10.2353/ajpath.2008.080238.PubMedCentralCrossRefPubMed
27.
go back to reference Chen S, Khan ZA, Barbin Y, Chakrabarti S: Pro-oxidant role of heme oxygenase in mediating glucose-induced endothelial cell damage. Free Radic Res. 2004, 38: 1301-1310. 10.1080/10715760400017228.CrossRefPubMed Chen S, Khan ZA, Barbin Y, Chakrabarti S: Pro-oxidant role of heme oxygenase in mediating glucose-induced endothelial cell damage. Free Radic Res. 2004, 38: 1301-1310. 10.1080/10715760400017228.CrossRefPubMed
28.
go back to reference El-Remessy AB, Abou-Mohamed G, Caldwell RW, Caldwell RB: High glucose-induced tyrosine nitration in endothelial cells: role of eNOS uncoupling and aldose reductase activation. Invest Ophthalmol Vis Sci. 2003, 44: 3135-3143. 10.1167/iovs.02-1022.CrossRefPubMed El-Remessy AB, Abou-Mohamed G, Caldwell RW, Caldwell RB: High glucose-induced tyrosine nitration in endothelial cells: role of eNOS uncoupling and aldose reductase activation. Invest Ophthalmol Vis Sci. 2003, 44: 3135-3143. 10.1167/iovs.02-1022.CrossRefPubMed
29.
go back to reference Nishikawa T, Edelstein D, Du XL, Yamagishi S, Matsumura T, Kaneda Y, Yorek MA, Beebe D, Oates PJ, Hammes HP, et al: Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage. Nature. 2000, 404: 787-790. 10.1038/35008121.CrossRefPubMed Nishikawa T, Edelstein D, Du XL, Yamagishi S, Matsumura T, Kaneda Y, Yorek MA, Beebe D, Oates PJ, Hammes HP, et al: Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage. Nature. 2000, 404: 787-790. 10.1038/35008121.CrossRefPubMed
30.
go back to reference van den Oever IA, Raterman HG, Nurmohamed MT, Simsek S: Endothelial dysfunction, inflammation, and apoptosis in diabetes mellitus. Mediators Inflamm 2010, 2010: 792393. van den Oever IA, Raterman HG, Nurmohamed MT, Simsek S: Endothelial dysfunction, inflammation, and apoptosis in diabetes mellitus. Mediators Inflamm 2010, 2010: 792393.
31.
go back to reference Aronson D: Hyperglycemia and the pathobiology of diabetic complications. Adv Cardiol. 2008, 45: 1-16.CrossRefPubMed Aronson D: Hyperglycemia and the pathobiology of diabetic complications. Adv Cardiol. 2008, 45: 1-16.CrossRefPubMed
32.
go back to reference Alberti KG, Zimmet PZ: New diagnostic criteria and classification of diabetesagain?. Diabet Med. 1998, 15: 535-536. 10.1002/(SICI)1096-9136(199807)15:7<535::AID-DIA670>3.0.CO;2-Q.CrossRefPubMed Alberti KG, Zimmet PZ: New diagnostic criteria and classification of diabetesagain?. Diabet Med. 1998, 15: 535-536. 10.1002/(SICI)1096-9136(199807)15:7<535::AID-DIA670>3.0.CO;2-Q.CrossRefPubMed
33.
go back to reference Chou E, Suzuma I, Way KJ, Opland D, Clermont AC, Naruse K, Suzuma K, Bowling NL, Vlahos CJ, Aiello LP, King GL: Decreased cardiac expression of vascular endothelial growth factor and its receptors in insulin-resistant and diabetic States: a possible explanation for impaired collateral formation in cardiac tissue. Circulation. 2002, 105: 373-379. 10.1161/hc0302.102143.CrossRefPubMed Chou E, Suzuma I, Way KJ, Opland D, Clermont AC, Naruse K, Suzuma K, Bowling NL, Vlahos CJ, Aiello LP, King GL: Decreased cardiac expression of vascular endothelial growth factor and its receptors in insulin-resistant and diabetic States: a possible explanation for impaired collateral formation in cardiac tissue. Circulation. 2002, 105: 373-379. 10.1161/hc0302.102143.CrossRefPubMed
36.
go back to reference Jiang B, Liou GI, Behzadian MA, Caldwell RB: Astrocytes modulate retinal vasculogenesis: effects on fibronectin expression. J Cell Sci. 1994, 107 (Pt 9): 2499-2508.PubMed Jiang B, Liou GI, Behzadian MA, Caldwell RB: Astrocytes modulate retinal vasculogenesis: effects on fibronectin expression. J Cell Sci. 1994, 107 (Pt 9): 2499-2508.PubMed
37.
go back to reference Nishikawa T, Giardino I, Edelstein D, Brownlee M: Changes in diabetic retinal matrix protein mRNA levels in a common transgenic mouse strain. Curr Eye Res. 2000, 21: 581-587. 10.1076/0271-3683(200007)2111-ZFT581.CrossRefPubMed Nishikawa T, Giardino I, Edelstein D, Brownlee M: Changes in diabetic retinal matrix protein mRNA levels in a common transgenic mouse strain. Curr Eye Res. 2000, 21: 581-587. 10.1076/0271-3683(200007)2111-ZFT581.CrossRefPubMed
38.
go back to reference Katwa LC, Guarda E, Weber KT: Endothelin receptors in cultured adult rat cardiac fibroblasts. Cardiovasc Res. 1993, 27: 2125-2129. 10.1093/cvr/27.12.2125.CrossRefPubMed Katwa LC, Guarda E, Weber KT: Endothelin receptors in cultured adult rat cardiac fibroblasts. Cardiovasc Res. 1993, 27: 2125-2129. 10.1093/cvr/27.12.2125.CrossRefPubMed
39.
go back to reference Guarda E, Katwa LC, Myers PR, Tyagi SC, Weber KT: Effects of endothelins on collagen turnover in cardiac fibroblasts. Cardiovasc Res. 1993, 27: 2130-2134. 10.1093/cvr/27.12.2130.CrossRefPubMed Guarda E, Katwa LC, Myers PR, Tyagi SC, Weber KT: Effects of endothelins on collagen turnover in cardiac fibroblasts. Cardiovasc Res. 1993, 27: 2130-2134. 10.1093/cvr/27.12.2130.CrossRefPubMed
40.
go back to reference Chandrasekhar KS, Zhou H, Zeng P, Alge D, Li W, Finney BA, Yoder MC, Li J: Blood vessel wall-derived endothelial colony-forming cells enhance fracture repair and bone regeneration. Calcif Tissue Int. 2011, 89: 347-357. 10.1007/s00223-011-9524-y.CrossRefPubMed Chandrasekhar KS, Zhou H, Zeng P, Alge D, Li W, Finney BA, Yoder MC, Li J: Blood vessel wall-derived endothelial colony-forming cells enhance fracture repair and bone regeneration. Calcif Tissue Int. 2011, 89: 347-357. 10.1007/s00223-011-9524-y.CrossRefPubMed
41.
go back to reference Wu Y, Wang J, Scott PG, Tredget EE: Bone marrow-derived stem cells in wound healing: a review. Wound Repair Regen. 2007, 15 (Suppl 1): S18-S26.CrossRefPubMed Wu Y, Wang J, Scott PG, Tredget EE: Bone marrow-derived stem cells in wound healing: a review. Wound Repair Regen. 2007, 15 (Suppl 1): S18-S26.CrossRefPubMed
42.
go back to reference Tepper OM, Galiano RD, Kalka C, Gurtner GC: Endothelial progenitor cells: the promise of vascular stem cells for plastic surgery. Plast Reconstr Surg. 2003, 111: 846-854. 10.1097/01.PRS.0000039576.63523.08.CrossRefPubMed Tepper OM, Galiano RD, Kalka C, Gurtner GC: Endothelial progenitor cells: the promise of vascular stem cells for plastic surgery. Plast Reconstr Surg. 2003, 111: 846-854. 10.1097/01.PRS.0000039576.63523.08.CrossRefPubMed
43.
go back to reference Zuk PA, Zhu M, Ashjian P, De Ugarte DA, Huang JI, Mizuno H, Alfonso ZC, Fraser JK, Benhaim P, Hedrick MH: Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell. 2002, 13: 4279-4295. 10.1091/mbc.E02-02-0105.PubMedCentralCrossRefPubMed Zuk PA, Zhu M, Ashjian P, De Ugarte DA, Huang JI, Mizuno H, Alfonso ZC, Fraser JK, Benhaim P, Hedrick MH: Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell. 2002, 13: 4279-4295. 10.1091/mbc.E02-02-0105.PubMedCentralCrossRefPubMed
44.
go back to reference Kattman SJ, Huber TL, Keller GM: Multipotent flk-1+ cardiovascular progenitor cells give rise to the cardiomyocyte, endothelial, and vascular smooth muscle lineages. Dev Cell. 2006, 11: 723-732. 10.1016/j.devcel.2006.10.002.CrossRefPubMed Kattman SJ, Huber TL, Keller GM: Multipotent flk-1+ cardiovascular progenitor cells give rise to the cardiomyocyte, endothelial, and vascular smooth muscle lineages. Dev Cell. 2006, 11: 723-732. 10.1016/j.devcel.2006.10.002.CrossRefPubMed
45.
go back to reference Yamashita J, Itoh H, Hirashima M, Ogawa M, Nishikawa S, Yurugi T, Naito M, Nakao K: Flk1-positive cells derived from embryonic stem cells serve as vascular progenitors. Nature. 2000, 408: 92-96. 10.1038/35040568.CrossRefPubMed Yamashita J, Itoh H, Hirashima M, Ogawa M, Nishikawa S, Yurugi T, Naito M, Nakao K: Flk1-positive cells derived from embryonic stem cells serve as vascular progenitors. Nature. 2000, 408: 92-96. 10.1038/35040568.CrossRefPubMed
46.
go back to reference Ferreira LS, Gerecht S, Shieh HF, Watson N, Rupnick MA, Dallabrida SM, Vunjak-Novakovic G, Langer R: Vascular progenitor cells isolated from human embryonic stem cells give rise to endothelial and smooth muscle like cells and form vascular networks in vivo. Circ Res. 2007, 101: 286-294. 10.1161/CIRCRESAHA.107.150201.CrossRefPubMed Ferreira LS, Gerecht S, Shieh HF, Watson N, Rupnick MA, Dallabrida SM, Vunjak-Novakovic G, Langer R: Vascular progenitor cells isolated from human embryonic stem cells give rise to endothelial and smooth muscle like cells and form vascular networks in vivo. Circ Res. 2007, 101: 286-294. 10.1161/CIRCRESAHA.107.150201.CrossRefPubMed
47.
go back to reference Khan ZA, Boscolo E, Picard A, Psutka S, Melero-Martin JM, Bartch TC, Mulliken JB, Bischoff J: Multipotential stem cells recapitulate human infantile hemangioma in immunodeficient mice. J Clin Invest. 2008, 118: 2592-2599.PubMedCentralPubMed Khan ZA, Boscolo E, Picard A, Psutka S, Melero-Martin JM, Bartch TC, Mulliken JB, Bischoff J: Multipotential stem cells recapitulate human infantile hemangioma in immunodeficient mice. J Clin Invest. 2008, 118: 2592-2599.PubMedCentralPubMed
48.
go back to reference Khan ZA, Melero-Martin JM, Wu X, Paruchuri S, Boscolo E, Mulliken JB, Bischoff J: Endothelial progenitor cells from infantile hemangioma and umbilical cord blood display unique cellular responses to endostatin. Blood. 2006, 108: 915-921. 10.1182/blood-2006-03-006478.PubMedCentralCrossRefPubMed Khan ZA, Melero-Martin JM, Wu X, Paruchuri S, Boscolo E, Mulliken JB, Bischoff J: Endothelial progenitor cells from infantile hemangioma and umbilical cord blood display unique cellular responses to endostatin. Blood. 2006, 108: 915-921. 10.1182/blood-2006-03-006478.PubMedCentralCrossRefPubMed
49.
go back to reference Wu X, Rabkin-Aikawa E, Guleserian KJ, Perry TE, Masuda Y, Sutherland FW, Schoen FJ, Mayer JE, Bischoff J: Tissue-engineered microvessels on three-dimensional biodegradable scaffolds using human endothelial progenitor cells. Am J Physiol Heart Circ Physiol. 2004, 287: H480-H487. 10.1152/ajpheart.01232.2003.CrossRefPubMed Wu X, Rabkin-Aikawa E, Guleserian KJ, Perry TE, Masuda Y, Sutherland FW, Schoen FJ, Mayer JE, Bischoff J: Tissue-engineered microvessels on three-dimensional biodegradable scaffolds using human endothelial progenitor cells. Am J Physiol Heart Circ Physiol. 2004, 287: H480-H487. 10.1152/ajpheart.01232.2003.CrossRefPubMed
50.
go back to reference Peichev M, Naiyer AJ, Pereira D, Zhu Z, Lane WJ, Williams M, Oz MC, Hicklin DJ, Witte L, Moore MA, Rafii S: Expression of VEGFR-2 and AC133 by circulating human CD34(+) cells identifies a population of functional endothelial precursors. Blood. 2000, 95: 952-958.PubMed Peichev M, Naiyer AJ, Pereira D, Zhu Z, Lane WJ, Williams M, Oz MC, Hicklin DJ, Witte L, Moore MA, Rafii S: Expression of VEGFR-2 and AC133 by circulating human CD34(+) cells identifies a population of functional endothelial precursors. Blood. 2000, 95: 952-958.PubMed
51.
go back to reference Tondreau T, Meuleman N, Delforge A, Dejeneffe M, Leroy R, Massy M, Mortier C, Bron D, Lagneaux L: Mesenchymal stem cells derived from CD133-positive cells in mobilized peripheral blood and cord blood: proliferation, Oct4 expression, and plasticity. Stem Cells. 2005, 23: 1105-1112. 10.1634/stemcells.2004-0330.CrossRefPubMed Tondreau T, Meuleman N, Delforge A, Dejeneffe M, Leroy R, Massy M, Mortier C, Bron D, Lagneaux L: Mesenchymal stem cells derived from CD133-positive cells in mobilized peripheral blood and cord blood: proliferation, Oct4 expression, and plasticity. Stem Cells. 2005, 23: 1105-1112. 10.1634/stemcells.2004-0330.CrossRefPubMed
52.
go back to reference Melero-Martin JM, De Obaldia ME, Kang SY, Khan ZA, Yuan L, Oettgen P, Bischoff J: Engineering robust and functional vascular networks in vivo with human adult and cord blood-derived progenitor cells. Circ Res. 2008, 103: 194-202. 10.1161/CIRCRESAHA.108.178590.PubMedCentralCrossRefPubMed Melero-Martin JM, De Obaldia ME, Kang SY, Khan ZA, Yuan L, Oettgen P, Bischoff J: Engineering robust and functional vascular networks in vivo with human adult and cord blood-derived progenitor cells. Circ Res. 2008, 103: 194-202. 10.1161/CIRCRESAHA.108.178590.PubMedCentralCrossRefPubMed
53.
go back to reference Melero-Martin JM, Khan ZA, Picard A, Wu X, Paruchuri S, Bischoff J: In vivo vasculogenic potential of human blood-derived endothelial progenitor cells. Blood. 2007, 109: 4761-4768. 10.1182/blood-2006-12-062471.CrossRefPubMed Melero-Martin JM, Khan ZA, Picard A, Wu X, Paruchuri S, Bischoff J: In vivo vasculogenic potential of human blood-derived endothelial progenitor cells. Blood. 2007, 109: 4761-4768. 10.1182/blood-2006-12-062471.CrossRefPubMed
54.
go back to reference Case J, Mead LE, Bessler WK, Prater D, White HA, Saadatzadeh MR, Bhavsar JR, Yoder MC, Haneline LS, Ingram DA: Human CD34+AC133+VEGFR-2+ cells are not endothelial progenitor cells but distinct, primitive hematopoietic progenitors. Exp Hematol. 2007, 35: 1109-1118. 10.1016/j.exphem.2007.04.002.CrossRefPubMed Case J, Mead LE, Bessler WK, Prater D, White HA, Saadatzadeh MR, Bhavsar JR, Yoder MC, Haneline LS, Ingram DA: Human CD34+AC133+VEGFR-2+ cells are not endothelial progenitor cells but distinct, primitive hematopoietic progenitors. Exp Hematol. 2007, 35: 1109-1118. 10.1016/j.exphem.2007.04.002.CrossRefPubMed
55.
go back to reference Zampetaki A, Kirton JP, Xu Q: Vascular repair by endothelial progenitor cells. Cardiovasc Res. 2008, 78: 413-421. 10.1093/cvr/cvn081.CrossRefPubMed Zampetaki A, Kirton JP, Xu Q: Vascular repair by endothelial progenitor cells. Cardiovasc Res. 2008, 78: 413-421. 10.1093/cvr/cvn081.CrossRefPubMed
56.
go back to reference Fadini GP, Agostini C, Avogaro A: Characterization of endothelial progenitor cells. Biochem Biophys Res Commun. 2005, 336: 1-2. 10.1016/j.bbrc.2005.07.119.CrossRefPubMed Fadini GP, Agostini C, Avogaro A: Characterization of endothelial progenitor cells. Biochem Biophys Res Commun. 2005, 336: 1-2. 10.1016/j.bbrc.2005.07.119.CrossRefPubMed
57.
go back to reference Lopez-Holgado N, Alberca M, Sanchez-Guijo F, Villaron E, Almeida J, Martin A, Armellini A, Garcia C, Blanco B, Sanchez-Abarca I, et al: Short-term endothelial progenitor cell colonies are composed of monocytes and do not acquire endothelial markers. Cytotherapy. 2007, 9: 14-22. 10.1080/14653240601047726.CrossRefPubMed Lopez-Holgado N, Alberca M, Sanchez-Guijo F, Villaron E, Almeida J, Martin A, Armellini A, Garcia C, Blanco B, Sanchez-Abarca I, et al: Short-term endothelial progenitor cell colonies are composed of monocytes and do not acquire endothelial markers. Cytotherapy. 2007, 9: 14-22. 10.1080/14653240601047726.CrossRefPubMed
58.
go back to reference Capla JM, Grogan RH, Callaghan MJ, Galiano RD, Tepper OM, Ceradini DJ, Gurtner GC: Diabetes impairs endothelial progenitor cell-mediated blood vessel formation in response to hypoxia. Plast Reconstr Surg. 2007, 119: 59-70. 10.1097/01.prs.0000244830.16906.3f.CrossRefPubMed Capla JM, Grogan RH, Callaghan MJ, Galiano RD, Tepper OM, Ceradini DJ, Gurtner GC: Diabetes impairs endothelial progenitor cell-mediated blood vessel formation in response to hypoxia. Plast Reconstr Surg. 2007, 119: 59-70. 10.1097/01.prs.0000244830.16906.3f.CrossRefPubMed
59.
go back to reference Kusuyama T, Omura T, Nishiya D, Enomoto S, Matsumoto R, Takeuchi K, Yoshikawa J, Yoshiyama M: Effects of treatment for diabetes mellitus on circulating vascular progenitor cells. J Pharmacol Sci. 2006, 102: 96-102. 10.1254/jphs.FP0060256.CrossRefPubMed Kusuyama T, Omura T, Nishiya D, Enomoto S, Matsumoto R, Takeuchi K, Yoshikawa J, Yoshiyama M: Effects of treatment for diabetes mellitus on circulating vascular progenitor cells. J Pharmacol Sci. 2006, 102: 96-102. 10.1254/jphs.FP0060256.CrossRefPubMed
60.
go back to reference Wang CH, Ting MK, Verma S, Kuo LT, Yang NI, Hsieh IC, Wang SY, Hung A, Cherng WJ: Pioglitazone increases the numbers and improves the functional capacity of endothelial progenitor cells in patients with diabetes mellitus. Am Heart J. 2006, 152: e1051-e1058.CrossRef Wang CH, Ting MK, Verma S, Kuo LT, Yang NI, Hsieh IC, Wang SY, Hung A, Cherng WJ: Pioglitazone increases the numbers and improves the functional capacity of endothelial progenitor cells in patients with diabetes mellitus. Am Heart J. 2006, 152: e1051-e1058.CrossRef
61.
go back to reference Goldstein JL, Ho YK, Basu SK, Brown MS: Binding site on macrophages that mediates uptake and degradation of acetylated low density lipoprotein, producing massive cholesterol deposition. Proc Natl Acad Sci U S A. 1979, 76: 333-337. 10.1073/pnas.76.1.333.PubMedCentralCrossRefPubMed Goldstein JL, Ho YK, Basu SK, Brown MS: Binding site on macrophages that mediates uptake and degradation of acetylated low density lipoprotein, producing massive cholesterol deposition. Proc Natl Acad Sci U S A. 1979, 76: 333-337. 10.1073/pnas.76.1.333.PubMedCentralCrossRefPubMed
62.
go back to reference Jackson CJ, Garbett PK, Nissen B, Schrieber L: Binding of human endothelium to Ulex europaeus I-coated Dynabeads: application to the isolation of microvascular endothelium. J Cell Sci. 1990, 96 (Pt 2): 257-262.PubMed Jackson CJ, Garbett PK, Nissen B, Schrieber L: Binding of human endothelium to Ulex europaeus I-coated Dynabeads: application to the isolation of microvascular endothelium. J Cell Sci. 1990, 96 (Pt 2): 257-262.PubMed
63.
go back to reference Yoder MC, Mead LE, Prater D, Krier TR, Mroueh KN, Li F, Krasich R, Temm CJ, Prchal JT, Ingram DA: Redefining endothelial progenitor cells via clonal analysis and hematopoietic stem/progenitor cell principals. Blood. 2007, 109: 1801-1809. 10.1182/blood-2006-08-043471.PubMedCentralCrossRefPubMed Yoder MC, Mead LE, Prater D, Krier TR, Mroueh KN, Li F, Krasich R, Temm CJ, Prchal JT, Ingram DA: Redefining endothelial progenitor cells via clonal analysis and hematopoietic stem/progenitor cell principals. Blood. 2007, 109: 1801-1809. 10.1182/blood-2006-08-043471.PubMedCentralCrossRefPubMed
65.
go back to reference Loomans CJ, de Koning EJ, Staal FJ, Rookmaaker MB, Verseyden C, de Boer HC, Verhaar MC, Braam B, Rabelink TJ, van Zonneveld AJ: Endothelial progenitor cell dysfunction: a novel concept in the pathogenesis of vascular complications of type 1 diabetes. Diabetes. 2004, 53: 195-199.CrossRefPubMed Loomans CJ, de Koning EJ, Staal FJ, Rookmaaker MB, Verseyden C, de Boer HC, Verhaar MC, Braam B, Rabelink TJ, van Zonneveld AJ: Endothelial progenitor cell dysfunction: a novel concept in the pathogenesis of vascular complications of type 1 diabetes. Diabetes. 2004, 53: 195-199.CrossRefPubMed
66.
go back to reference Vasa M, Fichtlscherer S, Aicher A, Adler K, Urbich C, Martin H, Zeiher AM, Dimmeler S: Number and migratory activity of circulating endothelial progenitor cells inversely correlate with risk factors for coronary artery disease. Circ Res. 2001, 89: E1-E7. 10.1161/hh1301.093953.CrossRefPubMed Vasa M, Fichtlscherer S, Aicher A, Adler K, Urbich C, Martin H, Zeiher AM, Dimmeler S: Number and migratory activity of circulating endothelial progenitor cells inversely correlate with risk factors for coronary artery disease. Circ Res. 2001, 89: E1-E7. 10.1161/hh1301.093953.CrossRefPubMed
67.
go back to reference Fadini GP, Sartore S, Albiero M, Baesso I, Murphy E, Menegolo M, Grego F, Vigili de Kreutzenberg S, Tiengo A, Agostini C, Avogaro A: Number and function of endothelial progenitor cells as a marker of severity for diabetic vasculopathy. Arterioscler Thromb Vasc Biol. 2006, 26: 2140-2146. 10.1161/01.ATV.0000237750.44469.88.CrossRefPubMed Fadini GP, Sartore S, Albiero M, Baesso I, Murphy E, Menegolo M, Grego F, Vigili de Kreutzenberg S, Tiengo A, Agostini C, Avogaro A: Number and function of endothelial progenitor cells as a marker of severity for diabetic vasculopathy. Arterioscler Thromb Vasc Biol. 2006, 26: 2140-2146. 10.1161/01.ATV.0000237750.44469.88.CrossRefPubMed
68.
go back to reference Fadini GP, Miorin M, Facco M, Bonamico S, Baesso I, Grego F, Menegolo M, de Kreutzenberg SV, Tiengo A, Agostini C, Avogaro A: Circulating endothelial progenitor cells are reduced in peripheral vascular complications of type 2 diabetes mellitus. J Am Coll Cardiol. 2005, 45: 1449-1457. 10.1016/j.jacc.2004.11.067.CrossRefPubMed Fadini GP, Miorin M, Facco M, Bonamico S, Baesso I, Grego F, Menegolo M, de Kreutzenberg SV, Tiengo A, Agostini C, Avogaro A: Circulating endothelial progenitor cells are reduced in peripheral vascular complications of type 2 diabetes mellitus. J Am Coll Cardiol. 2005, 45: 1449-1457. 10.1016/j.jacc.2004.11.067.CrossRefPubMed
69.
go back to reference Yue WS, Lau KK, Siu CW, Wang M, Yan GH, Yiu KH, Tse HF: Impact of glycemic control on circulating endothelial progenitor cells and arterial stiffness in patients with type 2 diabetes mellitus. Cardiovasc Diabetol. 2011, 10: 113-10.1186/1475-2840-10-113.PubMedCentralCrossRefPubMed Yue WS, Lau KK, Siu CW, Wang M, Yan GH, Yiu KH, Tse HF: Impact of glycemic control on circulating endothelial progenitor cells and arterial stiffness in patients with type 2 diabetes mellitus. Cardiovasc Diabetol. 2011, 10: 113-10.1186/1475-2840-10-113.PubMedCentralCrossRefPubMed
70.
go back to reference Bozdag-Turan I, Turan RG, Turan CH, Ludovicy S, Akin I, Kische S, Arsoy NS, Schneider H, Ortak J, Rehders T, et al: Relation between the frequency of CD34 bone marrow derived circulating progenitor cells and the number of diseased coronary arteries in patients with myocardial ischemia and diabetes. Cardiovasc Diabetol. 2011, 10: 107-10.1186/1475-2840-10-107.PubMedCentralCrossRefPubMed Bozdag-Turan I, Turan RG, Turan CH, Ludovicy S, Akin I, Kische S, Arsoy NS, Schneider H, Ortak J, Rehders T, et al: Relation between the frequency of CD34 bone marrow derived circulating progenitor cells and the number of diseased coronary arteries in patients with myocardial ischemia and diabetes. Cardiovasc Diabetol. 2011, 10: 107-10.1186/1475-2840-10-107.PubMedCentralCrossRefPubMed
71.
go back to reference Tamarat R, Silvestre JS, Le Ricousse-Roussanne S, Barateau V, Lecomte-Raclet L, Clergue M, Duriez M, Tobelem G, Levy BI: Impairment in ischemia-induced neovascularization in diabetes: bone marrow mononuclear cell dysfunction and therapeutic potential of placenta growth factor treatment. Am J Pathol. 2004, 164: 457-466. 10.1016/S0002-9440(10)63136-7.PubMedCentralCrossRefPubMed Tamarat R, Silvestre JS, Le Ricousse-Roussanne S, Barateau V, Lecomte-Raclet L, Clergue M, Duriez M, Tobelem G, Levy BI: Impairment in ischemia-induced neovascularization in diabetes: bone marrow mononuclear cell dysfunction and therapeutic potential of placenta growth factor treatment. Am J Pathol. 2004, 164: 457-466. 10.1016/S0002-9440(10)63136-7.PubMedCentralCrossRefPubMed
72.
go back to reference Tepper OM, Galiano RD, Capla JM, Kalka C, Gagne PJ, Jacobowitz GR, Levine JP, Gurtner GC: Human endothelial progenitor cells from type II diabetics exhibit impaired proliferation, adhesion, and incorporation into vascular structures. Circulation. 2002, 106: 2781-2786. 10.1161/01.CIR.0000039526.42991.93.CrossRefPubMed Tepper OM, Galiano RD, Capla JM, Kalka C, Gagne PJ, Jacobowitz GR, Levine JP, Gurtner GC: Human endothelial progenitor cells from type II diabetics exhibit impaired proliferation, adhesion, and incorporation into vascular structures. Circulation. 2002, 106: 2781-2786. 10.1161/01.CIR.0000039526.42991.93.CrossRefPubMed
73.
go back to reference Keats E, Khan ZA: High glucose causes impairment of mature endothelial cells but not adult endothelial progenitor cells. Can J Diabetes. 2011, 35: A126. Keats E, Khan ZA: High glucose causes impairment of mature endothelial cells but not adult endothelial progenitor cells. Can J Diabetes. 2011, 35: A126.
74.
go back to reference Keats E, Khan ZA: Unique cellular responses of adult blood-derived endothelial progenitor cells and mature endothelial cells to high glucose. Diabetes. 2011, 60: 1624-10.2337/db10-1656.CrossRef Keats E, Khan ZA: Unique cellular responses of adult blood-derived endothelial progenitor cells and mature endothelial cells to high glucose. Diabetes. 2011, 60: 1624-10.2337/db10-1656.CrossRef
75.
go back to reference Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR: Multilineage potential of adult human mesenchymal stem cells. Science. 1999, 284: 143-147. 10.1126/science.284.5411.143.CrossRefPubMed Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR: Multilineage potential of adult human mesenchymal stem cells. Science. 1999, 284: 143-147. 10.1126/science.284.5411.143.CrossRefPubMed
76.
go back to reference Campagnoli C, Roberts IA, Kumar S, Bennett PR, Bellantuono I, Fisk NM: Identification of mesenchymal stem/progenitor cells in human first-trimester fetal blood, liver, and bone marrow. Blood. 2001, 98: 2396-2402. 10.1182/blood.V98.8.2396.CrossRefPubMed Campagnoli C, Roberts IA, Kumar S, Bennett PR, Bellantuono I, Fisk NM: Identification of mesenchymal stem/progenitor cells in human first-trimester fetal blood, liver, and bone marrow. Blood. 2001, 98: 2396-2402. 10.1182/blood.V98.8.2396.CrossRefPubMed
77.
go back to reference Traktuev DO, Merfeld-Clauss S, Li J, Kolonin M, Arap W, Pasqualini R, Johnstone BH, March KL: A population of multipotent CD34-positive adipose stromal cells share pericyte and mesenchymal surface markers, reside in a periendothelial location, and stabilize endothelial networks. Circ Res. 2008, 102: 77-85. 10.1161/CIRCRESAHA.107.159475.CrossRefPubMed Traktuev DO, Merfeld-Clauss S, Li J, Kolonin M, Arap W, Pasqualini R, Johnstone BH, March KL: A population of multipotent CD34-positive adipose stromal cells share pericyte and mesenchymal surface markers, reside in a periendothelial location, and stabilize endothelial networks. Circ Res. 2008, 102: 77-85. 10.1161/CIRCRESAHA.107.159475.CrossRefPubMed
78.
go back to reference Zhang N, Li J, Luo R, Jiang J, Wang JA: Bone marrow mesenchymal stem cells induce angiogenesis and attenuate the remodeling of diabetic cardiomyopathy. Exp Clin Endocrinol Diabetes. 2008, 116: 104-111. 10.1055/s-2007-985154.CrossRefPubMed Zhang N, Li J, Luo R, Jiang J, Wang JA: Bone marrow mesenchymal stem cells induce angiogenesis and attenuate the remodeling of diabetic cardiomyopathy. Exp Clin Endocrinol Diabetes. 2008, 116: 104-111. 10.1055/s-2007-985154.CrossRefPubMed
79.
go back to reference Ezquer FE, Ezquer ME, Parrau DB, Carpio D, Yanez AJ, Conget PA: Systemic administration of multipotent mesenchymal stromal cells reverts hyperglycemia and prevents nephropathy in type 1 diabetic mice. Biol Blood Marrow Transplant. 2008, 14: 631-640. 10.1016/j.bbmt.2008.01.006.CrossRefPubMed Ezquer FE, Ezquer ME, Parrau DB, Carpio D, Yanez AJ, Conget PA: Systemic administration of multipotent mesenchymal stromal cells reverts hyperglycemia and prevents nephropathy in type 1 diabetic mice. Biol Blood Marrow Transplant. 2008, 14: 631-640. 10.1016/j.bbmt.2008.01.006.CrossRefPubMed
80.
go back to reference Lee RH, Seo MJ, Reger RL, Spees JL, Pulin AA, Olson SD, Prockop DJ: Multipotent stromal cells from human marrow home to and promote repair of pancreatic islets and renal glomeruli in diabetic NOD/scid mice. Proc Natl Acad Sci U S A. 2006, 103: 17438-17443. 10.1073/pnas.0608249103.PubMedCentralCrossRefPubMed Lee RH, Seo MJ, Reger RL, Spees JL, Pulin AA, Olson SD, Prockop DJ: Multipotent stromal cells from human marrow home to and promote repair of pancreatic islets and renal glomeruli in diabetic NOD/scid mice. Proc Natl Acad Sci U S A. 2006, 103: 17438-17443. 10.1073/pnas.0608249103.PubMedCentralCrossRefPubMed
81.
go back to reference Shibata T, Naruse K, Kamiya H, Kozakae M, Kondo M, Yasuda Y, Nakamura N, Ota K, Tosaki T, Matsuki T, et al: Transplantation of bone marrow-derived mesenchymal stem cells improves diabetic polyneuropathy in rats. Diabetes. 2008, 57: 3099-3107. 10.2337/db08-0031.PubMedCentralCrossRefPubMed Shibata T, Naruse K, Kamiya H, Kozakae M, Kondo M, Yasuda Y, Nakamura N, Ota K, Tosaki T, Matsuki T, et al: Transplantation of bone marrow-derived mesenchymal stem cells improves diabetic polyneuropathy in rats. Diabetes. 2008, 57: 3099-3107. 10.2337/db08-0031.PubMedCentralCrossRefPubMed
82.
go back to reference Kuo YR, Wang CT, Cheng JT, Wang FS, Chiang YC, Wang CJ: Bone marrow-derived mesenchymal stem cells enhanced diabetic wound healing through recruitment of tissue regeneration in a rat model of streptozotocin-induced diabetes. Plast Reconstr Surg. 2011, 128: 872-880. 10.1097/PRS.0b013e3182174329.CrossRefPubMed Kuo YR, Wang CT, Cheng JT, Wang FS, Chiang YC, Wang CJ: Bone marrow-derived mesenchymal stem cells enhanced diabetic wound healing through recruitment of tissue regeneration in a rat model of streptozotocin-induced diabetes. Plast Reconstr Surg. 2011, 128: 872-880. 10.1097/PRS.0b013e3182174329.CrossRefPubMed
83.
go back to reference Yang K, Wang XQ, He YS, Lu L, Chen QJ, Liu J, Shen WF: Advanced glycation end products induce chemokine/cytokine production via activation of p38 pathway and inhibit proliferation and migration of bone marrow mesenchymal stem cells. Cardiovasc Diabetol. 2010, 9: 66-10.1186/1475-2840-9-66.PubMedCentralCrossRefPubMed Yang K, Wang XQ, He YS, Lu L, Chen QJ, Liu J, Shen WF: Advanced glycation end products induce chemokine/cytokine production via activation of p38 pathway and inhibit proliferation and migration of bone marrow mesenchymal stem cells. Cardiovasc Diabetol. 2010, 9: 66-10.1186/1475-2840-9-66.PubMedCentralCrossRefPubMed
84.
go back to reference Falanga V, Iwamoto S, Chartier M, Yufit T, Butmarc J, Kouttab N, Shrayer D, Carson P: Autologous bone marrow-derived cultured mesenchymal stem cells delivered in a fibrin spray accelerate healing in murine and human cutaneous wounds. Tissue Eng. 2007, 13: 1299-1312. 10.1089/ten.2006.0278.CrossRefPubMed Falanga V, Iwamoto S, Chartier M, Yufit T, Butmarc J, Kouttab N, Shrayer D, Carson P: Autologous bone marrow-derived cultured mesenchymal stem cells delivered in a fibrin spray accelerate healing in murine and human cutaneous wounds. Tissue Eng. 2007, 13: 1299-1312. 10.1089/ten.2006.0278.CrossRefPubMed
85.
go back to reference Wu Y, Chen L, Scott PG, Tredget EE: Mesenchymal stem cells enhance wound healing through differentiation and angiogenesis. Stem Cells. 2007, 25: 2648-2659. 10.1634/stemcells.2007-0226.CrossRefPubMed Wu Y, Chen L, Scott PG, Tredget EE: Mesenchymal stem cells enhance wound healing through differentiation and angiogenesis. Stem Cells. 2007, 25: 2648-2659. 10.1634/stemcells.2007-0226.CrossRefPubMed
86.
go back to reference Javazon EH, Keswani SG, Badillo AT, Crombleholme TM, Zoltick PW, Radu AP, Kozin ED, Beggs K, Malik AA, Flake AW: Enhanced epithelial gap closure and increased angiogenesis in wounds of diabetic mice treated with adult murine bone marrow stromal progenitor cells. Wound Repair Regen. 2007, 15: 350-359. 10.1111/j.1524-475X.2007.00237.x.CrossRefPubMed Javazon EH, Keswani SG, Badillo AT, Crombleholme TM, Zoltick PW, Radu AP, Kozin ED, Beggs K, Malik AA, Flake AW: Enhanced epithelial gap closure and increased angiogenesis in wounds of diabetic mice treated with adult murine bone marrow stromal progenitor cells. Wound Repair Regen. 2007, 15: 350-359. 10.1111/j.1524-475X.2007.00237.x.CrossRefPubMed
87.
go back to reference Naruse K, Hamada Y, Nakashima E, Kato K, Mizubayashi R, Kamiya H, Yuzawa Y, Matsuo S, Murohara T, Matsubara T, et al: Therapeutic neovascularization using cord blood-derived endothelial progenitor cells for diabetic neuropathy. Diabetes. 2005, 54: 1823-1828. 10.2337/diabetes.54.6.1823.CrossRefPubMed Naruse K, Hamada Y, Nakashima E, Kato K, Mizubayashi R, Kamiya H, Yuzawa Y, Matsuo S, Murohara T, Matsubara T, et al: Therapeutic neovascularization using cord blood-derived endothelial progenitor cells for diabetic neuropathy. Diabetes. 2005, 54: 1823-1828. 10.2337/diabetes.54.6.1823.CrossRefPubMed
88.
go back to reference Huang P, Li S, Han M, Xiao Z, Yang R, Han ZC: Autologous transplantation of granulocyte colony-stimulating factor-mobilized peripheral blood mononuclear cells improves critical limb ischemia in diabetes. Diabetes Care. 2005, 28: 2155-2160. 10.2337/diacare.28.9.2155.CrossRefPubMed Huang P, Li S, Han M, Xiao Z, Yang R, Han ZC: Autologous transplantation of granulocyte colony-stimulating factor-mobilized peripheral blood mononuclear cells improves critical limb ischemia in diabetes. Diabetes Care. 2005, 28: 2155-2160. 10.2337/diacare.28.9.2155.CrossRefPubMed
89.
go back to reference Koike N, Fukumura D, Gralla O, Au P, Schechner JS, Jain RK: Tissue engineering: creation of long-lasting blood vessels. Nature. 2004, 428: 138-139. 10.1038/428138a.CrossRefPubMed Koike N, Fukumura D, Gralla O, Au P, Schechner JS, Jain RK: Tissue engineering: creation of long-lasting blood vessels. Nature. 2004, 428: 138-139. 10.1038/428138a.CrossRefPubMed
90.
go back to reference Nor JE, Peters MC, Christensen JB, Sutorik MM, Linn S, Khan MK, Addison CL, Mooney DJ, Polverini PJ: Engineering and characterization of functional human microvessels in immunodeficient mice. Lab Invest. 2001, 81: 453-463. 10.1038/labinvest.3780253.CrossRefPubMed Nor JE, Peters MC, Christensen JB, Sutorik MM, Linn S, Khan MK, Addison CL, Mooney DJ, Polverini PJ: Engineering and characterization of functional human microvessels in immunodeficient mice. Lab Invest. 2001, 81: 453-463. 10.1038/labinvest.3780253.CrossRefPubMed
91.
go back to reference Au P, Daheron LM, Duda DG, Cohen KS, Tyrrell JA, Lanning RM, Fukumura D, Scadden DT, Jain RK: Differential in vivo potential of endothelial progenitor cells from human umbilical cord blood and adult peripheral blood to form functional long-lasting vessels. Blood. 2008, 111: 1302-1305.PubMedCentralCrossRefPubMed Au P, Daheron LM, Duda DG, Cohen KS, Tyrrell JA, Lanning RM, Fukumura D, Scadden DT, Jain RK: Differential in vivo potential of endothelial progenitor cells from human umbilical cord blood and adult peripheral blood to form functional long-lasting vessels. Blood. 2008, 111: 1302-1305.PubMedCentralCrossRefPubMed
92.
go back to reference Simper D, Stalboerger PG, Panetta CJ, Wang S, Caplice NM: Smooth muscle progenitor cells in human blood. Circulation. 2002, 106: 1199-1204. 10.1161/01.CIR.0000031525.61826.A8.CrossRefPubMed Simper D, Stalboerger PG, Panetta CJ, Wang S, Caplice NM: Smooth muscle progenitor cells in human blood. Circulation. 2002, 106: 1199-1204. 10.1161/01.CIR.0000031525.61826.A8.CrossRefPubMed
Metadata
Title
Vascular stem cells in diabetic complications: evidence for a role in the pathogenesis and the therapeutic promise
Authors
Emily C Keats
Zia A Khan
Publication date
01-12-2012
Publisher
BioMed Central
Published in
Cardiovascular Diabetology / Issue 1/2012
Electronic ISSN: 1475-2840
DOI
https://doi.org/10.1186/1475-2840-11-37

Other articles of this Issue 1/2012

Cardiovascular Diabetology 1/2012 Go to the issue