Skip to main content
Top

01-11-2011 | Original Research

Blood Vessel Wall–Derived Endothelial Colony-Forming Cells Enhance Fracture Repair and Bone Regeneration

Authors: Kaarthik S. Chandrasekhar, Hongkang Zhou, Pingyu Zeng, Daniel Alge, Wenyao Li, Brandt A. Finney, Mervin C. Yoder, Jiliang Li

Published in: Calcified Tissue International | Issue 5/2011

Login to get access

Abstract

Endochondral bone formation requires new blood vessel formation, and endothelial progenitor cells (EPCs) may play a role in this process. Endothelial colony-forming cells (ECFCs), one subtype of EPCs, isolated from the microvasculature of rat lungs, exhibited cell surface antigen markers and gene products characteristic of endothelial cells and displayed high proliferative potential and an ability to form vessel-like network structures in vitro. The aim of this study was to evaluate whether ECFCs facilitate bone healing during fracture repair and stimulate bone regeneration. When type I collagen sponge containing ECFCs were surgically wrapped around the fractured femurs of rats, newly formed bone mineral at the site of fracture was 13% greater (P = 0.01) and energy to failure was 46% greater (P = 0.01) compared to sponge-wrapped fractures without ECFCs. When ECFCs in type I collagen sponge were surgically implanted into the bone defective area, more new vessels formed locally in comparison with sponge-alone controls and new bone tissues were seen. Further, co-implantation of ECFCs and hydroxyapatite/tricalcium phosphate (HA/TCP) scaffolds at the bone defective sites stimulated more new bone tissues than HA/TCP scaffold alone. These results show that cell therapy with vessel wall–derived ECFCs can induce new vessel formation, stimulate new bone formation, and facilitate bone repair and could be a useful approach to treat non-union fractures and bone defects.
Appendix
Available only for authorised users
Literature
1.
go back to reference Matsumoto T, Mifune Y, Kawamoto A, Kuroda R, Shoji T, Iwasaki H, Suzuki T, Oyamada A, Horii M, Yokoyama A, Nishimura H, Lee SY, Miwa M, Doita M, Kurosaka M, Asahara T (2008) Fracture induced mobilization and incorporation of bone marrow–derived endothelial progenitor cells for bone healing. J Cell Physiol 215:234–242PubMedCrossRef Matsumoto T, Mifune Y, Kawamoto A, Kuroda R, Shoji T, Iwasaki H, Suzuki T, Oyamada A, Horii M, Yokoyama A, Nishimura H, Lee SY, Miwa M, Doita M, Kurosaka M, Asahara T (2008) Fracture induced mobilization and incorporation of bone marrow–derived endothelial progenitor cells for bone healing. J Cell Physiol 215:234–242PubMedCrossRef
2.
go back to reference Dimitriou R, Tsiridis E, Giannoudis PV (2005) Current concepts of molecular aspects of bone healing. Injury 36:1392–1404PubMedCrossRef Dimitriou R, Tsiridis E, Giannoudis PV (2005) Current concepts of molecular aspects of bone healing. Injury 36:1392–1404PubMedCrossRef
3.
go back to reference Goldstein SA, Patil PV, Moalli MR (1999) Perspectives on tissue engineering of bone. Clin Orthop Relat Res 367(suppl):S419–S423PubMedCrossRef Goldstein SA, Patil PV, Moalli MR (1999) Perspectives on tissue engineering of bone. Clin Orthop Relat Res 367(suppl):S419–S423PubMedCrossRef
4.
go back to reference Tseng SS, Lee MA, Reddi AH (2008) Nonunions and the potential of stem cells in fracture-healing. J Bone Joint Surg Am 90(suppl 1):92–98PubMedCrossRef Tseng SS, Lee MA, Reddi AH (2008) Nonunions and the potential of stem cells in fracture-healing. J Bone Joint Surg Am 90(suppl 1):92–98PubMedCrossRef
5.
go back to reference Matsumoto T, Kawamoto A, Kuroda R, Ishikawa M, Mifune Y, Iwasaki H, Miwa M, Horii M, Hayashi S, Oyamada A, Nishimura H, Murasawa S, Doita M, Kurosaka M, Asahara T (2006) Therapeutic potential of vasculogenesis and osteogenesis promoted by peripheral blood CD34-positive cells for functional bone healing. Am J Pathol 169:1440–1457PubMedCrossRef Matsumoto T, Kawamoto A, Kuroda R, Ishikawa M, Mifune Y, Iwasaki H, Miwa M, Horii M, Hayashi S, Oyamada A, Nishimura H, Murasawa S, Doita M, Kurosaka M, Asahara T (2006) Therapeutic potential of vasculogenesis and osteogenesis promoted by peripheral blood CD34-positive cells for functional bone healing. Am J Pathol 169:1440–1457PubMedCrossRef
6.
go back to reference Pu LQ, Sniderman AD, Brassard R, Lachapelle KJ, Graham AM, Lisbona R, Symes JF (1993) Enhanced revascularization of the ischemic limb by angiogenic therapy. Circulation 88:208–215PubMed Pu LQ, Sniderman AD, Brassard R, Lachapelle KJ, Graham AM, Lisbona R, Symes JF (1993) Enhanced revascularization of the ischemic limb by angiogenic therapy. Circulation 88:208–215PubMed
7.
go back to reference Sun Q, Chen RR, Shen Y, Mooney DJ, Rajagopalan S, Grossman PM (2005) Sustained vascular endothelial growth factor delivery enhances angiogenesis and perfusion in ischemic hind limb. Pharm Res 22:1110–1116PubMedCrossRef Sun Q, Chen RR, Shen Y, Mooney DJ, Rajagopalan S, Grossman PM (2005) Sustained vascular endothelial growth factor delivery enhances angiogenesis and perfusion in ischemic hind limb. Pharm Res 22:1110–1116PubMedCrossRef
8.
go back to reference Takeshita S, Pu LQ, Stein LA, Sniderman AD, Bunting S, Ferrara N, Isner JM, Symes JF (1994) Intramuscular administration of vascular endothelial growth factor induces dose-dependent collateral artery augmentation in a rabbit model of chronic limb ischemia. Circulation 90:II228–II234PubMed Takeshita S, Pu LQ, Stein LA, Sniderman AD, Bunting S, Ferrara N, Isner JM, Symes JF (1994) Intramuscular administration of vascular endothelial growth factor induces dose-dependent collateral artery augmentation in a rabbit model of chronic limb ischemia. Circulation 90:II228–II234PubMed
9.
go back to reference Takeshita S, Zheng LP, Brogi E, Kearney M, Pu LQ, Bunting S, Ferrara N, Symes JF, Isner JM (1994) Therapeutic angiogenesis. A single intraarterial bolus of vascular endothelial growth factor augments revascularization in a rabbit ischemic hind limb model. J Clin Invest 93:662–670PubMedCrossRef Takeshita S, Zheng LP, Brogi E, Kearney M, Pu LQ, Bunting S, Ferrara N, Symes JF, Isner JM (1994) Therapeutic angiogenesis. A single intraarterial bolus of vascular endothelial growth factor augments revascularization in a rabbit ischemic hind limb model. J Clin Invest 93:662–670PubMedCrossRef
10.
go back to reference van Weel V, Deckers MM, Grimbergen JM, van Leuven KJ, Lardenoye JH, Schlingemann RO, van Nieuw Amerongen GP, van Bockel JH, van Hinsbergh VW, Quax PH (2004) Vascular endothelial growth factor overexpression in ischemic skeletal muscle enhances myoglobin expression in vivo. Circ Res 95:58–66PubMedCrossRef van Weel V, Deckers MM, Grimbergen JM, van Leuven KJ, Lardenoye JH, Schlingemann RO, van Nieuw Amerongen GP, van Bockel JH, van Hinsbergh VW, Quax PH (2004) Vascular endothelial growth factor overexpression in ischemic skeletal muscle enhances myoglobin expression in vivo. Circ Res 95:58–66PubMedCrossRef
11.
go back to reference Helisch A, Schaper W (2000) Angiogenesis and arteriogenesis: not yet for prescription. Z Kardiol 89:239–244PubMedCrossRef Helisch A, Schaper W (2000) Angiogenesis and arteriogenesis: not yet for prescription. Z Kardiol 89:239–244PubMedCrossRef
12.
go back to reference Rajagopalan S, Mohler ER 3rd, Lederman RJ, Mendelsohn FO, Saucedo JF, Goldman CK, Blebea J, Macko J, Kessler PD, Rasmussen HS, Annex BH (2003) Regional angiogenesis with vascular endothelial growth factor in peripheral arterial disease: a phase II randomized, double-blind, controlled study of adenoviral delivery of vascular endothelial growth factor 121 in patients with disabling intermittent claudication. Circulation 108:1933–1938PubMedCrossRef Rajagopalan S, Mohler ER 3rd, Lederman RJ, Mendelsohn FO, Saucedo JF, Goldman CK, Blebea J, Macko J, Kessler PD, Rasmussen HS, Annex BH (2003) Regional angiogenesis with vascular endothelial growth factor in peripheral arterial disease: a phase II randomized, double-blind, controlled study of adenoviral delivery of vascular endothelial growth factor 121 in patients with disabling intermittent claudication. Circulation 108:1933–1938PubMedCrossRef
13.
go back to reference Murphy MP, Wang H, Patel AN, Kambhampati S, Angle N, Chan K, Marleau AM, Pyszniak A, Carrier E, Ichim TE, Riordan NH (2008) Allogeneic endometrial regenerative cells: an “off the shelf solution” for critical limb ischemia? J Transl Med 6:45PubMedCrossRef Murphy MP, Wang H, Patel AN, Kambhampati S, Angle N, Chan K, Marleau AM, Pyszniak A, Carrier E, Ichim TE, Riordan NH (2008) Allogeneic endometrial regenerative cells: an “off the shelf solution” for critical limb ischemia? J Transl Med 6:45PubMedCrossRef
14.
go back to reference MR ASB (2006) Primer on the metabolic bone diseases and disorders of mineral metabolism. ASBMR, Washington MR ASB (2006) Primer on the metabolic bone diseases and disorders of mineral metabolism. ASBMR, Washington
15.
go back to reference Medici D, Shore EM, Lounev VY, Kaplan FS, Kalluri R, Olsen BR (2010) Conversion of vascular endothelial cells into multipotent stem-like cells. Nat Med 16:1400–1406PubMedCrossRef Medici D, Shore EM, Lounev VY, Kaplan FS, Kalluri R, Olsen BR (2010) Conversion of vascular endothelial cells into multipotent stem-like cells. Nat Med 16:1400–1406PubMedCrossRef
16.
go back to reference Yoder MC (2010) Is endothelium the origin of endothelial progenitor cells? Arterioscler Thromb Vasc Biol 30:1094–1103PubMedCrossRef Yoder MC (2010) Is endothelium the origin of endothelial progenitor cells? Arterioscler Thromb Vasc Biol 30:1094–1103PubMedCrossRef
17.
go back to reference Ingram DA, Mead LE, Tanaka H, Meade V, Fenoglio A, Mortell K, Pollok K, Ferkowicz MJ, Gilley D, Yoder MC (2004) Identification of a novel hierarchy of endothelial progenitor cells using human peripheral and umbilical cord blood. Blood 104:2752–2760PubMedCrossRef Ingram DA, Mead LE, Tanaka H, Meade V, Fenoglio A, Mortell K, Pollok K, Ferkowicz MJ, Gilley D, Yoder MC (2004) Identification of a novel hierarchy of endothelial progenitor cells using human peripheral and umbilical cord blood. Blood 104:2752–2760PubMedCrossRef
18.
go back to reference Alvarez DF, Huang L, King JA, ElZarrad MK, Yoder MC, Stevens T (2008) Lung microvascular endothelium is enriched with progenitor cells that exhibit vasculogenic capacity. Am J Physiol Lung Cell Mol Physiol 294:L419–L430PubMedCrossRef Alvarez DF, Huang L, King JA, ElZarrad MK, Yoder MC, Stevens T (2008) Lung microvascular endothelium is enriched with progenitor cells that exhibit vasculogenic capacity. Am J Physiol Lung Cell Mol Physiol 294:L419–L430PubMedCrossRef
19.
go back to reference King J, Hamil T, Creighton J, Wu S, Bhat P, McDonald F, Stevens T (2004) Structural and functional characteristics of lung macro- and microvascular endothelial cell phenotypes. Microvasc Res 67:139–151PubMedCrossRef King J, Hamil T, Creighton J, Wu S, Bhat P, McDonald F, Stevens T (2004) Structural and functional characteristics of lung macro- and microvascular endothelial cell phenotypes. Microvasc Res 67:139–151PubMedCrossRef
20.
go back to reference Schniedermann J, Rennecke M, Buttler K, Richter G, Stadtler AM, Norgall S, Badar M, Barleon B, May T, Wilting J, Weich HA (2010) Mouse lung contains endothelial progenitors with high capacity to form blood and lymphatic vessels. BMC Cell Biol 11:50PubMedCrossRef Schniedermann J, Rennecke M, Buttler K, Richter G, Stadtler AM, Norgall S, Badar M, Barleon B, May T, Wilting J, Weich HA (2010) Mouse lung contains endothelial progenitors with high capacity to form blood and lymphatic vessels. BMC Cell Biol 11:50PubMedCrossRef
21.
go back to reference Yoder MC, Mead LE, Prater D, Krier TR, Mroueh KN, Li F, Krasich R, Temm CJ, Prchal JT, Ingram DA (2007) Redefining endothelial progenitor cells via clonal analysis and hematopoietic stem/progenitor cell principals. Blood 109:1801–1809PubMedCrossRef Yoder MC, Mead LE, Prater D, Krier TR, Mroueh KN, Li F, Krasich R, Temm CJ, Prchal JT, Ingram DA (2007) Redefining endothelial progenitor cells via clonal analysis and hematopoietic stem/progenitor cell principals. Blood 109:1801–1809PubMedCrossRef
22.
go back to reference Huang L, Harkenrider M, Thompson M, Zeng P, Tanaka H, Gilley D, Ingram DA, Bonanno JA, Yoder MC (2010) A hierarchy of endothelial colony-forming cell activity displayed by bovine corneal endothelial cells. Invest Ophthalmol Vis Sci 51:3943–3949PubMedCrossRef Huang L, Harkenrider M, Thompson M, Zeng P, Tanaka H, Gilley D, Ingram DA, Bonanno JA, Yoder MC (2010) A hierarchy of endothelial colony-forming cell activity displayed by bovine corneal endothelial cells. Invest Ophthalmol Vis Sci 51:3943–3949PubMedCrossRef
23.
24.
25.
go back to reference Lu C, Miclau T, Hu D, Marcucio RS (2007) Ischemia leads to delayed union during fracture healing: a mouse model. J Orthop Res 25:51–61PubMedCrossRef Lu C, Miclau T, Hu D, Marcucio RS (2007) Ischemia leads to delayed union during fracture healing: a mouse model. J Orthop Res 25:51–61PubMedCrossRef
26.
go back to reference Street J, Bao M, deGuzman L, Bunting S, Peale FV Jr, Ferrara N, Steinmetz H, Hoeffel J, Cleland JL, Daugherty A, van Bruggen N, Redmond HP, Carano RA, Filvaroff EH (2002) Vascular endothelial growth factor stimulates bone repair by promoting angiogenesis and bone turnover. Proc Natl Acad Sci USA 99:9656–9661PubMedCrossRef Street J, Bao M, deGuzman L, Bunting S, Peale FV Jr, Ferrara N, Steinmetz H, Hoeffel J, Cleland JL, Daugherty A, van Bruggen N, Redmond HP, Carano RA, Filvaroff EH (2002) Vascular endothelial growth factor stimulates bone repair by promoting angiogenesis and bone turnover. Proc Natl Acad Sci USA 99:9656–9661PubMedCrossRef
27.
go back to reference Tarkka T, Sipola A, Jamsa T, Soini Y, Yla-Herttuala S, Tuukkanen J, Hautala T (2003) Adenoviral VEGF-A gene transfer induces angiogenesis and promotes bone formation in healing osseous tissues. J Gene Med 5:560–566PubMedCrossRef Tarkka T, Sipola A, Jamsa T, Soini Y, Yla-Herttuala S, Tuukkanen J, Hautala T (2003) Adenoviral VEGF-A gene transfer induces angiogenesis and promotes bone formation in healing osseous tissues. J Gene Med 5:560–566PubMedCrossRef
28.
go back to reference Purhonen S, Palm J, Rossi D, Kaskenpaa N, Rajantie I, Yla-Herttuala S, Alitalo K, Weissman IL, Salven P (2008) Bone marrow–derived circulating endothelial precursors do not contribute to vascular endothelium and are not needed for tumor growth. Proc Natl Acad Sci USA 105:6620–6625PubMedCrossRef Purhonen S, Palm J, Rossi D, Kaskenpaa N, Rajantie I, Yla-Herttuala S, Alitalo K, Weissman IL, Salven P (2008) Bone marrow–derived circulating endothelial precursors do not contribute to vascular endothelium and are not needed for tumor growth. Proc Natl Acad Sci USA 105:6620–6625PubMedCrossRef
Metadata
Title
Blood Vessel Wall–Derived Endothelial Colony-Forming Cells Enhance Fracture Repair and Bone Regeneration
Authors
Kaarthik S. Chandrasekhar
Hongkang Zhou
Pingyu Zeng
Daniel Alge
Wenyao Li
Brandt A. Finney
Mervin C. Yoder
Jiliang Li
Publication date
01-11-2011
Publisher
Springer-Verlag
Published in
Calcified Tissue International / Issue 5/2011
Print ISSN: 0171-967X
Electronic ISSN: 1432-0827
DOI
https://doi.org/10.1007/s00223-011-9524-y