Skip to main content
Top
Published in: BMC Pulmonary Medicine 1/2014

Open Access 01-12-2014 | Research article

Determination of respiratory gas flow by electrical impedance tomography in an animal model of mechanical ventilation

Authors: Marc Bodenstein, Stefan Boehme, Stephan Bierschock, Andreas Vogt, Matthias David, Klaus Markstaller

Published in: BMC Pulmonary Medicine | Issue 1/2014

Login to get access

Abstract

Background

A recent method determines regional gas flow of the lung by electrical impedance tomography (EIT). The aim of this study is to show the applicability of this method in a porcine model of mechanical ventilation in healthy and diseased lungs. Our primary hypothesis is that global gas flow measured by EIT can be correlated with spirometry. Our secondary hypothesis is that regional analysis of respiratory gas flow delivers physiologically meaningful results.

Methods

In two sets of experiments n = 7 healthy pigs and n = 6 pigs before and after induction of lavage lung injury were investigated. EIT of the lung and spirometry were registered synchronously during ongoing mechanical ventilation. In-vivo aeration of the lung was analysed in four regions-of-interest (ROI) by EIT: 1) global, 2) ventral (non-dependent), 3) middle and 4) dorsal (dependent) ROI. Respiratory gas flow was calculated by the first derivative of the regional aeration curve. Four phases of the respiratory cycle were discriminated. They delivered peak and late inspiratory and expiratory gas flow (PIF, LIF, PEF, LEF) characterizing early or late inspiration or expiration.

Results

Linear regression analysis of EIT and spirometry in healthy pigs revealed a very good correlation measuring peak flow and a good correlation detecting late flow. PIFEIT = 0.702 · PIFspiro + 117.4, r2 = 0.809; PEFEIT = 0.690 · PEFspiro-124.2, r2 = 0.760; LIFEIT = 0.909 · LIFspiro + 27.32, r2 = 0.572 and LEFEIT = 0.858 · LEFspiro-10.94, r2 = 0.647. EIT derived absolute gas flow was generally smaller than data from spirometry. Regional gas flow was distributed heterogeneously during different phases of the respiratory cycle. But, the regional distribution of gas flow stayed stable during different ventilator settings. Moderate lung injury changed the regional pattern of gas flow.

Conclusions

We conclude that the presented method is able to determine global respiratory gas flow of the lung in different phases of the respiratory cycle. Additionally, it delivers meaningful insight into regional pulmonary characteristics, i.e. the regional ability of the lung to take up and to release air.
Appendix
Available only for authorised users
Literature
1.
go back to reference Bodenstein M, David M, Markstaller K: Principles of electrical impedance tomography and its clinical application. Crit Care Med. 2009, 37: 713-724. 10.1097/CCM.0b013e3181958d2f.CrossRefPubMed Bodenstein M, David M, Markstaller K: Principles of electrical impedance tomography and its clinical application. Crit Care Med. 2009, 37: 713-724. 10.1097/CCM.0b013e3181958d2f.CrossRefPubMed
2.
go back to reference Richard JC, Pouzot C, Gros A, Tourevieille C, Lebars D, Lavenne F, Frerichs I, Guerin C: Electrical impedance tomography compared to positron emission tomography for the measurement of regional lung ventilation: an experimental study. Crit Care. 2009, 13: R82-10.1186/cc7900.CrossRefPubMedPubMedCentral Richard JC, Pouzot C, Gros A, Tourevieille C, Lebars D, Lavenne F, Frerichs I, Guerin C: Electrical impedance tomography compared to positron emission tomography for the measurement of regional lung ventilation: an experimental study. Crit Care. 2009, 13: R82-10.1186/cc7900.CrossRefPubMedPubMedCentral
3.
go back to reference Hinz J, Neumann P, Dudykevych T, Andersson LG, Wrigge H, Burchardi H, Hedenstierna G: Regional ventilation by electrical impedance tomography: a comparison with ventilation scintigraphy in pigs. Chest. 2003, 124: 314-322. 10.1378/chest.124.1.314.CrossRefPubMed Hinz J, Neumann P, Dudykevych T, Andersson LG, Wrigge H, Burchardi H, Hedenstierna G: Regional ventilation by electrical impedance tomography: a comparison with ventilation scintigraphy in pigs. Chest. 2003, 124: 314-322. 10.1378/chest.124.1.314.CrossRefPubMed
4.
go back to reference Kunst PW, Vonk Noordegraaf A, Hoekstra OS, Postmus PE, de Vries PM: Ventilation and perfusion imaging by electrical impedance tomography: a comparison with radionuclide scanning. Physiol Meas. 1998, 19: 481-490. 10.1088/0967-3334/19/4/003.CrossRefPubMed Kunst PW, Vonk Noordegraaf A, Hoekstra OS, Postmus PE, de Vries PM: Ventilation and perfusion imaging by electrical impedance tomography: a comparison with radionuclide scanning. Physiol Meas. 1998, 19: 481-490. 10.1088/0967-3334/19/4/003.CrossRefPubMed
5.
go back to reference Victorino JA, Borges JB, Okamoto VN, Matos GF, Tucci MR, Caramez MP, Tanaka H, Sipmann FS, Santos DC, Barbas CS, Carvalho CR, Amato MB: Imbalances in regional lung ventilation: a validation study on electrical impedance tomography. Am J Respir Crit Care Med. 2004, 169: 791-800. 10.1164/rccm.200301-133OC.CrossRefPubMed Victorino JA, Borges JB, Okamoto VN, Matos GF, Tucci MR, Caramez MP, Tanaka H, Sipmann FS, Santos DC, Barbas CS, Carvalho CR, Amato MB: Imbalances in regional lung ventilation: a validation study on electrical impedance tomography. Am J Respir Crit Care Med. 2004, 169: 791-800. 10.1164/rccm.200301-133OC.CrossRefPubMed
6.
go back to reference Frerichs I, Hinz J, Herrmann P, Weisser G, Hahn G, Quintel M, Hellige G: Regional lung perfusion as determined by electrical impedance tomography in comparison with electron beam CT imaging. IEEE Trans Med Imag. 2002, 21: 646-652. 10.1109/TMI.2002.800585.CrossRef Frerichs I, Hinz J, Herrmann P, Weisser G, Hahn G, Quintel M, Hellige G: Regional lung perfusion as determined by electrical impedance tomography in comparison with electron beam CT imaging. IEEE Trans Med Imag. 2002, 21: 646-652. 10.1109/TMI.2002.800585.CrossRef
7.
go back to reference Hahn G, Sipinkova I, Baisch F, Hellige G: Changes in the thoracic impedance distribution under different ventilatory conditions. Physiol Meas. 1995, 16: A161-A173. 10.1088/0967-3334/16/3A/016.CrossRefPubMed Hahn G, Sipinkova I, Baisch F, Hellige G: Changes in the thoracic impedance distribution under different ventilatory conditions. Physiol Meas. 1995, 16: A161-A173. 10.1088/0967-3334/16/3A/016.CrossRefPubMed
8.
go back to reference Wrigge H, Zinserling J, Muders T, Varelmann D, Gunther U, von der Groeben C, Magnusson A, Hedenstierna G, Putensen C: Electrical impedance tomography compared with thoracic computed tomography during a slow inflation maneuver in experimental models of lung injury. Crit Care Med. 2008, 36: 903-909. 10.1097/CCM.0B013E3181652EDD.CrossRefPubMed Wrigge H, Zinserling J, Muders T, Varelmann D, Gunther U, von der Groeben C, Magnusson A, Hedenstierna G, Putensen C: Electrical impedance tomography compared with thoracic computed tomography during a slow inflation maneuver in experimental models of lung injury. Crit Care Med. 2008, 36: 903-909. 10.1097/CCM.0B013E3181652EDD.CrossRefPubMed
9.
go back to reference Frerichs I, Hahn G, Golisch W, Kurpitz M, Burchardi H, Hellige G: Monitoring perioperative changes in distribution of pulmonary ventilation by functional electrical impedance tomography. Acta Anaesthesiol Scand. 1998, 42: 721-726. 10.1111/j.1399-6576.1998.tb05308.x.CrossRefPubMed Frerichs I, Hahn G, Golisch W, Kurpitz M, Burchardi H, Hellige G: Monitoring perioperative changes in distribution of pulmonary ventilation by functional electrical impedance tomography. Acta Anaesthesiol Scand. 1998, 42: 721-726. 10.1111/j.1399-6576.1998.tb05308.x.CrossRefPubMed
10.
go back to reference Zhao Z, Steinmann D, Frerichs I, Guttmann J, Moller K: PEEP titration guided by ventilation homogeneity: a feasibility study using electrical impedance tomography. Crit Care. 2010, 14: R8-10.1186/cc8860.CrossRefPubMedPubMedCentral Zhao Z, Steinmann D, Frerichs I, Guttmann J, Moller K: PEEP titration guided by ventilation homogeneity: a feasibility study using electrical impedance tomography. Crit Care. 2010, 14: R8-10.1186/cc8860.CrossRefPubMedPubMedCentral
11.
go back to reference Dargaville PA, Rimensberger PC, Frerichs I: Regional tidal ventilation and compliance during a stepwise vital capacity manoeuvre. Intensive Care Med. 2010, 36 (11): 1953-1961. 10.1007/s00134-010-1995-1.CrossRefPubMed Dargaville PA, Rimensberger PC, Frerichs I: Regional tidal ventilation and compliance during a stepwise vital capacity manoeuvre. Intensive Care Med. 2010, 36 (11): 1953-1961. 10.1007/s00134-010-1995-1.CrossRefPubMed
12.
go back to reference Bodenstein M, Wang H, Boehme S, Vogt A, Kwiecien R, David M, Markstaller K: Influence of crystalloid and colloid fluid infusion and blood withdrawal on pulmonary bioimpedance in an animal model of mechanical ventilation. Physiol Meas. 2012, 33: 1225-1236. 10.1088/0967-3334/33/7/1225.CrossRefPubMed Bodenstein M, Wang H, Boehme S, Vogt A, Kwiecien R, David M, Markstaller K: Influence of crystalloid and colloid fluid infusion and blood withdrawal on pulmonary bioimpedance in an animal model of mechanical ventilation. Physiol Meas. 2012, 33: 1225-1236. 10.1088/0967-3334/33/7/1225.CrossRefPubMed
13.
go back to reference Polak AG, Mroczka J: Nonlinear model for mechanical ventilation of human lungs. Comput Biol Med. 2006, 36: 41-58. 10.1016/j.compbiomed.2004.08.001.CrossRefPubMed Polak AG, Mroczka J: Nonlinear model for mechanical ventilation of human lungs. Comput Biol Med. 2006, 36: 41-58. 10.1016/j.compbiomed.2004.08.001.CrossRefPubMed
14.
go back to reference David M, Karmrodt J, Bletz C, David S, Herweling A, Kauczor HU, Markstaller K: Analysis of atelectasis, ventilated, and hyperinflated lung during mechanical ventilation by dynamic CT. Chest. 2005, 128: 3757-3770. 10.1378/chest.128.5.3757.CrossRefPubMed David M, Karmrodt J, Bletz C, David S, Herweling A, Kauczor HU, Markstaller K: Analysis of atelectasis, ventilated, and hyperinflated lung during mechanical ventilation by dynamic CT. Chest. 2005, 128: 3757-3770. 10.1378/chest.128.5.3757.CrossRefPubMed
15.
go back to reference Markstaller K, Kauczor HU, Weiler N, Karmrodt J, Doebrich M, Ferrante M, Thelen M, Eberle B: Lung density distribution in dynamic CT correlates with oxygenation in ventilated pigs with lavage ARDS. Br J Anaesth. 2003, 91: 699-708. 10.1093/bja/aeg246.CrossRefPubMed Markstaller K, Kauczor HU, Weiler N, Karmrodt J, Doebrich M, Ferrante M, Thelen M, Eberle B: Lung density distribution in dynamic CT correlates with oxygenation in ventilated pigs with lavage ARDS. Br J Anaesth. 2003, 91: 699-708. 10.1093/bja/aeg246.CrossRefPubMed
16.
go back to reference Ferrario D, Grychtol B, Adler A, Sola J, Bohm SH, Bodenstein M: Toward Morphological Thoracic EIT: Major Signal Sources Correspond to Respective Organ Locations in CT. IEEE Trans Bio-Med Eng. 2012, 59: 3000-3008.CrossRef Ferrario D, Grychtol B, Adler A, Sola J, Bohm SH, Bodenstein M: Toward Morphological Thoracic EIT: Major Signal Sources Correspond to Respective Organ Locations in CT. IEEE Trans Bio-Med Eng. 2012, 59: 3000-3008.CrossRef
17.
go back to reference Grychtol B, Lionheart WR, Bodenstein M, Wolf GK, Adler A: Impact of model shape mismatch on reconstruction quality in electrical impedance tomography. IEEE Trans Med Imag. 2012, 31: 1754-1760.CrossRef Grychtol B, Lionheart WR, Bodenstein M, Wolf GK, Adler A: Impact of model shape mismatch on reconstruction quality in electrical impedance tomography. IEEE Trans Med Imag. 2012, 31: 1754-1760.CrossRef
18.
go back to reference Frerichs I, Bodenstein M, Dudykevych T, Hinz J, Hahn G, Hellige G: Effect of lower body negative pressure and gravity on regional lung ventilation determined by EIT. Physiol Meas. 2005, 26: S27-S37. 10.1088/0967-3334/26/2/003.CrossRefPubMed Frerichs I, Bodenstein M, Dudykevych T, Hinz J, Hahn G, Hellige G: Effect of lower body negative pressure and gravity on regional lung ventilation determined by EIT. Physiol Meas. 2005, 26: S27-S37. 10.1088/0967-3334/26/2/003.CrossRefPubMed
19.
go back to reference Frerichs I, Dudykevych T, Hinz J, Bodenstein M, Hahn G, Hellige G: Gravity effects on regional lung ventilation determined by functional EIT during parabolic flights. J Appl Physiol. 2001, 91: 39-50.PubMed Frerichs I, Dudykevych T, Hinz J, Bodenstein M, Hahn G, Hellige G: Gravity effects on regional lung ventilation determined by functional EIT during parabolic flights. J Appl Physiol. 2001, 91: 39-50.PubMed
Metadata
Title
Determination of respiratory gas flow by electrical impedance tomography in an animal model of mechanical ventilation
Authors
Marc Bodenstein
Stefan Boehme
Stephan Bierschock
Andreas Vogt
Matthias David
Klaus Markstaller
Publication date
01-12-2014
Publisher
BioMed Central
Published in
BMC Pulmonary Medicine / Issue 1/2014
Electronic ISSN: 1471-2466
DOI
https://doi.org/10.1186/1471-2466-14-73

Other articles of this Issue 1/2014

BMC Pulmonary Medicine 1/2014 Go to the issue