Skip to main content
Top
Published in: Sports Medicine - Open 1/2022

Open Access 01-12-2022 | Fatigue | Review Article

Functional Impact of Post-exercise Cooling and Heating on Recovery and Training Adaptations: Application to Resistance, Endurance, and Sprint Exercise

Authors: Thomas Chaillou, Viktorija Treigyte, Sarah Mosely, Marius Brazaitis, Tomas Venckunas, Arthur J. Cheng

Published in: Sports Medicine - Open | Issue 1/2022

Login to get access

Abstract

The application of post-exercise cooling (e.g., cold water immersion) and post-exercise heating has become a popular intervention which is assumed to increase functional recovery and may improve chronic training adaptations. However, the effectiveness of such post-exercise temperature manipulations remains uncertain. The aim of this comprehensive review was to analyze the effects of post-exercise cooling and post-exercise heating on neuromuscular function (maximal strength and power), fatigue resistance, exercise performance, and training adaptations. We focused on three exercise types (resistance, endurance and sprint exercises) and included studies investigating (1) the early recovery phase, (2) the late recovery phase, and (3) repeated application of the treatment. We identified that the primary benefit of cooling was in the early recovery phase (< 1 h post-exercise) in improving fatigue resistance in hot ambient conditions following endurance exercise and possibly enhancing the recovery of maximal strength following resistance exercise. The primary negative impact of cooling was with chronic exposure which impaired strength adaptations and decreased fatigue resistance following resistance training intervention (12 weeks and 4–12 weeks, respectively). In the early recovery phase, cooling could also impair sprint performance following sprint exercise and could possibly reduce neuromuscular function immediately after endurance exercise. Generally, no benefits of acute cooling were observed during the 24–72-h recovery period following resistance and endurance exercises, while it could have some benefits on the recovery of neuromuscular function during the 24–48-h recovery period following sprint exercise. Most studies indicated that chronic cooling does not affect endurance training adaptations following 4–6 week training intervention. We identified limited data employing heating as a recovery intervention, but some indications suggest promise in its application to endurance and sprint exercise.
Literature
1.
go back to reference Egan B, Zierath JR. Exercise metabolism and the molecular regulation of skeletal muscle adaptation. Cell Metab. 2013;17(2):162–84.PubMedCrossRef Egan B, Zierath JR. Exercise metabolism and the molecular regulation of skeletal muscle adaptation. Cell Metab. 2013;17(2):162–84.PubMedCrossRef
2.
go back to reference Versey NG, Halson SL, Dawson BT. Water immersion recovery for athletes: effect on exercise performance and practical recommendations. Sports Med. 2013;43(11):1101–30.PubMedCrossRef Versey NG, Halson SL, Dawson BT. Water immersion recovery for athletes: effect on exercise performance and practical recommendations. Sports Med. 2013;43(11):1101–30.PubMedCrossRef
3.
go back to reference Hyldahl RD, Peake JM. Combining cooling or heating applications with exercise training to enhance performance and muscle adaptations. J Appl Physiol (1985). 2020;129(2):353–65.CrossRef Hyldahl RD, Peake JM. Combining cooling or heating applications with exercise training to enhance performance and muscle adaptations. J Appl Physiol (1985). 2020;129(2):353–65.CrossRef
4.
go back to reference Broatch JR, Petersen A, Bishop DJ. The influence of post-exercise cold-water immersion on adaptive responses to exercise: a review of the literature. Sports Med. 2018;48(6):1369–87.PubMedCrossRef Broatch JR, Petersen A, Bishop DJ. The influence of post-exercise cold-water immersion on adaptive responses to exercise: a review of the literature. Sports Med. 2018;48(6):1369–87.PubMedCrossRef
5.
go back to reference Higgins TR, Greene DA, Baker MK. Effects of cold water immersion and contrast water therapy for recovery from team sport: a systematic review and meta-analysis. J Strength Cond Res. 2017;31(5):1443–60.PubMedCrossRef Higgins TR, Greene DA, Baker MK. Effects of cold water immersion and contrast water therapy for recovery from team sport: a systematic review and meta-analysis. J Strength Cond Res. 2017;31(5):1443–60.PubMedCrossRef
6.
go back to reference Ihsan M, Watson G, Abbiss CR. What are the physiological mechanisms for post-exercise cold water immersion in the recovery from prolonged endurance and intermittent exercise? Sports Med. 2016;46(8):1095–109.PubMedCrossRef Ihsan M, Watson G, Abbiss CR. What are the physiological mechanisms for post-exercise cold water immersion in the recovery from prolonged endurance and intermittent exercise? Sports Med. 2016;46(8):1095–109.PubMedCrossRef
7.
go back to reference McGorm H, Roberts LA, Coombes JS, Peake JM. Turning up the heat: an evaluation of the evidence for heating to promote exercise recovery, muscle rehabilitation and adaptation. Sports Med. 2018;48(6):1311–28.PubMedCrossRef McGorm H, Roberts LA, Coombes JS, Peake JM. Turning up the heat: an evaluation of the evidence for heating to promote exercise recovery, muscle rehabilitation and adaptation. Sports Med. 2018;48(6):1311–28.PubMedCrossRef
8.
go back to reference Rodrigues P, Trajano GS, Wharton L, Minett GM. Effects of passive heating intervention on muscle hypertrophy and neuromuscular function: a preliminary systematic review with meta-analysis. J Therm Biol. 2020;93:102684.PubMedCrossRef Rodrigues P, Trajano GS, Wharton L, Minett GM. Effects of passive heating intervention on muscle hypertrophy and neuromuscular function: a preliminary systematic review with meta-analysis. J Therm Biol. 2020;93:102684.PubMedCrossRef
9.
go back to reference Bleakley CM, Davison GW. What is the biochemical and physiological rationale for using cold-water immersion in sports recovery? A systematic review. Br J Sports Med. 2010;44(3):179–87.PubMedCrossRef Bleakley CM, Davison GW. What is the biochemical and physiological rationale for using cold-water immersion in sports recovery? A systematic review. Br J Sports Med. 2010;44(3):179–87.PubMedCrossRef
10.
go back to reference Wilcock IM, Cronin JB, Hing WA. Physiological response to water immersion: a method for sport recovery? Sports Med. 2006;36(9):747–65.PubMedCrossRef Wilcock IM, Cronin JB, Hing WA. Physiological response to water immersion: a method for sport recovery? Sports Med. 2006;36(9):747–65.PubMedCrossRef
11.
go back to reference Malta ES, Dutra YM, Broatch JR, Bishop DJ, Zagatto AM. The effects of regular cold-water immersion use on training-induced changes in strength and endurance performance: a systematic review with meta-analysis. Sports Med. 2021;51(1):161–74.PubMedCrossRef Malta ES, Dutra YM, Broatch JR, Bishop DJ, Zagatto AM. The effects of regular cold-water immersion use on training-induced changes in strength and endurance performance: a systematic review with meta-analysis. Sports Med. 2021;51(1):161–74.PubMedCrossRef
12.
go back to reference Allen DG, Lamb GD, Westerblad H. Skeletal muscle fatigue: cellular mechanisms. Physiol Rev. 2008;88(1):287–332.PubMedCrossRef Allen DG, Lamb GD, Westerblad H. Skeletal muscle fatigue: cellular mechanisms. Physiol Rev. 2008;88(1):287–332.PubMedCrossRef
13.
go back to reference Cheng AJ, Place N, Westerblad H. Molecular basis for exercise-induced fatigue: the importance of strictly controlled cellular Ca(2+) handling. Cold Spring Harb Perspect Med. 2018;8(2):a29710.CrossRef Cheng AJ, Place N, Westerblad H. Molecular basis for exercise-induced fatigue: the importance of strictly controlled cellular Ca(2+) handling. Cold Spring Harb Perspect Med. 2018;8(2):a29710.CrossRef
14.
go back to reference Lindsay A, Peake JM. Muscle strength and power: primary outcome measures to assess cold water immersion efficacy after exercise with a strong strength or power component. Front Sports Act Living. 2021;3:655975.PubMedPubMedCentralCrossRef Lindsay A, Peake JM. Muscle strength and power: primary outcome measures to assess cold water immersion efficacy after exercise with a strong strength or power component. Front Sports Act Living. 2021;3:655975.PubMedPubMedCentralCrossRef
15.
go back to reference Stanley J, Peake JM, Buchheit M. Consecutive days of cold water immersion: effects on cycling performance and heart rate variability. Eur J Appl Physiol. 2013;113(2):371–84.PubMedCrossRef Stanley J, Peake JM, Buchheit M. Consecutive days of cold water immersion: effects on cycling performance and heart rate variability. Eur J Appl Physiol. 2013;113(2):371–84.PubMedCrossRef
16.
go back to reference Vaile J, Halson S, Gill N, Dawson B. Effect of hydrotherapy on recovery from fatigue. Int J Sports Med. 2008;29(7):539–44.PubMedCrossRef Vaile J, Halson S, Gill N, Dawson B. Effect of hydrotherapy on recovery from fatigue. Int J Sports Med. 2008;29(7):539–44.PubMedCrossRef
17.
go back to reference Broatch JR, Petersen A, Bishop DJ. Cold-water immersion following sprint interval training does not alter endurance signaling pathways or training adaptations in human skeletal muscle. Am J Physiol Regul Integr Comp Physiol. 2017;313(4):R372–84.PubMedCrossRef Broatch JR, Petersen A, Bishop DJ. Cold-water immersion following sprint interval training does not alter endurance signaling pathways or training adaptations in human skeletal muscle. Am J Physiol Regul Integr Comp Physiol. 2017;313(4):R372–84.PubMedCrossRef
18.
go back to reference Bishop DJ, Girard O. Determinants of team-sport performance: implications for altitude training by team-sport athletes. Br J Sports Med. 2013;47(Suppl 1):i17–21.PubMedCrossRef Bishop DJ, Girard O. Determinants of team-sport performance: implications for altitude training by team-sport athletes. Br J Sports Med. 2013;47(Suppl 1):i17–21.PubMedCrossRef
19.
go back to reference Cheng AJ, Willis SJ, Zinner C, Chaillou T, Ivarsson N, Ortenblad N, et al. Post-exercise recovery of contractile function and endurance in humans and mice is accelerated by heating and slowed by cooling skeletal muscle. J Physiol. 2017;595(24):7413–26.PubMedPubMedCentralCrossRef Cheng AJ, Willis SJ, Zinner C, Chaillou T, Ivarsson N, Ortenblad N, et al. Post-exercise recovery of contractile function and endurance in humans and mice is accelerated by heating and slowed by cooling skeletal muscle. J Physiol. 2017;595(24):7413–26.PubMedPubMedCentralCrossRef
20.
go back to reference Pointon M, Duffield R, Cannon J, Marino FE. Cold application for neuromuscular recovery following intense lower-body exercise. Eur J Appl Physiol. 2011;111(12):2977–86.PubMedCrossRef Pointon M, Duffield R, Cannon J, Marino FE. Cold application for neuromuscular recovery following intense lower-body exercise. Eur J Appl Physiol. 2011;111(12):2977–86.PubMedCrossRef
21.
go back to reference Kim S, Hurr C. Effects of acute cooling on cycling anaerobic exercise performance and neuromuscular activity: a randomized crossover study. J Sports Med Phys Fitness. 2020;60(11):1437–43.PubMedCrossRef Kim S, Hurr C. Effects of acute cooling on cycling anaerobic exercise performance and neuromuscular activity: a randomized crossover study. J Sports Med Phys Fitness. 2020;60(11):1437–43.PubMedCrossRef
22.
go back to reference De Paula F, Escobar K, Ottone V, Aguiar P, Aguiar de Matos M, Duarte T, et al. Post-exercise cold-water immersion improves the performance in a subsequent 5-km running trial. Temperature (Austin). 2018;5(4):359–70.CrossRef De Paula F, Escobar K, Ottone V, Aguiar P, Aguiar de Matos M, Duarte T, et al. Post-exercise cold-water immersion improves the performance in a subsequent 5-km running trial. Temperature (Austin). 2018;5(4):359–70.CrossRef
23.
go back to reference Méline T, Solsona R, Antonietti JP, Borrani F, Candau R, Sanchez AM. Influence of post-exercise hot-water therapy on adaptations to training over 4 weeks in elite short-track speed skaters. J Exerc Sci Fit. 2021;19(2):134–42.PubMedPubMedCentralCrossRef Méline T, Solsona R, Antonietti JP, Borrani F, Candau R, Sanchez AM. Influence of post-exercise hot-water therapy on adaptations to training over 4 weeks in elite short-track speed skaters. J Exerc Sci Fit. 2021;19(2):134–42.PubMedPubMedCentralCrossRef
24.
go back to reference Zurawlew MJ, Walsh NP, Fortes MB, Potter C. Post-exercise hot water immersion induces heat acclimation and improves endurance exercise performance in the heat. Scand J Med Sci Sports. 2016;26(7):745–54.PubMedCrossRef Zurawlew MJ, Walsh NP, Fortes MB, Potter C. Post-exercise hot water immersion induces heat acclimation and improves endurance exercise performance in the heat. Scand J Med Sci Sports. 2016;26(7):745–54.PubMedCrossRef
25.
go back to reference Stadnyk AMJ, Rehrer NJ, Handcock PJ, Meredith-Jones KA, Cotter JD. No clear benefit of muscle heating on hypertrophy and strength with resistance training. Temperature (Austin). 2018;5(2):175–83.CrossRef Stadnyk AMJ, Rehrer NJ, Handcock PJ, Meredith-Jones KA, Cotter JD. No clear benefit of muscle heating on hypertrophy and strength with resistance training. Temperature (Austin). 2018;5(2):175–83.CrossRef
26.
go back to reference Bove AA. Medical disorders related to diving. J Intensive Care Med. 2002;17(2):75–86.CrossRef Bove AA. Medical disorders related to diving. J Intensive Care Med. 2002;17(2):75–86.CrossRef
27.
go back to reference Smith RM, Hanna JM. Skinfolds and resting heat loss in cold air and water: temperature equivalence. J Appl Physiol. 1975;39(1):93–102.PubMedCrossRef Smith RM, Hanna JM. Skinfolds and resting heat loss in cold air and water: temperature equivalence. J Appl Physiol. 1975;39(1):93–102.PubMedCrossRef
28.
go back to reference Craig AB Jr, Dvorak M. Thermal regulation during water immersion. J Appl Physiol. 1966;21(5):1577–85.PubMedCrossRef Craig AB Jr, Dvorak M. Thermal regulation during water immersion. J Appl Physiol. 1966;21(5):1577–85.PubMedCrossRef
29.
go back to reference Roberts LA, Nosaka K, Coombes JS, Peake JM. Cold water immersion enhances recovery of submaximal muscle function after resistance exercise. Am J Physiol Regul Integr Comp Physiol. 2014;307(8):R998–1008.PubMedCrossRef Roberts LA, Nosaka K, Coombes JS, Peake JM. Cold water immersion enhances recovery of submaximal muscle function after resistance exercise. Am J Physiol Regul Integr Comp Physiol. 2014;307(8):R998–1008.PubMedCrossRef
30.
go back to reference Roberts LA, Muthalib M, Stanley J, Lichtwark G, Nosaka K, Coombes JS, et al. Effects of cold water immersion and active recovery on hemodynamics and recovery of muscle strength following resistance exercise. Am J Physiol Regul Integr Comp Physiol. 2015;309(4):R389–98.PubMedCrossRef Roberts LA, Muthalib M, Stanley J, Lichtwark G, Nosaka K, Coombes JS, et al. Effects of cold water immersion and active recovery on hemodynamics and recovery of muscle strength following resistance exercise. Am J Physiol Regul Integr Comp Physiol. 2015;309(4):R389–98.PubMedCrossRef
31.
go back to reference Wilson LJ, Dimitriou L, Hills FA, Gondek MB, Cockburn E. Whole body cryotherapy, cold water immersion, or a placebo following resistance exercise: a case of mind over matter? Eur J Appl Physiol. 2019;119(1):135–47.PubMedCrossRef Wilson LJ, Dimitriou L, Hills FA, Gondek MB, Cockburn E. Whole body cryotherapy, cold water immersion, or a placebo following resistance exercise: a case of mind over matter? Eur J Appl Physiol. 2019;119(1):135–47.PubMedCrossRef
32.
go back to reference Yamane M, Teruya H, Nakano M, Ogai R, Ohnishi N, Kosaka M. Post-exercise leg and forearm flexor muscle cooling in humans attenuates endurance and resistance training effects on muscle performance and on circulatory adaptation. Eur J Appl Physiol. 2006;96(5):572–80.PubMedCrossRef Yamane M, Teruya H, Nakano M, Ogai R, Ohnishi N, Kosaka M. Post-exercise leg and forearm flexor muscle cooling in humans attenuates endurance and resistance training effects on muscle performance and on circulatory adaptation. Eur J Appl Physiol. 2006;96(5):572–80.PubMedCrossRef
33.
go back to reference Argus CK, Broatch JR, Petersen AC, Polman R, Bishop DJ, Halson S. Cold-water immersion and contrast water therapy: no improvement of short-term recovery after resistance training. Int J Sports Physiol Perform. 2017;12(7):886–92.PubMedCrossRef Argus CK, Broatch JR, Petersen AC, Polman R, Bishop DJ, Halson S. Cold-water immersion and contrast water therapy: no improvement of short-term recovery after resistance training. Int J Sports Physiol Perform. 2017;12(7):886–92.PubMedCrossRef
34.
go back to reference Fröhlich M, Faude O, Klein M, Pieter A, Emrich E, Meyer T. Strength training adaptations after cold-water immersion. J Strength Cond Res. 2014;28(9):2628–33.PubMedCrossRef Fröhlich M, Faude O, Klein M, Pieter A, Emrich E, Meyer T. Strength training adaptations after cold-water immersion. J Strength Cond Res. 2014;28(9):2628–33.PubMedCrossRef
35.
go back to reference Fyfe JJ, Broatch JR, Trewin AJ, Hanson ED, Argus CK, Garnham AP, et al. Cold water immersion attenuates anabolic signaling and skeletal muscle fiber hypertrophy, but not strength gain, following whole-body resistance training. J Appl Physiol (1985). 2019;127(5):1403–18.CrossRef Fyfe JJ, Broatch JR, Trewin AJ, Hanson ED, Argus CK, Garnham AP, et al. Cold water immersion attenuates anabolic signaling and skeletal muscle fiber hypertrophy, but not strength gain, following whole-body resistance training. J Appl Physiol (1985). 2019;127(5):1403–18.CrossRef
36.
go back to reference Gonzalez AM, Stout JR, Jajtner AR, Townsend JR, Wells AJ, Beyer KS, et al. Effects of β-hydroxy-β-methylbutyrate free acid and cold water immersion on post-exercise markers of muscle damage. Amino Acids. 2014;46(6):1501–11.PubMedCrossRef Gonzalez AM, Stout JR, Jajtner AR, Townsend JR, Wells AJ, Beyer KS, et al. Effects of β-hydroxy-β-methylbutyrate free acid and cold water immersion on post-exercise markers of muscle damage. Amino Acids. 2014;46(6):1501–11.PubMedCrossRef
37.
go back to reference Jajtner AR, Hoffman JR, Gonzalez AM, Worts PR, Fragala MS, Stout JR. Comparison of the effects of electrical stimulation and cold-water immersion on muscle soreness after resistance exercise. J Sport Rehabil. 2015;24(2):99–108.PubMedCrossRef Jajtner AR, Hoffman JR, Gonzalez AM, Worts PR, Fragala MS, Stout JR. Comparison of the effects of electrical stimulation and cold-water immersion on muscle soreness after resistance exercise. J Sport Rehabil. 2015;24(2):99–108.PubMedCrossRef
38.
go back to reference Yamane M, Ohnishi N, Matsumoto T. Does regular post-exercise cold application attenuate trained muscle adaptation? Int J Sports Med. 2015;36(8):647–53.PubMedCrossRef Yamane M, Ohnishi N, Matsumoto T. Does regular post-exercise cold application attenuate trained muscle adaptation? Int J Sports Med. 2015;36(8):647–53.PubMedCrossRef
39.
go back to reference Ohnishi N, Yamane M, Uchiyama N, Shirasawa S, Kosaka M, Shiono H, et al. Adaptive changes in muscular performance and circulation by resistance training with regular cold application. J Therm Biol. 2004;29(7–8):839–43.CrossRef Ohnishi N, Yamane M, Uchiyama N, Shirasawa S, Kosaka M, Shiono H, et al. Adaptive changes in muscular performance and circulation by resistance training with regular cold application. J Therm Biol. 2004;29(7–8):839–43.CrossRef
40.
go back to reference Kumazawa T, Mizumura K. Thin-fibre receptors responding to mechanical, chemical, and thermal stimulation in the skeletal muscle of the dog. J Physiol. 1977;273(1):179–94.PubMedPubMedCentralCrossRef Kumazawa T, Mizumura K. Thin-fibre receptors responding to mechanical, chemical, and thermal stimulation in the skeletal muscle of the dog. J Physiol. 1977;273(1):179–94.PubMedPubMedCentralCrossRef
41.
go back to reference Pollak KA, Swenson JD, Vanhaitsma TA, Hughen RW, Jo D, White AT, et al. Exogenously applied muscle metabolites synergistically evoke sensations of muscle fatigue and pain in human subjects. Exp Physiol. 2014;99(2):368–80.PubMedCrossRef Pollak KA, Swenson JD, Vanhaitsma TA, Hughen RW, Jo D, White AT, et al. Exogenously applied muscle metabolites synergistically evoke sensations of muscle fatigue and pain in human subjects. Exp Physiol. 2014;99(2):368–80.PubMedCrossRef
42.
43.
go back to reference Bellezza PA, Hall EE, Miller PC, Bixby WR. The influence of exercise order on blood lactate, perceptual, and affective responses. J Strength Cond Res. 2009;23(1):203–8.PubMedCrossRef Bellezza PA, Hall EE, Miller PC, Bixby WR. The influence of exercise order on blood lactate, perceptual, and affective responses. J Strength Cond Res. 2009;23(1):203–8.PubMedCrossRef
44.
go back to reference Gorostiaga EM, Navarro-Amézqueta I, Calbet JA, Sánchez-Medina L, Cusso R, Guerrero M, et al. Blood ammonia and lactate as markers of muscle metabolites during leg press exercise. J Strength Cond Res. 2014;28(10):2775–85.PubMedCrossRef Gorostiaga EM, Navarro-Amézqueta I, Calbet JA, Sánchez-Medina L, Cusso R, Guerrero M, et al. Blood ammonia and lactate as markers of muscle metabolites during leg press exercise. J Strength Cond Res. 2014;28(10):2775–85.PubMedCrossRef
45.
go back to reference Menzies P, Menzies C, McIntyre L, Paterson P, Wilson J, Kemi OJ. Blood lactate clearance during active recovery after an intense running bout depends on the intensity of the active recovery. J Sports Sci. 2010;28(9):975–82.PubMedCrossRef Menzies P, Menzies C, McIntyre L, Paterson P, Wilson J, Kemi OJ. Blood lactate clearance during active recovery after an intense running bout depends on the intensity of the active recovery. J Sports Sci. 2010;28(9):975–82.PubMedCrossRef
46.
go back to reference Cheng AJ, Neyroud D, Kayser B, Westerblad H, Place N. Intramuscular contributions to low-frequency force potentiation induced by a high-frequency conditioning stimulation. Front Physiol. 2017;8:712.PubMedPubMedCentralCrossRef Cheng AJ, Neyroud D, Kayser B, Westerblad H, Place N. Intramuscular contributions to low-frequency force potentiation induced by a high-frequency conditioning stimulation. Front Physiol. 2017;8:712.PubMedPubMedCentralCrossRef
47.
go back to reference de Ruiter CJ, Jones DA, Sargeant AJ, de Haan A. Temperature effect on the rates of isometric force development and relaxation in the fresh and fatigued human adductor pollicis muscle. Exp Physiol. 1999;84(6):1137–50.PubMedCrossRef de Ruiter CJ, Jones DA, Sargeant AJ, de Haan A. Temperature effect on the rates of isometric force development and relaxation in the fresh and fatigued human adductor pollicis muscle. Exp Physiol. 1999;84(6):1137–50.PubMedCrossRef
48.
go back to reference Stienen GJ, Kiers JL, Bottinelli R, Reggiani C. Myofibrillar ATPase activity in skinned human skeletal muscle fibres: fibre type and temperature dependence. J Physiol. 1996;493(2):299–307.PubMedPubMedCentralCrossRef Stienen GJ, Kiers JL, Bottinelli R, Reggiani C. Myofibrillar ATPase activity in skinned human skeletal muscle fibres: fibre type and temperature dependence. J Physiol. 1996;493(2):299–307.PubMedPubMedCentralCrossRef
49.
go back to reference Metcalf E, Hagstrom AD, Marshall PW. Trained females exhibit less fatigability than trained males after a heavy knee extensor resistance exercise session. Eur J Appl Physiol. 2019;119(1):181–90.PubMedCrossRef Metcalf E, Hagstrom AD, Marshall PW. Trained females exhibit less fatigability than trained males after a heavy knee extensor resistance exercise session. Eur J Appl Physiol. 2019;119(1):181–90.PubMedCrossRef
50.
go back to reference Woodward M, Debold EP. Acidosis and phosphate directly reduce myosin’s force-generating capacity through distinct molecular mechanisms. Front Physiol. 2018;9:862.PubMedPubMedCentralCrossRef Woodward M, Debold EP. Acidosis and phosphate directly reduce myosin’s force-generating capacity through distinct molecular mechanisms. Front Physiol. 2018;9:862.PubMedPubMedCentralCrossRef
51.
go back to reference Bogdanis GC, Nevill ME, Boobis LH, Lakomy HK, Nevill AM. Recovery of power output and muscle metabolites following 30 s of maximal sprint cycling in man. J Physiol. 1995;482(2):467–80.PubMedPubMedCentralCrossRef Bogdanis GC, Nevill ME, Boobis LH, Lakomy HK, Nevill AM. Recovery of power output and muscle metabolites following 30 s of maximal sprint cycling in man. J Physiol. 1995;482(2):467–80.PubMedPubMedCentralCrossRef
52.
go back to reference Juel C, Klarskov C, Nielsen JJ, Krustrup P, Mohr M, Bangsbo J. Effect of high-intensity intermittent training on lactate and H+ release from human skeletal muscle. Am J Physiol Endocrinol Metab. 2004;286(2):E245–51.PubMedCrossRef Juel C, Klarskov C, Nielsen JJ, Krustrup P, Mohr M, Bangsbo J. Effect of high-intensity intermittent training on lactate and H+ release from human skeletal muscle. Am J Physiol Endocrinol Metab. 2004;286(2):E245–51.PubMedCrossRef
53.
go back to reference Poppendieck W, Wegmann M, Hecksteden A, Darup A, Schimpchen J, Skorski S, et al. Does cold-water immersion after strength training attenuate training adaptation? Int J Sports Physiol Perform. 2020;16(2):304–10.PubMedCrossRef Poppendieck W, Wegmann M, Hecksteden A, Darup A, Schimpchen J, Skorski S, et al. Does cold-water immersion after strength training attenuate training adaptation? Int J Sports Physiol Perform. 2020;16(2):304–10.PubMedCrossRef
54.
go back to reference Gabriel DA, Kamen G, Frost G. Neural adaptations to resistive exercise: mechanisms and recommendations for training practices. Sports Med. 2006;36(2):133–49.PubMedCrossRef Gabriel DA, Kamen G, Frost G. Neural adaptations to resistive exercise: mechanisms and recommendations for training practices. Sports Med. 2006;36(2):133–49.PubMedCrossRef
55.
go back to reference Roberts LA, Raastad T, Markworth JF, Figueiredo VC, Egner IM, Shield A, et al. Post-exercise cold water immersion attenuates acute anabolic signalling and long-term adaptations in muscle to strength training. J Physiol. 2015;593(18):4285–301.PubMedPubMedCentralCrossRef Roberts LA, Raastad T, Markworth JF, Figueiredo VC, Egner IM, Shield A, et al. Post-exercise cold water immersion attenuates acute anabolic signalling and long-term adaptations in muscle to strength training. J Physiol. 2015;593(18):4285–301.PubMedPubMedCentralCrossRef
56.
go back to reference Earp JE, Hatfield DL, Sherman A, Lee EC, Kraemer WJ. Cold-water immersion blunts and delays increases in circulating testosterone and cytokines post-resistance exercise. Eur J Appl Physiol. 2019;119(8):1901–7.PubMedCrossRef Earp JE, Hatfield DL, Sherman A, Lee EC, Kraemer WJ. Cold-water immersion blunts and delays increases in circulating testosterone and cytokines post-resistance exercise. Eur J Appl Physiol. 2019;119(8):1901–7.PubMedCrossRef
57.
go back to reference Fuchs CJ, Kouw IWK, Churchward-Venne TA, Smeets JSJ, Senden JM, Lichtenbelt W, et al. Postexercise cooling impairs muscle protein synthesis rates in recreational athletes. J Physiol. 2020;598(4):755–72.PubMedCrossRef Fuchs CJ, Kouw IWK, Churchward-Venne TA, Smeets JSJ, Senden JM, Lichtenbelt W, et al. Postexercise cooling impairs muscle protein synthesis rates in recreational athletes. J Physiol. 2020;598(4):755–72.PubMedCrossRef
58.
go back to reference Place N, Ivarsson N, Venckunas T, Neyroud D, Brazaitis M, Cheng AJ, et al. Ryanodine receptor fragmentation and sarcoplasmic reticulum Ca2+ leak after one session of high-intensity interval exercise. Proc Natl Acad Sci USA. 2015;112(50):15492–7.PubMedPubMedCentralCrossRef Place N, Ivarsson N, Venckunas T, Neyroud D, Brazaitis M, Cheng AJ, et al. Ryanodine receptor fragmentation and sarcoplasmic reticulum Ca2+ leak after one session of high-intensity interval exercise. Proc Natl Acad Sci USA. 2015;112(50):15492–7.PubMedPubMedCentralCrossRef
59.
go back to reference Henríquez-Olguín C, Renani LB, Arab-Ceschia L, Raun SH, Bhatia A, Li Z, et al. Adaptations to high-intensity interval training in skeletal muscle require NADPH oxidase 2. Redox Biol. 2019;24:101188.PubMedPubMedCentralCrossRef Henríquez-Olguín C, Renani LB, Arab-Ceschia L, Raun SH, Bhatia A, Li Z, et al. Adaptations to high-intensity interval training in skeletal muscle require NADPH oxidase 2. Redox Biol. 2019;24:101188.PubMedPubMedCentralCrossRef
60.
go back to reference Gomez-Cabrera MC, Domenech E, Romagnoli M, Arduini A, Borras C, Pallardo FV, et al. Oral administration of vitamin C decreases muscle mitochondrial biogenesis and hampers training-induced adaptations in endurance performance. Am J Clin Nutr. 2008;87(1):142–9.PubMedCrossRef Gomez-Cabrera MC, Domenech E, Romagnoli M, Arduini A, Borras C, Pallardo FV, et al. Oral administration of vitamin C decreases muscle mitochondrial biogenesis and hampers training-induced adaptations in endurance performance. Am J Clin Nutr. 2008;87(1):142–9.PubMedCrossRef
61.
go back to reference Paulsen G, Cumming KT, Holden G, Hallén J, Rønnestad BR, Sveen O, et al. Vitamin C and E supplementation hampers cellular adaptation to endurance training in humans: a double-blind, randomised, controlled trial. J Physiol. 2014;592(8):1887–901.PubMedPubMedCentralCrossRef Paulsen G, Cumming KT, Holden G, Hallén J, Rønnestad BR, Sveen O, et al. Vitamin C and E supplementation hampers cellular adaptation to endurance training in humans: a double-blind, randomised, controlled trial. J Physiol. 2014;592(8):1887–901.PubMedPubMedCentralCrossRef
62.
go back to reference Ristow M, Zarse K, Oberbach A, Kloting N, Birringer M, Kiehntopf M, et al. Antioxidants prevent health-promoting effects of physical exercise in humans. Proc Natl Acad Sci USA. 2009;106(21):8665–70.PubMedPubMedCentralCrossRef Ristow M, Zarse K, Oberbach A, Kloting N, Birringer M, Kiehntopf M, et al. Antioxidants prevent health-promoting effects of physical exercise in humans. Proc Natl Acad Sci USA. 2009;106(21):8665–70.PubMedPubMedCentralCrossRef
63.
go back to reference Strobel NA, Peake JM, Matsumoto A, Marsh SA, Coombes JS, Wadley GD. Antioxidant supplementation reduces skeletal muscle mitochondrial biogenesis. Med Sci Sports Exerc. 2011;43(6):1017–24.PubMedCrossRef Strobel NA, Peake JM, Matsumoto A, Marsh SA, Coombes JS, Wadley GD. Antioxidant supplementation reduces skeletal muscle mitochondrial biogenesis. Med Sci Sports Exerc. 2011;43(6):1017–24.PubMedCrossRef
64.
go back to reference Wyckelsma VL, Venckunas T, Brazaitis M, Gastaldello S, Snieckus A, Eimantas N, et al. Vitamin C and E treatment blunts sprint interval training-induced changes in inflammatory mediator-, calcium-, and mitochondria-related signaling in recreationally active elderly humans. Antioxidants (Basel). 2020;9(9):879.CrossRef Wyckelsma VL, Venckunas T, Brazaitis M, Gastaldello S, Snieckus A, Eimantas N, et al. Vitamin C and E treatment blunts sprint interval training-induced changes in inflammatory mediator-, calcium-, and mitochondria-related signaling in recreationally active elderly humans. Antioxidants (Basel). 2020;9(9):879.CrossRef
65.
go back to reference Pal R, Basu Thakur P, Li S, Minard C, Rodney GG. Real-time imaging of NADPH oxidase activity in living cells using a novel fluorescent protein reporter. PLoS ONE. 2013;8(5):e63989.PubMedPubMedCentralCrossRef Pal R, Basu Thakur P, Li S, Minard C, Rodney GG. Real-time imaging of NADPH oxidase activity in living cells using a novel fluorescent protein reporter. PLoS ONE. 2013;8(5):e63989.PubMedPubMedCentralCrossRef
66.
go back to reference Sutkowy P, Woźniak A, Boraczyński T, Mila-Kierzenkowska C, Boraczyński M. Postexercise impact of ice-cold water bath on the oxidant-antioxidant balance in healthy men. Biomed Res Int. 2015;2015:706141.PubMedPubMedCentralCrossRef Sutkowy P, Woźniak A, Boraczyński T, Mila-Kierzenkowska C, Boraczyński M. Postexercise impact of ice-cold water bath on the oxidant-antioxidant balance in healthy men. Biomed Res Int. 2015;2015:706141.PubMedPubMedCentralCrossRef
67.
go back to reference Fuchs CJ, Smeets JSJ, Senden JM, Zorenc AH, Goessens JPB, van Marken Lichtenbelt WD, et al. Hot-water immersion does not increase postprandial muscle protein synthesis rates during recovery from resistance-type exercise in healthy, young males. J Appl Physiol (1985). 2020;128(4):1012–22.CrossRef Fuchs CJ, Smeets JSJ, Senden JM, Zorenc AH, Goessens JPB, van Marken Lichtenbelt WD, et al. Hot-water immersion does not increase postprandial muscle protein synthesis rates during recovery from resistance-type exercise in healthy, young males. J Appl Physiol (1985). 2020;128(4):1012–22.CrossRef
68.
go back to reference Eimonte M, Paulauskas H, Daniuseviciute L, Eimantas N, Vitkauskiene A, Dauksaite G, et al. Residual effects of short-term whole-body cold-water immersion on the cytokine profile, white blood cell count, and blood markers of stress. Int J Hyperthermia. 2021;38(1):696–707.PubMedCrossRef Eimonte M, Paulauskas H, Daniuseviciute L, Eimantas N, Vitkauskiene A, Dauksaite G, et al. Residual effects of short-term whole-body cold-water immersion on the cytokine profile, white blood cell count, and blood markers of stress. Int J Hyperthermia. 2021;38(1):696–707.PubMedCrossRef
69.
go back to reference Joo CH, Allan R, Drust B, Close GL, Jeong TS, Bartlett JD, et al. Passive and post-exercise cold-water immersion augments PGC-1alpha and VEGF expression in human skeletal muscle. Eur J Appl Physiol. 2016;116(11–12):2315–26.PubMedPubMedCentralCrossRef Joo CH, Allan R, Drust B, Close GL, Jeong TS, Bartlett JD, et al. Passive and post-exercise cold-water immersion augments PGC-1alpha and VEGF expression in human skeletal muscle. Eur J Appl Physiol. 2016;116(11–12):2315–26.PubMedPubMedCentralCrossRef
70.
go back to reference Goto K, Oda H, Kondo H, Igaki M, Suzuki A, Tsuchiya S, et al. Responses of muscle mass, strength and gene transcripts to long-term heat stress in healthy human subjects. Eur J Appl Physiol. 2011;111(1):17–27.PubMedCrossRef Goto K, Oda H, Kondo H, Igaki M, Suzuki A, Tsuchiya S, et al. Responses of muscle mass, strength and gene transcripts to long-term heat stress in healthy human subjects. Eur J Appl Physiol. 2011;111(1):17–27.PubMedCrossRef
71.
go back to reference Hafen PS, Abbott K, Bowden J, Lopiano R, Hancock CR, Hyldahl RD. Daily heat treatment maintains mitochondrial function and attenuates atrophy in human skeletal muscle subjected to immobilization. J Appl Physiol (1985). 2019;127(1):47–57.CrossRef Hafen PS, Abbott K, Bowden J, Lopiano R, Hancock CR, Hyldahl RD. Daily heat treatment maintains mitochondrial function and attenuates atrophy in human skeletal muscle subjected to immobilization. J Appl Physiol (1985). 2019;127(1):47–57.CrossRef
72.
go back to reference Kim K, Reid BA, Casey CA, Bender BE, Ro B, Song Q, et al. Effects of repeated local heat therapy on skeletal muscle structure and function in humans. J Appl Physiol (1985). 2020;128(3):483–92.CrossRef Kim K, Reid BA, Casey CA, Bender BE, Ro B, Song Q, et al. Effects of repeated local heat therapy on skeletal muscle structure and function in humans. J Appl Physiol (1985). 2020;128(3):483–92.CrossRef
73.
go back to reference MacInnis MJ, Gibala MJ. Physiological adaptations to interval training and the role of exercise intensity. J Physiol. 2017;595(9):2915–30.PubMedCrossRef MacInnis MJ, Gibala MJ. Physiological adaptations to interval training and the role of exercise intensity. J Physiol. 2017;595(9):2915–30.PubMedCrossRef
74.
go back to reference Brophy-Williams N, Landers G, Wallman K. Effect of immediate and delayed cold water immersion after a high intensity exercise session on subsequent run performance. J Sports Sci Med. 2011;10(4):665–70.PubMedPubMedCentral Brophy-Williams N, Landers G, Wallman K. Effect of immediate and delayed cold water immersion after a high intensity exercise session on subsequent run performance. J Sports Sci Med. 2011;10(4):665–70.PubMedPubMedCentral
75.
go back to reference Crampton D, Donne B, Warmington SA, Egaña M. Cycling time to failure is better maintained by cold than contrast or thermoneutral lower-body water immersion in normothermia. Eur J Appl Physiol. 2013;113(12):3059–67.PubMedCrossRef Crampton D, Donne B, Warmington SA, Egaña M. Cycling time to failure is better maintained by cold than contrast or thermoneutral lower-body water immersion in normothermia. Eur J Appl Physiol. 2013;113(12):3059–67.PubMedCrossRef
76.
go back to reference Dunne A, Crampton D, Egaña M. Effect of post-exercise hydrotherapy water temperature on subsequent exhaustive running performance in normothermic conditions. J Sci Med Sport. 2013;16(5):466–71.PubMedCrossRef Dunne A, Crampton D, Egaña M. Effect of post-exercise hydrotherapy water temperature on subsequent exhaustive running performance in normothermic conditions. J Sci Med Sport. 2013;16(5):466–71.PubMedCrossRef
77.
go back to reference McCarthy A, Mulligan J, Egaña M. Postexercise cold-water immersion improves intermittent high-intensity exercise performance in normothermia. Appl Physiol Nutr Met. 2016;41(11):1163–70.CrossRef McCarthy A, Mulligan J, Egaña M. Postexercise cold-water immersion improves intermittent high-intensity exercise performance in normothermia. Appl Physiol Nutr Met. 2016;41(11):1163–70.CrossRef
78.
go back to reference Peiffer JJ, Abbiss CR, Watson G, Nosaka K, Laursen PB. Effect of a 5-min cold-water immersion recovery on exercise performance in the heat. Br J Sports Med. 2010;44(6):461–5.PubMedCrossRef Peiffer JJ, Abbiss CR, Watson G, Nosaka K, Laursen PB. Effect of a 5-min cold-water immersion recovery on exercise performance in the heat. Br J Sports Med. 2010;44(6):461–5.PubMedCrossRef
79.
go back to reference Vaile J, Halson S, Gill N, Dawson B. Effect of cold water immersion on repeat cycling performance and thermoregulation in the heat. J Sports Sci. 2008;26(5):431–40.PubMedCrossRef Vaile J, Halson S, Gill N, Dawson B. Effect of cold water immersion on repeat cycling performance and thermoregulation in the heat. J Sports Sci. 2008;26(5):431–40.PubMedCrossRef
80.
go back to reference Vaile J, O’Hagan C, Stefanovic B, Walker M, Gill N, Askew CD. Effect of cold water immersion on repeated cycling performance and limb blood flow. Br J Sports Med. 2011;45(10):825–9.PubMedCrossRef Vaile J, O’Hagan C, Stefanovic B, Walker M, Gill N, Askew CD. Effect of cold water immersion on repeated cycling performance and limb blood flow. Br J Sports Med. 2011;45(10):825–9.PubMedCrossRef
81.
go back to reference Yeargin SW, Casa DJ, McClung JM, Knight JC, Healey JC, Goss PJ, et al. Body cooling between two bouts of exercise in the heat enhances subsequent performance. J Strength Cond Res. 2006;20(2):383–9.PubMed Yeargin SW, Casa DJ, McClung JM, Knight JC, Healey JC, Goss PJ, et al. Body cooling between two bouts of exercise in the heat enhances subsequent performance. J Strength Cond Res. 2006;20(2):383–9.PubMed
82.
go back to reference De Pauw K, Roelands B, Vanparijs J, Meeusen R. Effect of recovery interventions on cycling performance and pacing strategy in the heat. Int J Sports Physiol Perform. 2014;9(2):240–8.PubMedCrossRef De Pauw K, Roelands B, Vanparijs J, Meeusen R. Effect of recovery interventions on cycling performance and pacing strategy in the heat. Int J Sports Physiol Perform. 2014;9(2):240–8.PubMedCrossRef
83.
go back to reference Parkin JM, Carey MF, Zhao S, Febbraio MA. Effect of ambient temperature on human skeletal muscle metabolism during fatiguing submaximal exercise. J Appl Physiol (1985). 1999;86(3):902–8.CrossRef Parkin JM, Carey MF, Zhao S, Febbraio MA. Effect of ambient temperature on human skeletal muscle metabolism during fatiguing submaximal exercise. J Appl Physiol (1985). 1999;86(3):902–8.CrossRef
84.
go back to reference Stanley J, Buchheit M, Peake JM. The effect of post-exercise hydrotherapy on subsequent exercise performance and heart rate variability. Eur J Appl Physiol. 2012;112(3):951–61.PubMedCrossRef Stanley J, Buchheit M, Peake JM. The effect of post-exercise hydrotherapy on subsequent exercise performance and heart rate variability. Eur J Appl Physiol. 2012;112(3):951–61.PubMedCrossRef
85.
go back to reference Rowsell GJ, Reaburn P, Toone R, Smith M, Coutts AJ. Effect of run training and cold-water immersion on subsequent cycle training quality in high-performance triathletes. J Strength Cond Res. 2014;28(6):1664–72.PubMedCrossRef Rowsell GJ, Reaburn P, Toone R, Smith M, Coutts AJ. Effect of run training and cold-water immersion on subsequent cycle training quality in high-performance triathletes. J Strength Cond Res. 2014;28(6):1664–72.PubMedCrossRef
86.
go back to reference Gregson W, Allan R, Holden S, Phibbs P, Doran D, Campbell I, et al. Postexercise cold-water immersion does not attenuate muscle glycogen resynthesis. Med Sci Sports Exerc. 2013;45(6):1174–81.PubMedCrossRef Gregson W, Allan R, Holden S, Phibbs P, Doran D, Campbell I, et al. Postexercise cold-water immersion does not attenuate muscle glycogen resynthesis. Med Sci Sports Exerc. 2013;45(6):1174–81.PubMedCrossRef
87.
go back to reference Versey N, Halson S, Dawson B. Effect of contrast water therapy duration on recovery of cycling performance: a dose-response study. Eur J Appl Physiol. 2011;111(1):37–46.PubMedCrossRef Versey N, Halson S, Dawson B. Effect of contrast water therapy duration on recovery of cycling performance: a dose-response study. Eur J Appl Physiol. 2011;111(1):37–46.PubMedCrossRef
88.
go back to reference Versey NG, Halson SL, Dawson BT. Effect of contrast water therapy duration on recovery of running performance. Int J Sports Physiol Perform. 2012;7(2):130–40.PubMedCrossRef Versey NG, Halson SL, Dawson BT. Effect of contrast water therapy duration on recovery of running performance. Int J Sports Physiol Perform. 2012;7(2):130–40.PubMedCrossRef
89.
go back to reference Slivka D, Tucker T, Cuddy J, Hailes W, Ruby B. Local heat application enhances glycogenesis. Appl Physiol Nutr Metab. 2012;37(2):247–51.PubMedCrossRef Slivka D, Tucker T, Cuddy J, Hailes W, Ruby B. Local heat application enhances glycogenesis. Appl Physiol Nutr Metab. 2012;37(2):247–51.PubMedCrossRef
90.
go back to reference Tucker TJ, Slivka DR, Cuddy JS, Hailes WS, Ruby BC. Effect of local cold application on glycogen recovery. J Sports Med Phys Fitness. 2012;52(2):158–64.PubMed Tucker TJ, Slivka DR, Cuddy JS, Hailes WS, Ruby BC. Effect of local cold application on glycogen recovery. J Sports Med Phys Fitness. 2012;52(2):158–64.PubMed
91.
go back to reference Blackwood SJ, Hanya E, Katz A. Heating after intense repeated contractions inhibits glycogen accumulation in mouse EDL muscle: role of phosphorylase in post-exercise glycogen metabolism. Am J Physiol Cell Physiol. 2018;315(5):C706–13.PubMedCrossRef Blackwood SJ, Hanya E, Katz A. Heating after intense repeated contractions inhibits glycogen accumulation in mouse EDL muscle: role of phosphorylase in post-exercise glycogen metabolism. Am J Physiol Cell Physiol. 2018;315(5):C706–13.PubMedCrossRef
92.
go back to reference Blackwood SJ, Hanya E, Katz A. Effect of postexercise temperature elevation on postexercise glycogen metabolism of isolated mouse soleus muscle. J Appl Physiol (1985). 2019;126(4):1103–9.CrossRef Blackwood SJ, Hanya E, Katz A. Effect of postexercise temperature elevation on postexercise glycogen metabolism of isolated mouse soleus muscle. J Appl Physiol (1985). 2019;126(4):1103–9.CrossRef
93.
go back to reference Hanya E, Katz A. Increased temperature accelerates glycogen synthesis and delays fatigue in isolated mouse muscle during repeated contractions. Acta Physiol (Oxf). 2018;223(1):e13027.CrossRef Hanya E, Katz A. Increased temperature accelerates glycogen synthesis and delays fatigue in isolated mouse muscle during repeated contractions. Acta Physiol (Oxf). 2018;223(1):e13027.CrossRef
94.
go back to reference Wiewelhove T, Schneider C, Döweling A, Hanakam F, Rasche C, Meyer T, et al. Effects of different recovery strategies following a half-marathon on fatigue markers in recreational runners. PLoS ONE. 2018;13(11):e0207313.PubMedPubMedCentralCrossRef Wiewelhove T, Schneider C, Döweling A, Hanakam F, Rasche C, Meyer T, et al. Effects of different recovery strategies following a half-marathon on fatigue markers in recreational runners. PLoS ONE. 2018;13(11):e0207313.PubMedPubMedCentralCrossRef
95.
go back to reference Peiffer JJ, Abbiss CR, Nosaka K, Peake JM, Laursen PB. Effect of cold water immersion after exercise in the heat on muscle function, body temperatures, and vessel diameter. J Sci Med Sport. 2009;12(1):91–6.PubMedCrossRef Peiffer JJ, Abbiss CR, Nosaka K, Peake JM, Laursen PB. Effect of cold water immersion after exercise in the heat on muscle function, body temperatures, and vessel diameter. J Sci Med Sport. 2009;12(1):91–6.PubMedCrossRef
96.
go back to reference Peiffer JJ, Abbiss CR, Watson G, Nosaka K, Laursen PB. Effect of cold-water immersion duration on body temperature and muscle function. J Sports Sci. 2009;27(10):987–93.PubMedCrossRef Peiffer JJ, Abbiss CR, Watson G, Nosaka K, Laursen PB. Effect of cold-water immersion duration on body temperature and muscle function. J Sports Sci. 2009;27(10):987–93.PubMedCrossRef
97.
go back to reference Dantas G, Barros A, Silva B, Belém L, Ferreira V, Fonseca A, et al. Cold-water immersion does not accelerate performance recovery after 10-km street run: randomized controlled clinical trial. Res Q Exerc Sport. 2020;91(2):228–38.PubMedCrossRef Dantas G, Barros A, Silva B, Belém L, Ferreira V, Fonseca A, et al. Cold-water immersion does not accelerate performance recovery after 10-km street run: randomized controlled clinical trial. Res Q Exerc Sport. 2020;91(2):228–38.PubMedCrossRef
98.
go back to reference Stenson MC, Stenson MR, Matthews TD, Paolone VJ. 5000 meter run performance is not enhanced 24 hrs after an intense exercise bout and cold water immersion. J Sports Sci Med. 2017;16(2):272–9.PubMedPubMedCentral Stenson MC, Stenson MR, Matthews TD, Paolone VJ. 5000 meter run performance is not enhanced 24 hrs after an intense exercise bout and cold water immersion. J Sports Sci Med. 2017;16(2):272–9.PubMedPubMedCentral
99.
go back to reference Jensen L, Gejl KD, Ortenblad N, Nielsen JL, Bech RD, Nygaard T, et al. Carbohydrate restricted recovery from long term endurance exercise does not affect gene responses involved in mitochondrial biogenesis in highly trained athletes. Physiol Rep. 2015;3(2):e12184.PubMedPubMedCentralCrossRef Jensen L, Gejl KD, Ortenblad N, Nielsen JL, Bech RD, Nygaard T, et al. Carbohydrate restricted recovery from long term endurance exercise does not affect gene responses involved in mitochondrial biogenesis in highly trained athletes. Physiol Rep. 2015;3(2):e12184.PubMedPubMedCentralCrossRef
100.
go back to reference Wilson LJ, Cockburn E, Paice K, Sinclair S, Faki T, Hills FA, et al. Recovery following a marathon: a comparison of cold water immersion, whole body cryotherapy and a placebo control. Eur J Appl Physiol. 2018;118(1):153–63.PubMedCrossRef Wilson LJ, Cockburn E, Paice K, Sinclair S, Faki T, Hills FA, et al. Recovery following a marathon: a comparison of cold water immersion, whole body cryotherapy and a placebo control. Eur J Appl Physiol. 2018;118(1):153–63.PubMedCrossRef
101.
go back to reference Chauvineau M, Pasquier F, Guyot V, Aloulou A, Nedelec M. Effect of the depth of cold water immersion on sleep architecture and recovery among well-trained male endurance runners. Front Sports Act Living. 2021;3:659990.PubMedPubMedCentralCrossRef Chauvineau M, Pasquier F, Guyot V, Aloulou A, Nedelec M. Effect of the depth of cold water immersion on sleep architecture and recovery among well-trained male endurance runners. Front Sports Act Living. 2021;3:659990.PubMedPubMedCentralCrossRef
102.
go back to reference Saugy J, Place N, Millet GY, Degache F, Schena F, Millet GP. Alterations of neuromuscular function after the world’s most challenging mountain ultra-marathon. PLoS ONE. 2013;8(6):e65596.PubMedPubMedCentralCrossRef Saugy J, Place N, Millet GY, Degache F, Schena F, Millet GP. Alterations of neuromuscular function after the world’s most challenging mountain ultra-marathon. PLoS ONE. 2013;8(6):e65596.PubMedPubMedCentralCrossRef
103.
go back to reference Millet GY, Tomazin K, Verges S, Vincent C, Bonnefoy R, Boisson RC, et al. Neuromuscular consequences of an extreme mountain ultra-marathon. PLoS ONE. 2011;6(2):e17059.PubMedPubMedCentralCrossRef Millet GY, Tomazin K, Verges S, Vincent C, Bonnefoy R, Boisson RC, et al. Neuromuscular consequences of an extreme mountain ultra-marathon. PLoS ONE. 2011;6(2):e17059.PubMedPubMedCentralCrossRef
104.
go back to reference Aguiar PF, Magalhaes SM, Fonseca IA, da Costa Santos VB, de Matos MA, Peixoto MF, et al. Post-exercise cold water immersion does not alter high intensity interval training-induced exercise performance and Hsp72 responses, but enhances mitochondrial markers. Cell Stress Chaperones. 2016;21(5):793–804.PubMedPubMedCentralCrossRef Aguiar PF, Magalhaes SM, Fonseca IA, da Costa Santos VB, de Matos MA, Peixoto MF, et al. Post-exercise cold water immersion does not alter high intensity interval training-induced exercise performance and Hsp72 responses, but enhances mitochondrial markers. Cell Stress Chaperones. 2016;21(5):793–804.PubMedPubMedCentralCrossRef
105.
go back to reference Halson SL, Bartram J, West N, Stephens J, Argus CK, Driller MW, et al. Does hydrotherapy help or hinder adaptation to training in competitive cyclists? Med Sci Sports Exerc. 2014;46(8):1631–9.PubMedCrossRef Halson SL, Bartram J, West N, Stephens J, Argus CK, Driller MW, et al. Does hydrotherapy help or hinder adaptation to training in competitive cyclists? Med Sci Sports Exerc. 2014;46(8):1631–9.PubMedCrossRef
106.
go back to reference Ihsan M, Markworth JF, Watson G, Choo HC, Govus A, Pham T, et al. Regular postexercise cooling enhances mitochondrial biogenesis through AMPK and p38 MAPK in human skeletal muscle. Am J Physiol Regul Integr Comp Physiol. 2015;309(3):R286–94.PubMedCrossRef Ihsan M, Markworth JF, Watson G, Choo HC, Govus A, Pham T, et al. Regular postexercise cooling enhances mitochondrial biogenesis through AMPK and p38 MAPK in human skeletal muscle. Am J Physiol Regul Integr Comp Physiol. 2015;309(3):R286–94.PubMedCrossRef
107.
go back to reference Allan R, Sharples AP, Close GL, Drust B, Shepherd SO, Dutton J, et al. Postexercise cold water immersion modulates skeletal muscle PGC-1alpha mRNA expression in immersed and nonimmersed limbs: evidence of systemic regulation. J Appl Physiol (1985). 2017;123(2):451–9.CrossRef Allan R, Sharples AP, Close GL, Drust B, Shepherd SO, Dutton J, et al. Postexercise cold water immersion modulates skeletal muscle PGC-1alpha mRNA expression in immersed and nonimmersed limbs: evidence of systemic regulation. J Appl Physiol (1985). 2017;123(2):451–9.CrossRef
108.
go back to reference Ihsan M, Watson G, Choo HC, Govus A, Cocking S, Stanley J, et al. Skeletal muscle microvascular adaptations following regular cold water immersion. Int J Sports Med. 2020;41(2):98–105.PubMedCrossRef Ihsan M, Watson G, Choo HC, Govus A, Cocking S, Stanley J, et al. Skeletal muscle microvascular adaptations following regular cold water immersion. Int J Sports Med. 2020;41(2):98–105.PubMedCrossRef
109.
go back to reference Hafen PS, Preece CN, Sorensen JR, Hancock CR, Hyldahl RD. Repeated exposure to heat stress induces mitochondrial adaptation in human skeletal muscle. J Appl Physiol (1985). 2018;125(5):1447–55.CrossRef Hafen PS, Preece CN, Sorensen JR, Hancock CR, Hyldahl RD. Repeated exposure to heat stress induces mitochondrial adaptation in human skeletal muscle. J Appl Physiol (1985). 2018;125(5):1447–55.CrossRef
110.
go back to reference Ihsan M, Deldicque L, Molphy J, Britto F, Cherif A, Racinais S. Skeletal muscle signaling following whole-body and localized heat exposure in humans. Front Physiol. 2020;11:839.PubMedPubMedCentralCrossRef Ihsan M, Deldicque L, Molphy J, Britto F, Cherif A, Racinais S. Skeletal muscle signaling following whole-body and localized heat exposure in humans. Front Physiol. 2020;11:839.PubMedPubMedCentralCrossRef
111.
go back to reference Kuhlenhoelter AM, Kim K, Neff D, Nie Y, Blaize AN, Wong BJ, et al. Heat therapy promotes the expression of angiogenic regulators in human skeletal muscle. Am J Physiol Regul Integr Comp Physiol. 2016;311(2):R377–91.PubMedPubMedCentralCrossRef Kuhlenhoelter AM, Kim K, Neff D, Nie Y, Blaize AN, Wong BJ, et al. Heat therapy promotes the expression of angiogenic regulators in human skeletal muscle. Am J Physiol Regul Integr Comp Physiol. 2016;311(2):R377–91.PubMedPubMedCentralCrossRef
112.
go back to reference Gibala MJ. Physiological basis of interval training for performance enhancement. Exp Physiol. 2021;106:2324–7.PubMedCrossRef Gibala MJ. Physiological basis of interval training for performance enhancement. Exp Physiol. 2021;106:2324–7.PubMedCrossRef
113.
go back to reference Buchheit M, Peiffer JJ, Abbiss CR, Laursen PB. Effect of cold water immersion on postexercise parasympathetic reactivation. Am J Physiol Heart Circ Physiol. 2009;296(2):H421–7.PubMedCrossRef Buchheit M, Peiffer JJ, Abbiss CR, Laursen PB. Effect of cold water immersion on postexercise parasympathetic reactivation. Am J Physiol Heart Circ Physiol. 2009;296(2):H421–7.PubMedCrossRef
114.
go back to reference Crampton D, Egaña M, Donne B, Warmington SA. Including arm exercise during a cold water immersion recovery better assists restoration of sprint cycling performance. Scand J Med Sci Sports. 2014;24(4):e290–8.PubMedCrossRef Crampton D, Egaña M, Donne B, Warmington SA. Including arm exercise during a cold water immersion recovery better assists restoration of sprint cycling performance. Scand J Med Sci Sports. 2014;24(4):e290–8.PubMedCrossRef
115.
go back to reference Crowe MJ, O’Connor D, Rudd D. Cold water recovery reduces anaerobic performance. Int J Sports Med. 2007;28(12):994–8.PubMedCrossRef Crowe MJ, O’Connor D, Rudd D. Cold water recovery reduces anaerobic performance. Int J Sports Med. 2007;28(12):994–8.PubMedCrossRef
116.
go back to reference Hurrie DMG, Giesbrecht GG. Is active recovery during cold water immersion better than active or passive recovery in thermoneutral water for postrecovery high-intensity sprint interval performance? Appl Physiol Nutr Metab. 2020;45(3):251–7.PubMedCrossRef Hurrie DMG, Giesbrecht GG. Is active recovery during cold water immersion better than active or passive recovery in thermoneutral water for postrecovery high-intensity sprint interval performance? Appl Physiol Nutr Metab. 2020;45(3):251–7.PubMedCrossRef
117.
go back to reference Schniepp J, Campbell TS, Powell KL, Pincivero DM. The effects of cold-water immersion on power output and heart rate in elite cyclists. J Strength Cond Res. 2002;16(4):561–6.PubMed Schniepp J, Campbell TS, Powell KL, Pincivero DM. The effects of cold-water immersion on power output and heart rate in elite cyclists. J Strength Cond Res. 2002;16(4):561–6.PubMed
118.
go back to reference Yoshimura M, Hojo T, Yamamoto H, Tachibana M, Nakamura M, Fukuoka Y. Effects of artificial CO(2)-rich cold-water immersion on repeated-cycling work efficiency. Res Sports Med. 2022;30(2):215–27. Yoshimura M, Hojo T, Yamamoto H, Tachibana M, Nakamura M, Fukuoka Y. Effects of artificial CO(2)-rich cold-water immersion on repeated-cycling work efficiency. Res Sports Med. 2022;30(2):215–27.
119.
go back to reference Crampton D, Donne B, Egaña M, Warmington SA. Sprint cycling performance is maintained with short-term contrast water immersion. Med Sci Sports Exerc. 2011;43(11):2180–8.PubMedCrossRef Crampton D, Donne B, Egaña M, Warmington SA. Sprint cycling performance is maintained with short-term contrast water immersion. Med Sci Sports Exerc. 2011;43(11):2180–8.PubMedCrossRef
120.
go back to reference Broatch JR, Petersen A, Bishop DJ. Postexercise cold water immersion benefits are not greater than the placebo effect. Med Sci Sports Exerc. 2014;46(11):2139–47.PubMedCrossRef Broatch JR, Petersen A, Bishop DJ. Postexercise cold water immersion benefits are not greater than the placebo effect. Med Sci Sports Exerc. 2014;46(11):2139–47.PubMedCrossRef
121.
go back to reference White GE, Rhind SG, Wells GD. The effect of various cold-water immersion protocols on exercise-induced inflammatory response and functional recovery from high-intensity sprint exercise. Eur J Appl Physiol. 2014;114(11):2353–67.PubMedCrossRef White GE, Rhind SG, Wells GD. The effect of various cold-water immersion protocols on exercise-induced inflammatory response and functional recovery from high-intensity sprint exercise. Eur J Appl Physiol. 2014;114(11):2353–67.PubMedCrossRef
122.
go back to reference Parouty J, Al Haddad H, Quod M, Leprêtre PM, Ahmaidi S, Buchheit M. Effect of cold water immersion on 100-m sprint performance in well-trained swimmers. Eur J Appl Physiol. 2010;109(3):483–90.PubMedCrossRef Parouty J, Al Haddad H, Quod M, Leprêtre PM, Ahmaidi S, Buchheit M. Effect of cold water immersion on 100-m sprint performance in well-trained swimmers. Eur J Appl Physiol. 2010;109(3):483–90.PubMedCrossRef
123.
go back to reference Bergh U, Ekblom B. Influence of muscle temperature on maximal muscle strength and power output in human skeletal muscles. Acta Physiol Scand. 1979;107(1):33–7.PubMedCrossRef Bergh U, Ekblom B. Influence of muscle temperature on maximal muscle strength and power output in human skeletal muscles. Acta Physiol Scand. 1979;107(1):33–7.PubMedCrossRef
124.
go back to reference Racinais S, Oksa J. Temperature and neuromuscular function. Scand J Med Sci Sports. 2010;20(Suppl 3):1–18.PubMedCrossRef Racinais S, Oksa J. Temperature and neuromuscular function. Scand J Med Sci Sports. 2010;20(Suppl 3):1–18.PubMedCrossRef
125.
go back to reference Faulkner JA, Zerba E, Brooks SV. Muscle temperature of mammals: cooling impairs most functional properties. Am J Physiol. 1990;259(2 Pt 2):R259–65.PubMed Faulkner JA, Zerba E, Brooks SV. Muscle temperature of mammals: cooling impairs most functional properties. Am J Physiol. 1990;259(2 Pt 2):R259–65.PubMed
126.
go back to reference Tattersall GJ, Sinclair BJ, Withers PC, Fields PA, Seebacher F, Cooper CE, et al. Coping with thermal challenges: physiological adaptations to environmental temperatures. Compr Physiol. 2012;2(3):2151–202.PubMedCrossRef Tattersall GJ, Sinclair BJ, Withers PC, Fields PA, Seebacher F, Cooper CE, et al. Coping with thermal challenges: physiological adaptations to environmental temperatures. Compr Physiol. 2012;2(3):2151–202.PubMedCrossRef
127.
go back to reference Mawhinney C, Low DA, Jones H, Green DJ, Costello JT, Gregson W. Cold water mediates greater reductions in limb blood flow than whole body cryotherapy. Med Sci Sports Exerc. 2017;49(6):1252–60.PubMedCrossRef Mawhinney C, Low DA, Jones H, Green DJ, Costello JT, Gregson W. Cold water mediates greater reductions in limb blood flow than whole body cryotherapy. Med Sci Sports Exerc. 2017;49(6):1252–60.PubMedCrossRef
128.
go back to reference Algafly AA, George KP. The effect of cryotherapy on nerve conduction velocity, pain threshold and pain tolerance. Br J Sports Med. 2007;41(6):365–9 (discussion 369).PubMedPubMedCentralCrossRef Algafly AA, George KP. The effect of cryotherapy on nerve conduction velocity, pain threshold and pain tolerance. Br J Sports Med. 2007;41(6):365–9 (discussion 369).PubMedPubMedCentralCrossRef
129.
go back to reference Boehm KE, Miller KC. Does gender affect rectal temperature cooling rates? A critically appraised topic. J Sport Rehabil. 2019;28(5):522–5.PubMedCrossRef Boehm KE, Miller KC. Does gender affect rectal temperature cooling rates? A critically appraised topic. J Sport Rehabil. 2019;28(5):522–5.PubMedCrossRef
130.
go back to reference Stephens JM, Halson SL, Miller J, Slater GJ, Chapman DW, Askew CD. Effect of body composition on physiological responses to cold-water immersion and the recovery of exercise performance. Int J Sports Physiol Perform. 2018;13(3):382–9.PubMedCrossRef Stephens JM, Halson SL, Miller J, Slater GJ, Chapman DW, Askew CD. Effect of body composition on physiological responses to cold-water immersion and the recovery of exercise performance. Int J Sports Physiol Perform. 2018;13(3):382–9.PubMedCrossRef
131.
go back to reference Wyckelsma VL, Venckunas T, Houweling PJ, Schlittler M, Lauschke VM, Tiong CF, et al. Loss of α-actinin-3 during human evolution provides superior cold resilience and muscle heat generation. Am J Hum Genet. 2021;108(3):446–57.PubMedPubMedCentralCrossRef Wyckelsma VL, Venckunas T, Houweling PJ, Schlittler M, Lauschke VM, Tiong CF, et al. Loss of α-actinin-3 during human evolution provides superior cold resilience and muscle heat generation. Am J Hum Genet. 2021;108(3):446–57.PubMedPubMedCentralCrossRef
Metadata
Title
Functional Impact of Post-exercise Cooling and Heating on Recovery and Training Adaptations: Application to Resistance, Endurance, and Sprint Exercise
Authors
Thomas Chaillou
Viktorija Treigyte
Sarah Mosely
Marius Brazaitis
Tomas Venckunas
Arthur J. Cheng
Publication date
01-12-2022
Publisher
Springer International Publishing
Keyword
Fatigue
Published in
Sports Medicine - Open / Issue 1/2022
Print ISSN: 2199-1170
Electronic ISSN: 2198-9761
DOI
https://doi.org/10.1186/s40798-022-00428-9

Other articles of this Issue 1/2022

Sports Medicine - Open 1/2022 Go to the issue