Skip to main content
Top
Published in: European Journal of Applied Physiology 11/2014

01-11-2014 | Original Article

The effect of various cold-water immersion protocols on exercise-induced inflammatory response and functional recovery from high-intensity sprint exercise

Authors: Gillian E. White, Shawn G. Rhind, Greg D. Wells

Published in: European Journal of Applied Physiology | Issue 11/2014

Login to get access

Abstract

Purpose

The purpose of this study was to investigate the effects of different cold-water immersion (CWI) protocols on the inflammatory response to and functional recovery from high-intensity exercise.

Methods

Eight healthy recreationally active males completed five trials of a high-intensity intermittent sprint protocol followed by a randomly assigned recovery condition: 1 of 4 CWI protocols (CWI-10 min × 20 °C, CWI-30 min × 20 °C, CWI-10 min × 10 °C, or CWI-30 min × 10 °C) versus passive rest. Circulating mediators of the inflammatory response were measured from EDTA plasma taken pre-exercise (baseline), immediately post-exercise, and at 2, 24, and 48 h post-exercise. Ratings of perceived soreness and impairment were noted on a 10-pt Likert scale, and squat jump and drop jump were performed at these time points.

Results

IL-6, IL-8, and MPO increased significantly from baseline immediately post-exercise in all conditions. IL-6 remained elevated from baseline at 2 h in the CWI-30 min × 20 °C, CWI-10 min × 10 °C, and CWI-30 min × 10 °C conditions, while further increases were observed for IL-8 and MPO in the CWI-30 min × 20 °C and CWI-30 min × 10 °C conditions. Squat jump and drop jump height were significantly lower in all conditions immediately post-exercise and at 2 h. Drop jump remained below baseline at 24 and 48 h in the CON and CWI-10 min × 20 °C conditions only, while squat jump height returned to baseline in all conditions.

Conclusions

Cold-water immersion appears to facilitate restoration of muscle performance in a stretch–shortening cycle, but not concentric power. These changes do not appear to be related to inflammatory modulation. CWI protocols of excessive duration may actually exacerbate the concentration of cytokines in circulation post-exercise; however, the origin of the circulating cytokines is not necessarily skeletal muscle.
Literature
go back to reference Adams GR, Zaldivar FP, Nance DM, Kodesh E, Radom-Aizik S, Cooper DM (2011) Exercise and leukocyte interchange among central circulation, lung, spleen, and muscle. Brain Behav Immun 25:658–666PubMedCrossRef Adams GR, Zaldivar FP, Nance DM, Kodesh E, Radom-Aizik S, Cooper DM (2011) Exercise and leukocyte interchange among central circulation, lung, spleen, and muscle. Brain Behav Immun 25:658–666PubMedCrossRef
go back to reference Baggiolini M, Clark-Lewis I (1992) Interleukin-8, a chemotactic and inflammatory cytokine. FEBS Lett 307:97–101PubMedCrossRef Baggiolini M, Clark-Lewis I (1992) Interleukin-8, a chemotactic and inflammatory cytokine. FEBS Lett 307:97–101PubMedCrossRef
go back to reference Bailey DM, Erith SJ, Griffin PJ, Dowson A, Brewer DS, Gant N, Williams C (2007) Influence of cold-water immersion on indices of muscle damage following prolonged intermittent shuttle running. J Sports Sci 25:1163–1170PubMedCrossRef Bailey DM, Erith SJ, Griffin PJ, Dowson A, Brewer DS, Gant N, Williams C (2007) Influence of cold-water immersion on indices of muscle damage following prolonged intermittent shuttle running. J Sports Sci 25:1163–1170PubMedCrossRef
go back to reference Barnett A (2006) Using recovery modalities between training sessions in elite athletes: does it help? Sports Med 36:781–796PubMedCrossRef Barnett A (2006) Using recovery modalities between training sessions in elite athletes: does it help? Sports Med 36:781–796PubMedCrossRef
go back to reference Bergh U, Ekblom B (1979) Influence of muscle temperature on maximal muscle strength and power output in human skeletal muscles. Acta Physiol Scand 107:33–37PubMedCrossRef Bergh U, Ekblom B (1979) Influence of muscle temperature on maximal muscle strength and power output in human skeletal muscles. Acta Physiol Scand 107:33–37PubMedCrossRef
go back to reference Bleakley CM, Davison GW (2010) What is the biochemical and physiological rationale for using cold-water immersion in sports recovery? A systematic review. Br J Sports Med 44:179–187PubMedCrossRef Bleakley CM, Davison GW (2010) What is the biochemical and physiological rationale for using cold-water immersion in sports recovery? A systematic review. Br J Sports Med 44:179–187PubMedCrossRef
go back to reference Bøkenes L, Alexandersen TE, Tveita T, Osterud B, Mercer JB (2004) Physiological and hematological responses to cold exposure in young subjects. Int J Circumpolar Health 63:115–128PubMedCrossRef Bøkenes L, Alexandersen TE, Tveita T, Osterud B, Mercer JB (2004) Physiological and hematological responses to cold exposure in young subjects. Int J Circumpolar Health 63:115–128PubMedCrossRef
go back to reference Bruunsgaard H, Galbo H, Halkjaer-Kristensen J, Johansen TL, MacLean DA, Pedersen BK (1997) Exercise-induced increase in serum interleukin-6 in humans is related tomuscle damage. J Phys 499:833–841 Bruunsgaard H, Galbo H, Halkjaer-Kristensen J, Johansen TL, MacLean DA, Pedersen BK (1997) Exercise-induced increase in serum interleukin-6 in humans is related tomuscle damage. J Phys 499:833–841
go back to reference Butterfield TA, Best TM, Merrick MA (2006) The dual roles of neutrophils and macrophages in inflammation: a critical balance between tissue damage and repair. J Athl Train 41:457–465PubMedPubMedCentral Butterfield TA, Best TM, Merrick MA (2006) The dual roles of neutrophils and macrophages in inflammation: a critical balance between tissue damage and repair. J Athl Train 41:457–465PubMedPubMedCentral
go back to reference Byrne C, Eston R (2002) The effect of exercise-induced muscle damage on isometric and dynamic knee extensor strength and vertical jump performance. J Sports Sci 20:417–425PubMedCrossRef Byrne C, Eston R (2002) The effect of exercise-induced muscle damage on isometric and dynamic knee extensor strength and vertical jump performance. J Sports Sci 20:417–425PubMedCrossRef
go back to reference Carvalho N, Puntel G, Correa P, Gubert P, Amaral G, Morais J, Royes L, da Rocha J, Soares F (2010) Protective effects of therapeutic cold and heat against the oxidative damage induced by a muscle strain injury in rats. J Sports Sci 28:923–935PubMedCrossRef Carvalho N, Puntel G, Correa P, Gubert P, Amaral G, Morais J, Royes L, da Rocha J, Soares F (2010) Protective effects of therapeutic cold and heat against the oxidative damage induced by a muscle strain injury in rats. J Sports Sci 28:923–935PubMedCrossRef
go back to reference Castellani JW, M. Brenner IK, Rhind SG (2002) Cold exposure: human immune responses and intracellular cytokine expression. Med Sci Sports Exerc 34:2013–2020PubMedCrossRef Castellani JW, M. Brenner IK, Rhind SG (2002) Cold exposure: human immune responses and intracellular cytokine expression. Med Sci Sports Exerc 34:2013–2020PubMedCrossRef
go back to reference Clarke RS, Hellon RF, Lind AR (1958) Vascular reactions of the human forearm to cold. Clin Sci 17:165–179PubMed Clarke RS, Hellon RF, Lind AR (1958) Vascular reactions of the human forearm to cold. Clin Sci 17:165–179PubMed
go back to reference Costello JT, Culligan K, Selfe J, Donnelly AE (2012) Muscle, skin and core temperature after −110 °C cold air and 8 °C water treatment. PLoS One 7:e48190PubMedCrossRefPubMedCentral Costello JT, Culligan K, Selfe J, Donnelly AE (2012) Muscle, skin and core temperature after −110 °C cold air and 8 °C water treatment. PLoS One 7:e48190PubMedCrossRefPubMedCentral
go back to reference Ettema GJC (2001) Muscle efficiency: the controversial role of elasticity and mechanical energy conversion in stretch-shortening cycles. Eur J Appl Physiol 85:457–465PubMedCrossRef Ettema GJC (2001) Muscle efficiency: the controversial role of elasticity and mechanical energy conversion in stretch-shortening cycles. Eur J Appl Physiol 85:457–465PubMedCrossRef
go back to reference Gregson W, Black MA, Jones H, Milson J, Morton J, Dawson B, Atkinson G, Green DJ (2011) Influence of cold-water immersion on limb and cutaneous blood flow at rest. Am J Sports Med 39:1316–1323PubMedCrossRef Gregson W, Black MA, Jones H, Milson J, Morton J, Dawson B, Atkinson G, Green DJ (2011) Influence of cold-water immersion on limb and cutaneous blood flow at rest. Am J Sports Med 39:1316–1323PubMedCrossRef
go back to reference Halson SL, Quod MJ, Martin DT, Gardner AS, Ebert TR, Laursen PB (2008) Physiological responses to cold water immersion following cycling in the heat. Int J Sports Physiol Perform 3:331–346PubMed Halson SL, Quod MJ, Martin DT, Gardner AS, Ebert TR, Laursen PB (2008) Physiological responses to cold water immersion following cycling in the heat. Int J Sports Physiol Perform 3:331–346PubMed
go back to reference Herrera E, Sandoval MC, Camargo DM, Salvini TF (2010) Motor and sensory nerve conduction are affected differently by ice pack, ice massage, and cold water immersion. Physical Ther 90:581–591CrossRef Herrera E, Sandoval MC, Camargo DM, Salvini TF (2010) Motor and sensory nerve conduction are affected differently by ice pack, ice massage, and cold water immersion. Physical Ther 90:581–591CrossRef
go back to reference Hopkins WG, Marshall SW, Batterham AM, Hanin J (2009) Progressive statistics for studies in sports medicine and exercise science. Med Sci Sports Exerc 41:3–13PubMedCrossRef Hopkins WG, Marshall SW, Batterham AM, Hanin J (2009) Progressive statistics for studies in sports medicine and exercise science. Med Sci Sports Exerc 41:3–13PubMedCrossRef
go back to reference Horita T, Komi PV, Nicol C, Kyröläinen H (1996) Stretch shortening cycle fatigue: interactions among joint stiffness, reflex, and muscle mechanical performance in the drop jump. Eur J Appl Physiol Occup Physiol 73:393–403PubMedCrossRef Horita T, Komi PV, Nicol C, Kyröläinen H (1996) Stretch shortening cycle fatigue: interactions among joint stiffness, reflex, and muscle mechanical performance in the drop jump. Eur J Appl Physiol Occup Physiol 73:393–403PubMedCrossRef
go back to reference Lee EC, Watson G, Casa D, Armstrong LE, Kraemer W, Vingren JL, Spiering BA, Maresh CM (2012) Interleukin-6 responses to water immersion therapy after acute exercise heat stress: a pilot investigation. J Athl Train 47:655–663PubMedCrossRefPubMedCentral Lee EC, Watson G, Casa D, Armstrong LE, Kraemer W, Vingren JL, Spiering BA, Maresh CM (2012) Interleukin-6 responses to water immersion therapy after acute exercise heat stress: a pilot investigation. J Athl Train 47:655–663PubMedCrossRefPubMedCentral
go back to reference Leeder J, Gissane C, van Someren K, Gregson W, Howatson G (2012) Cold water immersion and recovery from strenuous exercise: a meta-analysis. Br J Sports Med 46:233–240PubMedCrossRef Leeder J, Gissane C, van Someren K, Gregson W, Howatson G (2012) Cold water immersion and recovery from strenuous exercise: a meta-analysis. Br J Sports Med 46:233–240PubMedCrossRef
go back to reference Nemet D, Meckel Y, Bar-Sela S, Zaldivar F, Cooper DM, Eliakim A (2009) Effect of local cold-pack application on systemic anabolic and inflammatory response to sprint-interval training: a prospective comparative trial. Eur J Appl Physiol 107:411–417PubMedCrossRefPubMedCentral Nemet D, Meckel Y, Bar-Sela S, Zaldivar F, Cooper DM, Eliakim A (2009) Effect of local cold-pack application on systemic anabolic and inflammatory response to sprint-interval training: a prospective comparative trial. Eur J Appl Physiol 107:411–417PubMedCrossRefPubMedCentral
go back to reference Nicol C, Komi PV, Horita T, Kyröläinen H, Takala TE (1996) Reduced stretch–reflex sensitivity after exhausting stretch-shortening cycle exercise. Eur J Appl Physiol Occup Physiol 72:401–409PubMed Nicol C, Komi PV, Horita T, Kyröläinen H, Takala TE (1996) Reduced stretch–reflex sensitivity after exhausting stretch-shortening cycle exercise. Eur J Appl Physiol Occup Physiol 72:401–409PubMed
go back to reference Nieman DC, Konrad M, Henson DA, Kennerly K, Shanely RA, Wallner-Liebmann SJ (2012) Variance in the acute inflammatory response to prolonged cycling is linked to exercise intensity. J Interferon Cytokine Res 32:12–17PubMedCrossRef Nieman DC, Konrad M, Henson DA, Kennerly K, Shanely RA, Wallner-Liebmann SJ (2012) Variance in the acute inflammatory response to prolonged cycling is linked to exercise intensity. J Interferon Cytokine Res 32:12–17PubMedCrossRef
go back to reference Paulsen G, Mikkelsen UR, Raastad T, Peake JM (2012) Leucocytes, cytokines and satellite cells: what role do they play in muscle damage and regeneration following eccentric exercise? Exerc Immunol Rev 18:42–97PubMed Paulsen G, Mikkelsen UR, Raastad T, Peake JM (2012) Leucocytes, cytokines and satellite cells: what role do they play in muscle damage and regeneration following eccentric exercise? Exerc Immunol Rev 18:42–97PubMed
go back to reference Peake JJ, Nosaka KK, Suzuki KK (2005a) Characterization of inflammatory responses to eccentric exercise in humans. Exerc Immunol Rev 11:64–85PubMed Peake JJ, Nosaka KK, Suzuki KK (2005a) Characterization of inflammatory responses to eccentric exercise in humans. Exerc Immunol Rev 11:64–85PubMed
go back to reference Peake JM, Suzuki K, Hordern M, Wilson G, Nosaka K, Coombes JS (2005b) Plasma cytokine changes in relation to exercise intensity and muscle damage. Eur J Appl Physiol 95:514–521PubMedCrossRef Peake JM, Suzuki K, Hordern M, Wilson G, Nosaka K, Coombes JS (2005b) Plasma cytokine changes in relation to exercise intensity and muscle damage. Eur J Appl Physiol 95:514–521PubMedCrossRef
go back to reference Pedersen BK, Ostrowski K, Rohde T, Bruunsgaard H (1998) The cytokine response to strenuous exercise. Can J Physiol Pharmacol 76:505–511PubMedCrossRef Pedersen BK, Ostrowski K, Rohde T, Bruunsgaard H (1998) The cytokine response to strenuous exercise. Can J Physiol Pharmacol 76:505–511PubMedCrossRef
go back to reference Pedersen BK, Steensberg A, Keller P, Keller C, Fischer C, Hiscock N, van Hall G, Plomgaard P, Febbraio MA (2003) Muscle-derived interleukin-6: lipolytic, anti-inflammatory and immune regulatory effects. Eur J Physiol 446:9–16 Pedersen BK, Steensberg A, Keller P, Keller C, Fischer C, Hiscock N, van Hall G, Plomgaard P, Febbraio MA (2003) Muscle-derived interleukin-6: lipolytic, anti-inflammatory and immune regulatory effects. Eur J Physiol 446:9–16
go back to reference Pedersen BK, Akerstrom TCA, Nielsen AR, Fischer CP (2007) Role of myokines in exercise and metabolism. J Appl Phys 103:1093–1098 Pedersen BK, Akerstrom TCA, Nielsen AR, Fischer CP (2007) Role of myokines in exercise and metabolism. J Appl Phys 103:1093–1098
go back to reference Peiffer JJ, Abbiss CR, Watson G, Nosaka K, Laursen PB (2009) Effect of cold-water immersion duration on body temperature and muscle function. J Sports Sci 27:987–993PubMedCrossRef Peiffer JJ, Abbiss CR, Watson G, Nosaka K, Laursen PB (2009) Effect of cold-water immersion duration on body temperature and muscle function. J Sports Sci 27:987–993PubMedCrossRef
go back to reference Peterson JM, Pizza FX (2008) Cytokines derived from cultured skeletal muscle cells after mechanical strain promote neutrophil chemotaxis in vitro. J Appl Phys 106:130–137 Peterson JM, Pizza FX (2008) Cytokines derived from cultured skeletal muscle cells after mechanical strain promote neutrophil chemotaxis in vitro. J Appl Phys 106:130–137
go back to reference Pizza FX, Koh TJ, McGregor SJ, Brooks SV (2002) Muscle inflammatory cells after passive stretches, isometric contractions, and lengthening contractions. J Appl Physiol 92:1873–1878PubMedCrossRef Pizza FX, Koh TJ, McGregor SJ, Brooks SV (2002) Muscle inflammatory cells after passive stretches, isometric contractions, and lengthening contractions. J Appl Physiol 92:1873–1878PubMedCrossRef
go back to reference Pointon M, Duffield R, Cannon J, Marino FE (2011) Cold water immersion recovery following intermittent-sprint exercise in the heat. Eur J Appl Physiol 112:2483–2494PubMedCrossRef Pointon M, Duffield R, Cannon J, Marino FE (2011) Cold water immersion recovery following intermittent-sprint exercise in the heat. Eur J Appl Physiol 112:2483–2494PubMedCrossRef
go back to reference Pournot H, Bieuzen F, Duffield R, Leprêtre PM, Cozzolino C, Hausswirth C (2010) Short term effects of various water immersions on recovery from exhaustive intermittent exercise. Eur J Appl Physiol 111:1287–1295PubMedCrossRef Pournot H, Bieuzen F, Duffield R, Leprêtre PM, Cozzolino C, Hausswirth C (2010) Short term effects of various water immersions on recovery from exhaustive intermittent exercise. Eur J Appl Physiol 111:1287–1295PubMedCrossRef
go back to reference Puntel GO, Carvalho NR, Amaral GP, Lobato LD, Silveira SO, Daubermann MF, Barbosa NV, Rocha JBT, Soares FAA (2011) Therapeutic cold: an effective kind to modulate the oxidative damage resulting of a skeletal muscle contusion. Free Radic Res 45:133–146CrossRef Puntel GO, Carvalho NR, Amaral GP, Lobato LD, Silveira SO, Daubermann MF, Barbosa NV, Rocha JBT, Soares FAA (2011) Therapeutic cold: an effective kind to modulate the oxidative damage resulting of a skeletal muscle contusion. Free Radic Res 45:133–146CrossRef
go back to reference Rupp KA (2012) Intramuscular temperature changes during and after 2 different cryotherapy interventions in healthy individuals. J Orthop Sports Phys Ther 42:731–737PubMedCrossRef Rupp KA (2012) Intramuscular temperature changes during and after 2 different cryotherapy interventions in healthy individuals. J Orthop Sports Phys Ther 42:731–737PubMedCrossRef
go back to reference Smith LL (1991) Acute inflammation: the underlying mechanism in delayed onset muscle soreness? Med Sci Sports Exerc 23:542–551PubMed Smith LL (1991) Acute inflammation: the underlying mechanism in delayed onset muscle soreness? Med Sci Sports Exerc 23:542–551PubMed
go back to reference Stacey DL (2010) Effects of recovery method on performance, immune changes, and psychological outcomes. J Orthop Sports Phys Ther 40:656–665PubMedCrossRef Stacey DL (2010) Effects of recovery method on performance, immune changes, and psychological outcomes. J Orthop Sports Phys Ther 40:656–665PubMedCrossRef
go back to reference Steensberg A, van Hall G, Osada T, Sacchetti M, Saltin B, Pedersen BK (2000) Production of interleukin-6 in contracting human skeletal muscles can account for the exercise-induced increase in plasma interleukin-6. J Physiol 529(Pt 1):237–242PubMedCrossRefPubMedCentral Steensberg A, van Hall G, Osada T, Sacchetti M, Saltin B, Pedersen BK (2000) Production of interleukin-6 in contracting human skeletal muscles can account for the exercise-induced increase in plasma interleukin-6. J Physiol 529(Pt 1):237–242PubMedCrossRefPubMedCentral
go back to reference Suzuki K, Nakaji S, Yamada M, Totsuka M, Sato K, Sugawara K (2002) Systemic inflammatory response to exhaustive exercise. Cytokine kinetics. Exerc Immunol Rev 8:6–48PubMed Suzuki K, Nakaji S, Yamada M, Totsuka M, Sato K, Sugawara K (2002) Systemic inflammatory response to exhaustive exercise. Cytokine kinetics. Exerc Immunol Rev 8:6–48PubMed
go back to reference Swenson C, Swärd L, Karlsson J (1996) Cryotherapy in sports medicine. Scand J Med Sci Sports 6:193–200PubMedCrossRef Swenson C, Swärd L, Karlsson J (1996) Cryotherapy in sports medicine. Scand J Med Sci Sports 6:193–200PubMedCrossRef
go back to reference Tee JC, Bosch AN, Lambert MI (2007) Metabolic consequences of exercise-induced muscle damage. Sports Med 37:827–836PubMedCrossRef Tee JC, Bosch AN, Lambert MI (2007) Metabolic consequences of exercise-induced muscle damage. Sports Med 37:827–836PubMedCrossRef
go back to reference Thorsson OO, Lilja BB, Ahlgren LL, Hemdal BB, Westlin NN (1985) The effect of local cold application on intramuscular blood flow at rest and after running. Med Sci Sports Exerc 17:710–713PubMedCrossRef Thorsson OO, Lilja BB, Ahlgren LL, Hemdal BB, Westlin NN (1985) The effect of local cold application on intramuscular blood flow at rest and after running. Med Sci Sports Exerc 17:710–713PubMedCrossRef
go back to reference Tidball JG, Villalta SA (2010) Regulatory interactions between muscle and the immune system during muscle regeneration. Am J Physiol Regul Integr Comp Physiol 298:R1173–R1187PubMedCrossRefPubMedCentral Tidball JG, Villalta SA (2010) Regulatory interactions between muscle and the immune system during muscle regeneration. Am J Physiol Regul Integr Comp Physiol 298:R1173–R1187PubMedCrossRefPubMedCentral
go back to reference Vaile J, Halson S, Gill N, Dawson B (2007) Effect of hydrotherapy on the signs and symptoms of delayed onset muscle soreness. Eur J Appl Physiol 102:447–455PubMedCrossRef Vaile J, Halson S, Gill N, Dawson B (2007) Effect of hydrotherapy on the signs and symptoms of delayed onset muscle soreness. Eur J Appl Physiol 102:447–455PubMedCrossRef
go back to reference Warren GL, Lowe DA, Armstrong RB (1999) Measurement tools used in the study of eccentric contraction-induced injury. Sports Med 27:43–59PubMedCrossRef Warren GL, Lowe DA, Armstrong RB (1999) Measurement tools used in the study of eccentric contraction-induced injury. Sports Med 27:43–59PubMedCrossRef
go back to reference White GE, Wells GD (2013) Cold-water immersion and other forms of cryotherapy: physiological changes potentially affecting recovery from high-intensity exercise. Extrem Physiol Med 2:26PubMedCrossRefPubMedCentral White GE, Wells GD (2013) Cold-water immersion and other forms of cryotherapy: physiological changes potentially affecting recovery from high-intensity exercise. Extrem Physiol Med 2:26PubMedCrossRefPubMedCentral
go back to reference Wilcock IM, Cronin JB, Hing WA (2006) Physiological response to water immersion: a method for sport recovery? Sports Med 36:747–765PubMedCrossRef Wilcock IM, Cronin JB, Hing WA (2006) Physiological response to water immersion: a method for sport recovery? Sports Med 36:747–765PubMedCrossRef
go back to reference Yanagisawa O, Fukubayashi T (2010) Diffusion-weighted magnetic resonance imaging reveals the effects of different cooling temperatures on the diffusion of water molecules and perfusion within human skeletal muscle. Clin Radiol 65:874–880PubMedCrossRef Yanagisawa O, Fukubayashi T (2010) Diffusion-weighted magnetic resonance imaging reveals the effects of different cooling temperatures on the diffusion of water molecules and perfusion within human skeletal muscle. Clin Radiol 65:874–880PubMedCrossRef
go back to reference Yanagisawa O, Homma T, Okuwaki T, Shimao D, Takahashi H (2007) Effects of cooling on human skin and skeletal muscle. Eur J Appl Physiol 100:737–745PubMedCrossRef Yanagisawa O, Homma T, Okuwaki T, Shimao D, Takahashi H (2007) Effects of cooling on human skin and skeletal muscle. Eur J Appl Physiol 100:737–745PubMedCrossRef
go back to reference Yanagisawa O, Takahashi H, Fukubayashi T (2010) Effects of different cooling treatments on water diffusion, microcirculation, and water content within exercised muscles: evaluation by magnetic resonance T2-weighted and diffusion-weighted imaging. J Sports Sci 28:1157–1163PubMedCrossRef Yanagisawa O, Takahashi H, Fukubayashi T (2010) Effects of different cooling treatments on water diffusion, microcirculation, and water content within exercised muscles: evaluation by magnetic resonance T2-weighted and diffusion-weighted imaging. J Sports Sci 28:1157–1163PubMedCrossRef
Metadata
Title
The effect of various cold-water immersion protocols on exercise-induced inflammatory response and functional recovery from high-intensity sprint exercise
Authors
Gillian E. White
Shawn G. Rhind
Greg D. Wells
Publication date
01-11-2014
Publisher
Springer Berlin Heidelberg
Published in
European Journal of Applied Physiology / Issue 11/2014
Print ISSN: 1439-6319
Electronic ISSN: 1439-6327
DOI
https://doi.org/10.1007/s00421-014-2954-2

Other articles of this Issue 11/2014

European Journal of Applied Physiology 11/2014 Go to the issue