Skip to main content
Top
Published in: Clinical and Translational Medicine 1/2019

Open Access 01-12-2019 | Solid Tumor | Review

Hypoxia as a barrier to immunotherapy in pancreatic adenocarcinoma

Authors: S. K. Daniel, K. M. Sullivan, K. P. Labadie, V. G. Pillarisetty

Published in: Clinical and Translational Medicine | Issue 1/2019

Login to get access

Abstract

Pancreatic ductal adenocarcinoma (PDA) is a lethal disease with limited response to cytotoxic chemoradiotherapy, as well as newer immunotherapies. The PDA tumor microenvironment contains infiltrating immune cells including cytotoxic T cells; however, there is an overall immunosuppressive milieu. Hypoxia is a known element of the solid tumor microenvironment and may promote tumor survival. Through various mechanisms including, but not limited to, those mediated by HIF-1α, hypoxia also leads to increased tumor proliferation and metabolic changes. Furthermore, epithelial to mesenchymal transition is promoted through several pathways, including NOTCH and c-MET, regulated by hypoxia. Hypoxia-promoted changes also contribute to the immunosuppressive phenotype seen in many different cell types within the microenvironment and thereby may inhibit an effective immune system response to PDA. Pancreatic stellate cells (PSCs) and myofibroblasts appear to contribute to the recruitment of myeloid derived suppressor cells (MDSCs) and B cells in PDA via cytokines increased due to hypoxia. PSCs also increase collagen secretion in response to HIF-1α, which promotes a fibrotic stroma that alters T cell homing and migration. In hypoxic environments, B cells contribute to cytotoxic T cell exhaustion and produce chemokines to attract more immunosuppressive regulatory T cells. MDSCs inhibit T cell metabolism by hoarding key amino acids, modulate T cell homing by cleaving L-selectin, and prevent T cell activation by increasing PD-L1 expression. Immunosuppressive M2 phenotype macrophages promote T cell anergy via increased nitric oxide (NO) and decreased arginine in hypoxia. Increased numbers of regulatory T cells are seen in hypoxia which prevent effector T cell activation through cytokine production and increased CTLA-4. Effective immunotherapy for pancreatic adenocarcinoma and other solid tumors will need to help counteract the immunosuppressive nature of hypoxia-induced changes in the tumor microenvironment. Promising studies will look at combination therapies involving checkpoint inhibitors, chemokine inhibitors, and possible targeting of hypoxia. While no model is perfect, assuring that models incorporate the effects of hypoxia on cancer cells, stromal cells, and effector immune cells will be crucial in developing successful therapies.
Literature
1.
2.
go back to reference Rahib L, Smith BD, Aizenberg R, Rosenzweig AB, Fleshman JM, Matrisian LM (2014) Projecting cancer incidence and deaths to 2030: the unexpected burden of thyroid, liver, and pancreas cancers in the United States. Cancer Res 74(11):2913–2921PubMedCrossRef Rahib L, Smith BD, Aizenberg R, Rosenzweig AB, Fleshman JM, Matrisian LM (2014) Projecting cancer incidence and deaths to 2030: the unexpected burden of thyroid, liver, and pancreas cancers in the United States. Cancer Res 74(11):2913–2921PubMedCrossRef
3.
go back to reference Binenbaum Y, Na’ara S, Gil Z (2015) Gemcitabine resistance in pancreatic ductal adenocarcinoma. Drug Resist Updat 23:55–68PubMedCrossRef Binenbaum Y, Na’ara S, Gil Z (2015) Gemcitabine resistance in pancreatic ductal adenocarcinoma. Drug Resist Updat 23:55–68PubMedCrossRef
4.
go back to reference Yokoi K, Fidler IJ (2004) Hypoxia increases resistance of human pancreatic cancer cells to apoptosis induced by gemcitabine. Clin Cancer Res 10(7):2299–2306PubMedCrossRef Yokoi K, Fidler IJ (2004) Hypoxia increases resistance of human pancreatic cancer cells to apoptosis induced by gemcitabine. Clin Cancer Res 10(7):2299–2306PubMedCrossRef
5.
go back to reference Sheahan AV, Biankin AV, Parish CR, Khachigian LM (2018) Targeted therapies in the management of locally advanced and metastatic pancreatic cancer: a systematic review. Oncotarget. 9(30):21613–21627PubMedPubMedCentralCrossRef Sheahan AV, Biankin AV, Parish CR, Khachigian LM (2018) Targeted therapies in the management of locally advanced and metastatic pancreatic cancer: a systematic review. Oncotarget. 9(30):21613–21627PubMedPubMedCentralCrossRef
6.
go back to reference Hidalgo M, Cascinu S, Kleeff J, Labianca R, Löhr J, Neoptolemos J et al (2015) Addressing the challenges of pancreatic cancer: future directions for improving outcomes. Pancreatology. 15(1):8–18PubMedCrossRef Hidalgo M, Cascinu S, Kleeff J, Labianca R, Löhr J, Neoptolemos J et al (2015) Addressing the challenges of pancreatic cancer: future directions for improving outcomes. Pancreatology. 15(1):8–18PubMedCrossRef
7.
go back to reference McCormick KA, Coveler AL, Rossi GR, Vahanian NN, Link C, Chiorean EG (2016) Pancreatic cancer: update on immunotherapies and algenpantucel-L. Hum Vaccin Immunother 12(3):563–575PubMedCrossRef McCormick KA, Coveler AL, Rossi GR, Vahanian NN, Link C, Chiorean EG (2016) Pancreatic cancer: update on immunotherapies and algenpantucel-L. Hum Vaccin Immunother 12(3):563–575PubMedCrossRef
8.
go back to reference Ahn DH, Ramanathan RK, Bekaii-Saab T (2018) Emerging Therapies and Future Directions in Targeting the Tumor Stroma and Immune System in the Treatment of Pancreatic Adenocarcinoma. Cancers (Basel). 10(6):193PubMedCentralCrossRef Ahn DH, Ramanathan RK, Bekaii-Saab T (2018) Emerging Therapies and Future Directions in Targeting the Tumor Stroma and Immune System in the Treatment of Pancreatic Adenocarcinoma. Cancers (Basel). 10(6):193PubMedCentralCrossRef
10.
go back to reference Fukunaga A, Miyamoto M, Cho Y, Murakami S, Kawarada Y, Oshikiri T et al (2004) CD8+ tumor-infiltrating lymphocytes together with CD4+ tumor-infiltrating lymphocytes and dendritic cells improve the prognosis of patients with pancreatic adenocarcinoma. Pancreas 28(1):26CrossRef Fukunaga A, Miyamoto M, Cho Y, Murakami S, Kawarada Y, Oshikiri T et al (2004) CD8+ tumor-infiltrating lymphocytes together with CD4+ tumor-infiltrating lymphocytes and dendritic cells improve the prognosis of patients with pancreatic adenocarcinoma. Pancreas 28(1):26CrossRef
11.
go back to reference Carstens JL, Sampaio P, Yang D, Barua S, Wang H, Rao A et al (2017) Spatial computation of intratumoral T cells correlates with survival of patients with pancreatic cancer. Nat Commun. 8:15095PubMedPubMedCentralCrossRef Carstens JL, Sampaio P, Yang D, Barua S, Wang H, Rao A et al (2017) Spatial computation of intratumoral T cells correlates with survival of patients with pancreatic cancer. Nat Commun. 8:15095PubMedPubMedCentralCrossRef
12.
go back to reference Shibuya KC, Goel VK, Xiong W, Sham JG, Pollack SM, Leahy AM et al (2014) Pancreatic ductal adenocarcinoma contains an effector and regulatory immune cell infiltrate that is altered by multimodal neoadjuvant treatment. PLoS ONE 9(5):e96565PubMedPubMedCentralCrossRef Shibuya KC, Goel VK, Xiong W, Sham JG, Pollack SM, Leahy AM et al (2014) Pancreatic ductal adenocarcinoma contains an effector and regulatory immune cell infiltrate that is altered by multimodal neoadjuvant treatment. PLoS ONE 9(5):e96565PubMedPubMedCentralCrossRef
13.
go back to reference Bailey P, Chang DK, Forget M, Lucas FAS, Alvarez HA, Haymaker C et al (2016) Exploiting the neoantigen landscape for immunotherapy of pancreatic ductal adenocarcinoma. Sci Rep. 6:35848PubMedPubMedCentralCrossRef Bailey P, Chang DK, Forget M, Lucas FAS, Alvarez HA, Haymaker C et al (2016) Exploiting the neoantigen landscape for immunotherapy of pancreatic ductal adenocarcinoma. Sci Rep. 6:35848PubMedPubMedCentralCrossRef
14.
go back to reference Barsoum IB, Smallwood CA, Siemens DR, Graham CH (2014) A mechanism of hypoxia-mediated escape from adaptive immunity in cancer cells. Cancer Res. 74(3):665–674PubMedCrossRef Barsoum IB, Smallwood CA, Siemens DR, Graham CH (2014) A mechanism of hypoxia-mediated escape from adaptive immunity in cancer cells. Cancer Res. 74(3):665–674PubMedCrossRef
15.
go back to reference Doktorova H, Hrabeta J, Khalil MA, Eckschlager T (2015) Hypoxia-induced chemoresistance in cancer cells: the role of not only HIF-1. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 159(2):166–177PubMedCrossRef Doktorova H, Hrabeta J, Khalil MA, Eckschlager T (2015) Hypoxia-induced chemoresistance in cancer cells: the role of not only HIF-1. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 159(2):166–177PubMedCrossRef
16.
go back to reference Moreno Roig E, Yaromina A, Houben R, Groot AJ, Dubois L, Vooijs M (2018) Prognostic Role of Hypoxia-Inducible Factor-2α Tumor Cell Expression in Cancer Patients: a Meta-Analysis. Front Oncol 8:224PubMedPubMedCentralCrossRef Moreno Roig E, Yaromina A, Houben R, Groot AJ, Dubois L, Vooijs M (2018) Prognostic Role of Hypoxia-Inducible Factor-2α Tumor Cell Expression in Cancer Patients: a Meta-Analysis. Front Oncol 8:224PubMedPubMedCentralCrossRef
17.
go back to reference Koong AC, Mehta VK, Le QT, Fisher GA, Terris DJ, Brown JM, et al. Pancreatic tumors show high levels of hypoxia. Int J Radiat Oncol Biol Phys 2000 Nov 01,;48(4):919-922 Koong AC, Mehta VK, Le QT, Fisher GA, Terris DJ, Brown JM, et al. Pancreatic tumors show high levels of hypoxia. Int J Radiat Oncol Biol Phys 2000 Nov 01,;48(4):919-922
18.
go back to reference Carreau A, Hafny-Rahbi BE, Matejuk A, Grillon C, Kieda C (2011) Why is the partial oxygen pressure of human tissues a crucial parameter? Small molecules and hypoxia. J Cell Mol Med 15(6):1239–1253PubMedPubMedCentralCrossRef Carreau A, Hafny-Rahbi BE, Matejuk A, Grillon C, Kieda C (2011) Why is the partial oxygen pressure of human tissues a crucial parameter? Small molecules and hypoxia. J Cell Mol Med 15(6):1239–1253PubMedPubMedCentralCrossRef
19.
go back to reference Lohse I, Lourenco C, Ibrahimov E, Pintilie M, Tsao M, Hedley DW (2014) Assessment of hypoxia in the stroma of patient-derived pancreatic tumor xenografts. Cancers (Basel). 6(1):459–471PubMedPubMedCentralCrossRef Lohse I, Lourenco C, Ibrahimov E, Pintilie M, Tsao M, Hedley DW (2014) Assessment of hypoxia in the stroma of patient-derived pancreatic tumor xenografts. Cancers (Basel). 6(1):459–471PubMedPubMedCentralCrossRef
20.
go back to reference Conway JRW, Warren SC, Herrmann D, Murphy KJ, Cazet AS, Vennin C et al (2018) Intravital imaging to monitor therapeutic response in moving hypoxic regions resistant to PI3K pathway targeting in pancreatic cancer. Cell Rep. 23(11):3312–3326PubMedPubMedCentralCrossRef Conway JRW, Warren SC, Herrmann D, Murphy KJ, Cazet AS, Vennin C et al (2018) Intravital imaging to monitor therapeutic response in moving hypoxic regions resistant to PI3K pathway targeting in pancreatic cancer. Cell Rep. 23(11):3312–3326PubMedPubMedCentralCrossRef
21.
go back to reference Bristow RG, Hill RP. Hypoxia and metabolism. Hypoxia, DNA repair and genetic instability. Nat Rev Cancer 2008 Mar;8(3):180-192 Bristow RG, Hill RP. Hypoxia and metabolism. Hypoxia, DNA repair and genetic instability. Nat Rev Cancer 2008 Mar;8(3):180-192
22.
go back to reference López-Lázaro M (2008) The warburg effect: why and how do cancer cells activate glycolysis in the presence of oxygen? Anticancer Agents Med Chem 8(3):305–312PubMedCrossRef López-Lázaro M (2008) The warburg effect: why and how do cancer cells activate glycolysis in the presence of oxygen? Anticancer Agents Med Chem 8(3):305–312PubMedCrossRef
23.
go back to reference Pouysségur J, Dayan F, Mazure NM (2006) Hypoxia signalling in cancer and approaches to enforce tumour regression. Nature. 441(7092):437–443PubMedCrossRef Pouysségur J, Dayan F, Mazure NM (2006) Hypoxia signalling in cancer and approaches to enforce tumour regression. Nature. 441(7092):437–443PubMedCrossRef
24.
25.
27.
28.
go back to reference Criscimanna A, Duan L, Rhodes JA, Fendrich V, Wickline E, Hartman DJ et al (2013) PanIN-specific regulation of Wnt signaling by HIF2α during early pancreatic tumorigenesis. Cancer Res. 73(15):4781–4790PubMedPubMedCentralCrossRef Criscimanna A, Duan L, Rhodes JA, Fendrich V, Wickline E, Hartman DJ et al (2013) PanIN-specific regulation of Wnt signaling by HIF2α during early pancreatic tumorigenesis. Cancer Res. 73(15):4781–4790PubMedPubMedCentralCrossRef
30.
go back to reference Guillaumond F, Leca J, Olivares O, Lavaut M, Vidal N, Berthezène P et al (2013) Strengthened glycolysis under hypoxia supports tumor symbiosis and hexosamine biosynthesis in pancreatic adenocarcinoma. Proc Natl Acad Sci USA 110(10):3919–3924PubMedCrossRefPubMedCentral Guillaumond F, Leca J, Olivares O, Lavaut M, Vidal N, Berthezène P et al (2013) Strengthened glycolysis under hypoxia supports tumor symbiosis and hexosamine biosynthesis in pancreatic adenocarcinoma. Proc Natl Acad Sci USA 110(10):3919–3924PubMedCrossRefPubMedCentral
31.
go back to reference Guillaumond F, Iovanna JL, Vasseur S (2014) Pancreatic tumor cell metabolism: focus on glycolysis and its connected metabolic pathways. Arch Biochem Biophys. 545:69–73PubMedCrossRef Guillaumond F, Iovanna JL, Vasseur S (2014) Pancreatic tumor cell metabolism: focus on glycolysis and its connected metabolic pathways. Arch Biochem Biophys. 545:69–73PubMedCrossRef
32.
go back to reference Gunda V, Kumar S, Dasgupta A, Singh PK (2018) Hypoxia-induced metabolomic alterations in pancreatic cancer cells. Methods Mol Biol 1742:95–105PubMedCrossRef Gunda V, Kumar S, Dasgupta A, Singh PK (2018) Hypoxia-induced metabolomic alterations in pancreatic cancer cells. Methods Mol Biol 1742:95–105PubMedCrossRef
33.
go back to reference Fischer K, Hoffmann P, Voelkl S, Meidenbauer N, Ammer J, Edinger M et al (2007) Inhibitory effect of tumor cell-derived lactic acid on human T cells. Blood 109(9):3812–3819CrossRefPubMed Fischer K, Hoffmann P, Voelkl S, Meidenbauer N, Ammer J, Edinger M et al (2007) Inhibitory effect of tumor cell-derived lactic acid on human T cells. Blood 109(9):3812–3819CrossRefPubMed
34.
go back to reference Pastorek J, Pastorekova S (2015) Hypoxia-induced carbonic anhydrase IX as a target for cancer therapy: from biology to clinical use. Semin Cancer Biol 31:52–64PubMedCrossRef Pastorek J, Pastorekova S (2015) Hypoxia-induced carbonic anhydrase IX as a target for cancer therapy: from biology to clinical use. Semin Cancer Biol 31:52–64PubMedCrossRef
35.
go back to reference Li Y, Patel SP, Roszik J, Qin Y (2018) Hypoxia-Driven immunosuppressive metabolites in the tumor microenvironment: new approaches for combinational immunotherapy. Front Immunol 9:1591PubMedPubMedCentralCrossRef Li Y, Patel SP, Roszik J, Qin Y (2018) Hypoxia-Driven immunosuppressive metabolites in the tumor microenvironment: new approaches for combinational immunotherapy. Front Immunol 9:1591PubMedPubMedCentralCrossRef
36.
go back to reference Peng Y, Zhang J, Liang W, Tu M, Lu Z, Wei J et al (2014) Elevation of MMP-9 and IDO induced by pancreatic cancer cells mediates natural killer cell dysfunction. BMC Cancer 14:738PubMedPubMedCentralCrossRef Peng Y, Zhang J, Liang W, Tu M, Lu Z, Wei J et al (2014) Elevation of MMP-9 and IDO induced by pancreatic cancer cells mediates natural killer cell dysfunction. BMC Cancer 14:738PubMedPubMedCentralCrossRef
37.
go back to reference Iacobuzio-Donahue CA, Herman JM (2014) Autophagy, p53, and pancreatic cancer. N Engl J Med 370(14):1352–1353PubMedCrossRef Iacobuzio-Donahue CA, Herman JM (2014) Autophagy, p53, and pancreatic cancer. N Engl J Med 370(14):1352–1353PubMedCrossRef
38.
go back to reference Yang M, Wang H, Hou Y, Tung H, Chiu T, Shan Y (2015) Blockade of autophagy reduces pancreatic cancer stem cell activity and potentiates the tumoricidal effect of gemcitabine. Mol Cancer 14:179PubMedPubMedCentralCrossRef Yang M, Wang H, Hou Y, Tung H, Chiu T, Shan Y (2015) Blockade of autophagy reduces pancreatic cancer stem cell activity and potentiates the tumoricidal effect of gemcitabine. Mol Cancer 14:179PubMedPubMedCentralCrossRef
39.
go back to reference Perera RM, Stoykova S, Nicolay BN, Ross KN, Fitamant J, Boukhali M et al (2015) Transcriptional control of autophagy-lysosome function drives pancreatic cancer metabolism. Nature 524(7565):361–365PubMedPubMedCentralCrossRef Perera RM, Stoykova S, Nicolay BN, Ross KN, Fitamant J, Boukhali M et al (2015) Transcriptional control of autophagy-lysosome function drives pancreatic cancer metabolism. Nature 524(7565):361–365PubMedPubMedCentralCrossRef
40.
go back to reference Zhu H, Wang D, Zhang L, Xie X, Wu Y, Liu Y et al (2014) Upregulation of autophagy by hypoxia-inducible factor-1α promotes EMT and metastatic ability of CD133 + pancreatic cancer stem-like cells during intermittent hypoxia. Oncol Rep 32(3):935–942PubMedCrossRef Zhu H, Wang D, Zhang L, Xie X, Wu Y, Liu Y et al (2014) Upregulation of autophagy by hypoxia-inducible factor-1α promotes EMT and metastatic ability of CD133 + pancreatic cancer stem-like cells during intermittent hypoxia. Oncol Rep 32(3):935–942PubMedCrossRef
41.
go back to reference Zhu H, Wang D, Liu Y, Su Z, Zhang L, Chen F et al (2013) Role of the Hypoxia-inducible factor-1 alpha induced autophagy in the conversion of non-stem pancreatic cancer cells into CD133 + pancreatic cancer stem-like cells. Cancer Cell Int 13(1):119PubMedPubMedCentralCrossRef Zhu H, Wang D, Liu Y, Su Z, Zhang L, Chen F et al (2013) Role of the Hypoxia-inducible factor-1 alpha induced autophagy in the conversion of non-stem pancreatic cancer cells into CD133 + pancreatic cancer stem-like cells. Cancer Cell Int 13(1):119PubMedPubMedCentralCrossRef
42.
go back to reference Rausch V, Liu L, Apel A, Rettig T, Gladkich J, Labsch S et al (2012) Autophagy mediates survival of pancreatic tumour-initiating cells in a hypoxic microenvironment. J Pathol 227(3):325–335PubMedCrossRef Rausch V, Liu L, Apel A, Rettig T, Gladkich J, Labsch S et al (2012) Autophagy mediates survival of pancreatic tumour-initiating cells in a hypoxic microenvironment. J Pathol 227(3):325–335PubMedCrossRef
43.
go back to reference Gustafsson MV, Zheng X, Pereira T, Gradin K, Jin S, Lundkvist J et al (2005) Hypoxia requires notch signaling to maintain the undifferentiated cell state. Dev Cell 9(5):617–628PubMedCrossRef Gustafsson MV, Zheng X, Pereira T, Gradin K, Jin S, Lundkvist J et al (2005) Hypoxia requires notch signaling to maintain the undifferentiated cell state. Dev Cell 9(5):617–628PubMedCrossRef
44.
go back to reference McGinn O, Gupta VK, Dauer P, Arora N, Sharma N, Nomura A et al (2017) Inhibition of hypoxic response decreases stemness and reduces tumorigenic signaling due to impaired assembly of HIF1 transcription complex in pancreatic cancer. Sci Rep 7(1):7872PubMedPubMedCentralCrossRef McGinn O, Gupta VK, Dauer P, Arora N, Sharma N, Nomura A et al (2017) Inhibition of hypoxic response decreases stemness and reduces tumorigenic signaling due to impaired assembly of HIF1 transcription complex in pancreatic cancer. Sci Rep 7(1):7872PubMedPubMedCentralCrossRef
45.
go back to reference Yeung TM, Gandhi SC, Bodmer WF (2011) Hypoxia and lineage specification of cell line-derived colorectal cancer stem cells. Proc Natl Acad Sci USA 108(11):4382–4387PubMedCrossRefPubMedCentral Yeung TM, Gandhi SC, Bodmer WF (2011) Hypoxia and lineage specification of cell line-derived colorectal cancer stem cells. Proc Natl Acad Sci USA 108(11):4382–4387PubMedCrossRefPubMedCentral
46.
go back to reference Muz B, de la Puente P, Azab F, Azab AK (2015) The role of hypoxia in cancer progression, angiogenesis, metastasis, and resistance to therapy. Hypoxia (Auckl) 3:83–92CrossRef Muz B, de la Puente P, Azab F, Azab AK (2015) The role of hypoxia in cancer progression, angiogenesis, metastasis, and resistance to therapy. Hypoxia (Auckl) 3:83–92CrossRef
47.
go back to reference Al-Assar O, Demiciorglu F, Lunardi S, Gaspar-Carvalho MM, McKenna WG, Muschel RM et al (2014) Contextual regulation of pancreatic cancer stem cell phenotype and radioresistance by pancreatic stellate cells. Radiother Oncol 111(2):243–251PubMedCrossRef Al-Assar O, Demiciorglu F, Lunardi S, Gaspar-Carvalho MM, McKenna WG, Muschel RM et al (2014) Contextual regulation of pancreatic cancer stem cell phenotype and radioresistance by pancreatic stellate cells. Radiother Oncol 111(2):243–251PubMedCrossRef
48.
go back to reference Yang M, Wang H, Hou Y, Tung H, Chiu T, Shan Y (2015) Blockade of autophagy reduces pancreatic cancer stem cell activity and potentiates the tumoricidal effect of gemcitabine. Mol Cancer 14:179PubMedPubMedCentralCrossRef Yang M, Wang H, Hou Y, Tung H, Chiu T, Shan Y (2015) Blockade of autophagy reduces pancreatic cancer stem cell activity and potentiates the tumoricidal effect of gemcitabine. Mol Cancer 14:179PubMedPubMedCentralCrossRef
49.
go back to reference Fitzgerald TL, McCubrey JA (2014) Pancreatic cancer stem cells: association with cell surface markers, prognosis, resistance, metastasis and treatment. Adv Biol Regul 56:45–50PubMedCrossRef Fitzgerald TL, McCubrey JA (2014) Pancreatic cancer stem cells: association with cell surface markers, prognosis, resistance, metastasis and treatment. Adv Biol Regul 56:45–50PubMedCrossRef
50.
go back to reference Nomura A, Dauer P, Gupta V, McGinn O, Arora N, Majumdar K et al (2016) Microenvironment mediated alterations to metabolic pathways confer increased chemo-resistance in CD133 + tumor initiating cells. Oncotarget 7(35):56324–56337PubMedPubMedCentralCrossRef Nomura A, Dauer P, Gupta V, McGinn O, Arora N, Majumdar K et al (2016) Microenvironment mediated alterations to metabolic pathways confer increased chemo-resistance in CD133 + tumor initiating cells. Oncotarget 7(35):56324–56337PubMedPubMedCentralCrossRef
51.
52.
go back to reference Liu X, Xiao X, Shou Q, Yan J, Chen L, Fu H et al (2016) Bufalin inhibits pancreatic cancer by inducing cell cycle arrest via the c-Myc/NF-κB pathway. J Ethnopharmacol 193:538–545PubMedCrossRef Liu X, Xiao X, Shou Q, Yan J, Chen L, Fu H et al (2016) Bufalin inhibits pancreatic cancer by inducing cell cycle arrest via the c-Myc/NF-κB pathway. J Ethnopharmacol 193:538–545PubMedCrossRef
53.
go back to reference Zhang M, Fan H, Li S (2015) Inhibition of c-Myc by 10058-F4 induces growth arrest and chemosensitivity in pancreatic ductal adenocarcinoma. Biomed Pharmacother 73:123–128PubMedCrossRef Zhang M, Fan H, Li S (2015) Inhibition of c-Myc by 10058-F4 induces growth arrest and chemosensitivity in pancreatic ductal adenocarcinoma. Biomed Pharmacother 73:123–128PubMedCrossRef
54.
go back to reference Chien W, Lee DH, Zheng Y, Wuensche P, Alvarez R, Wen DL et al (2014) Growth inhibition of pancreatic cancer cells by histone deacetylase inhibitor belinostat through suppression of multiple pathways including HIF, NFkB, and mTOR signaling in vitro and in vivo. Mol Carcinog 53(9):722–735PubMedCrossRef Chien W, Lee DH, Zheng Y, Wuensche P, Alvarez R, Wen DL et al (2014) Growth inhibition of pancreatic cancer cells by histone deacetylase inhibitor belinostat through suppression of multiple pathways including HIF, NFkB, and mTOR signaling in vitro and in vivo. Mol Carcinog 53(9):722–735PubMedCrossRef
55.
go back to reference Jung H, Fattet L, Yang J (2015) Molecular pathways: linking tumor microenvironment to epithelial-mesenchymal transition in metastasis. Clin Cancer Res 21(5):962–968PubMedCrossRef Jung H, Fattet L, Yang J (2015) Molecular pathways: linking tumor microenvironment to epithelial-mesenchymal transition in metastasis. Clin Cancer Res 21(5):962–968PubMedCrossRef
56.
go back to reference Marie-Egyptienne DT, Lohse I, Hill RP (2013) Cancer stem cells, the epithelial to mesenchymal transition (EMT) and radioresistance: potential role of hypoxia. Cancer Lett 341(1):63–72PubMedCrossRef Marie-Egyptienne DT, Lohse I, Hill RP (2013) Cancer stem cells, the epithelial to mesenchymal transition (EMT) and radioresistance: potential role of hypoxia. Cancer Lett 341(1):63–72PubMedCrossRef
57.
go back to reference Sui H, Zhu L, Deng W, Li Q (2014) Epithelial-mesenchymal transition and drug resistance: role, molecular mechanisms, and therapeutic strategies. Oncol Res Treat 37(10):584–589PubMedCrossRef Sui H, Zhu L, Deng W, Li Q (2014) Epithelial-mesenchymal transition and drug resistance: role, molecular mechanisms, and therapeutic strategies. Oncol Res Treat 37(10):584–589PubMedCrossRef
58.
go back to reference Shi C, Fan Y, Liu B, Lou W (2013) HIF1 contributes to hypoxia-induced pancreatic cancer cells invasion via promoting QSOX1 expression. Cell Physiol Biochem 32(3):561–568PubMedCrossRef Shi C, Fan Y, Liu B, Lou W (2013) HIF1 contributes to hypoxia-induced pancreatic cancer cells invasion via promoting QSOX1 expression. Cell Physiol Biochem 32(3):561–568PubMedCrossRef
59.
go back to reference Zhao X, Gao S, Ren H, Sun W, Zhang H, Sun J et al (2014) Hypoxia-inducible factor-1 promotes pancreatic ductal adenocarcinoma invasion and metastasis by activating transcription of the actin-bundling protein fascin. Cancer Res 74(9):2455–2464PubMedCrossRef Zhao X, Gao S, Ren H, Sun W, Zhang H, Sun J et al (2014) Hypoxia-inducible factor-1 promotes pancreatic ductal adenocarcinoma invasion and metastasis by activating transcription of the actin-bundling protein fascin. Cancer Res 74(9):2455–2464PubMedCrossRef
60.
go back to reference Cheng Z, Sun B, Wang S, Gao Y, Zhang Y, Zhou H et al (2011) Nuclear factor-κB-dependent epithelial to mesenchymal transition induced by HIF-1α activation in pancreatic cancer cells under hypoxic conditions. PLoS ONE 6(8):e23752PubMedPubMedCentralCrossRef Cheng Z, Sun B, Wang S, Gao Y, Zhang Y, Zhou H et al (2011) Nuclear factor-κB-dependent epithelial to mesenchymal transition induced by HIF-1α activation in pancreatic cancer cells under hypoxic conditions. PLoS ONE 6(8):e23752PubMedPubMedCentralCrossRef
61.
go back to reference Hotz B, Arndt M, Dullat S, Bhargava S, Buhr H, Hotz HG (2007) Epithelial to mesenchymal transition: expression of the regulators snail, slug, and twist in pancreatic cancer. Clin Cancer Res 13(16):4769–4776PubMedCrossRef Hotz B, Arndt M, Dullat S, Bhargava S, Buhr H, Hotz HG (2007) Epithelial to mesenchymal transition: expression of the regulators snail, slug, and twist in pancreatic cancer. Clin Cancer Res 13(16):4769–4776PubMedCrossRef
62.
go back to reference Yang J, Zhang X, Zhang Y, Zhu D, Zhang L, Li Y et al (2016) HIF-2α promotes epithelial-mesenchymal transition through regulating Twist2 binding to the promoter of E-cadherin in pancreatic cancer. J Exp Clin Cancer Res 35:26PubMedPubMedCentralCrossRef Yang J, Zhang X, Zhang Y, Zhu D, Zhang L, Li Y et al (2016) HIF-2α promotes epithelial-mesenchymal transition through regulating Twist2 binding to the promoter of E-cadherin in pancreatic cancer. J Exp Clin Cancer Res 35:26PubMedPubMedCentralCrossRef
63.
go back to reference Liu A, Huang C, Cai X, Xu J, Yang D (2016) Twist promotes angiogenesis in pancreatic cancer by targeting miR-497/VEGFA axis. Oncotarget 7(18):25801–25814PubMedPubMedCentral Liu A, Huang C, Cai X, Xu J, Yang D (2016) Twist promotes angiogenesis in pancreatic cancer by targeting miR-497/VEGFA axis. Oncotarget 7(18):25801–25814PubMedPubMedCentral
64.
go back to reference Lei J, Ma J, Ma Q, Li X, Liu H, Xu Q et al (2013) Hedgehog signaling regulates hypoxia induced epithelial to mesenchymal transition and invasion in pancreatic cancer cells via a ligand-independent manner. Mol Cancer 12:66PubMedPubMedCentralCrossRef Lei J, Ma J, Ma Q, Li X, Liu H, Xu Q et al (2013) Hedgehog signaling regulates hypoxia induced epithelial to mesenchymal transition and invasion in pancreatic cancer cells via a ligand-independent manner. Mol Cancer 12:66PubMedPubMedCentralCrossRef
65.
go back to reference Harashima N, Takenaga K, Akimoto M, Harada M (2017) HIF-2α dictates the susceptibility of pancreatic cancer cells to TRAIL by regulating survivin expression. Oncotarget 8(26):42887–42900PubMedPubMedCentralCrossRef Harashima N, Takenaga K, Akimoto M, Harada M (2017) HIF-2α dictates the susceptibility of pancreatic cancer cells to TRAIL by regulating survivin expression. Oncotarget 8(26):42887–42900PubMedPubMedCentralCrossRef
66.
go back to reference Cui H, Darmanin S, Natsuisaka M, Kondo T, Asaka M, Shindoh M et al (2007) Enhanced expression of asparagine synthetase under glucose-deprived conditions protects pancreatic cancer cells from apoptosis induced by glucose deprivation and cisplatin. Cancer Res 67(7):3345–3355PubMedCrossRef Cui H, Darmanin S, Natsuisaka M, Kondo T, Asaka M, Shindoh M et al (2007) Enhanced expression of asparagine synthetase under glucose-deprived conditions protects pancreatic cancer cells from apoptosis induced by glucose deprivation and cisplatin. Cancer Res 67(7):3345–3355PubMedCrossRef
67.
go back to reference Abe T, Toyota M, Suzuki H, Murai M, Akino K, Ueno M et al (2005) Upregulation of BNIP3 by 5-aza-2′-deoxycytidine sensitizes pancreatic cancer cells to hypoxia-mediated cell death. J Gastroenterol 40(5):504–510PubMedCrossRef Abe T, Toyota M, Suzuki H, Murai M, Akino K, Ueno M et al (2005) Upregulation of BNIP3 by 5-aza-2′-deoxycytidine sensitizes pancreatic cancer cells to hypoxia-mediated cell death. J Gastroenterol 40(5):504–510PubMedCrossRef
68.
go back to reference Okami J, Simeone DM, Logsdon CD (2004) Silencing of the hypoxia-inducible cell death protein BNIP3 in pancreatic cancer. Cancer Res 64(15):5338–5346PubMedCrossRef Okami J, Simeone DM, Logsdon CD (2004) Silencing of the hypoxia-inducible cell death protein BNIP3 in pancreatic cancer. Cancer Res 64(15):5338–5346PubMedCrossRef
69.
go back to reference Erkan M, Kleeff J, Esposito I, Giese T, Ketterer K, Büchler MW et al (2005) Loss of BNIP3 expression is a late event in pancreatic cancer contributing to chemoresistance and worsened prognosis. Oncogene 24(27):4421–4432PubMedCrossRef Erkan M, Kleeff J, Esposito I, Giese T, Ketterer K, Büchler MW et al (2005) Loss of BNIP3 expression is a late event in pancreatic cancer contributing to chemoresistance and worsened prognosis. Oncogene 24(27):4421–4432PubMedCrossRef
70.
go back to reference Chand S, O’Hayer K, Blanco FF, Winter JM, Brody JR (2016) The landscape of pancreatic cancer therapeutic resistance mechanisms. Int J Biol Sci 12(3):273–282PubMedPubMedCentralCrossRef Chand S, O’Hayer K, Blanco FF, Winter JM, Brody JR (2016) The landscape of pancreatic cancer therapeutic resistance mechanisms. Int J Biol Sci 12(3):273–282PubMedPubMedCentralCrossRef
71.
go back to reference Schwartz DL, Bankson JA, Lemos R, Lai SY, Thittai AK, He Y et al (2010) Radiosensitization and stromal imaging response correlates for the HIF-1 inhibitor PX-478 given with or without chemotherapy in pancreatic cancer. Mol Cancer Ther 9(7):2057–2067PubMedPubMedCentralCrossRef Schwartz DL, Bankson JA, Lemos R, Lai SY, Thittai AK, He Y et al (2010) Radiosensitization and stromal imaging response correlates for the HIF-1 inhibitor PX-478 given with or without chemotherapy in pancreatic cancer. Mol Cancer Ther 9(7):2057–2067PubMedPubMedCentralCrossRef
72.
go back to reference Siemens DR, Hu N, Sheikhi AK, Chung E, Frederiksen LJ, Pross H et al (2008) Hypoxia increases tumor cell shedding of MHC class I chain-related molecule: role of nitric oxide. Cancer Res 68(12):4746–4753PubMedCrossRef Siemens DR, Hu N, Sheikhi AK, Chung E, Frederiksen LJ, Pross H et al (2008) Hypoxia increases tumor cell shedding of MHC class I chain-related molecule: role of nitric oxide. Cancer Res 68(12):4746–4753PubMedCrossRef
73.
go back to reference Märten A, von Lilienfeld-Toal M, Büchler MW, Schmidt J (2006) Soluble MIC is elevated in the serum of patients with pancreatic carcinoma diminishing gammadelta T cell cytotoxicity. Int J Cancer 119(10):2359–2365PubMedCrossRef Märten A, von Lilienfeld-Toal M, Büchler MW, Schmidt J (2006) Soluble MIC is elevated in the serum of patients with pancreatic carcinoma diminishing gammadelta T cell cytotoxicity. Int J Cancer 119(10):2359–2365PubMedCrossRef
74.
go back to reference Zhou L, Niu Z, Liang Z, Zhou W, You L, Wang M et al (2015) HLA-G impairs host immune response and predicts poor prognosis in pancreatic cancer. Am J Transl Res 7(10):2036–2044PubMedPubMedCentral Zhou L, Niu Z, Liang Z, Zhou W, You L, Wang M et al (2015) HLA-G impairs host immune response and predicts poor prognosis in pancreatic cancer. Am J Transl Res 7(10):2036–2044PubMedPubMedCentral
75.
go back to reference Birnbaum DJ, Finetti P, Lopresti A, Gilabert M, Poizat F, Turrini O et al (2016) Prognostic value of PDL1 expression in pancreatic cancer. Oncotarget 7(44):71198–71210PubMedPubMedCentralCrossRef Birnbaum DJ, Finetti P, Lopresti A, Gilabert M, Poizat F, Turrini O et al (2016) Prognostic value of PDL1 expression in pancreatic cancer. Oncotarget 7(44):71198–71210PubMedPubMedCentralCrossRef
76.
go back to reference Michaels AD, Newhook TE, Adair SJ, Morioka S, Goudreau BJ, Nagdas S et al (2018) CD47 Blockade as an Adjuvant Immunotherapy for Resectable Pancreatic Cancer. Clin Cancer Res 24(6):1415–1425PubMedCrossRef Michaels AD, Newhook TE, Adair SJ, Morioka S, Goudreau BJ, Nagdas S et al (2018) CD47 Blockade as an Adjuvant Immunotherapy for Resectable Pancreatic Cancer. Clin Cancer Res 24(6):1415–1425PubMedCrossRef
77.
go back to reference Soto-Pantoja DR, Terabe M, Ghosh A, Ridnour LA, DeGraff WG, Wink DA et al (2014) CD47 in the tumor microenvironment limits cooperation between antitumor T-cell immunity and radiotherapy. Cancer Res 74(23):6771–6783PubMedPubMedCentralCrossRef Soto-Pantoja DR, Terabe M, Ghosh A, Ridnour LA, DeGraff WG, Wink DA et al (2014) CD47 in the tumor microenvironment limits cooperation between antitumor T-cell immunity and radiotherapy. Cancer Res 74(23):6771–6783PubMedPubMedCentralCrossRef
78.
go back to reference Beavis PA, Milenkovski N, Henderson MA, John LB, Allard B, Loi S et al (2015) Adenosine receptor 2A blockade increases the efficacy of anti-PD-1 through enhanced antitumor T-cell responses. Cancer Immunol Res 3(5):506–517PubMedCrossRef Beavis PA, Milenkovski N, Henderson MA, John LB, Allard B, Loi S et al (2015) Adenosine receptor 2A blockade increases the efficacy of anti-PD-1 through enhanced antitumor T-cell responses. Cancer Immunol Res 3(5):506–517PubMedCrossRef
80.
go back to reference Masamune A, Shimosegawa T (2015) Pancreatic stellate cells: a dynamic player of the intercellular communication in pancreatic cancer. Clin Res Hepatol Gastroenterol 39(Suppl 1):98CrossRef Masamune A, Shimosegawa T (2015) Pancreatic stellate cells: a dynamic player of the intercellular communication in pancreatic cancer. Clin Res Hepatol Gastroenterol 39(Suppl 1):98CrossRef
81.
go back to reference Masamune A, Shimosegawa T (2013) Pancreatic stellate cells–multi-functional cells in the pancreas. Pancreatology 13(2):102–105PubMedCrossRef Masamune A, Shimosegawa T (2013) Pancreatic stellate cells–multi-functional cells in the pancreas. Pancreatology 13(2):102–105PubMedCrossRef
82.
go back to reference Erkan M, Adler G, Apte MV, Bachem MG, Buchholz M, Detlefsen S et al (2012) StellaTUM: current consensus and discussion on pancreatic stellate cell research. Gut 61(2):172–178PubMedCrossRef Erkan M, Adler G, Apte MV, Bachem MG, Buchholz M, Detlefsen S et al (2012) StellaTUM: current consensus and discussion on pancreatic stellate cell research. Gut 61(2):172–178PubMedCrossRef
83.
go back to reference Bynigeri RR, Jakkampudi A, Jangala R, Subramanyam C, Sasikala M, Rao GV et al (2017) Pancreatic stellate cell: Pandora’s box for pancreatic disease biology. World J Gastroenterol 23(3):382–405PubMedPubMedCentralCrossRef Bynigeri RR, Jakkampudi A, Jangala R, Subramanyam C, Sasikala M, Rao GV et al (2017) Pancreatic stellate cell: Pandora’s box for pancreatic disease biology. World J Gastroenterol 23(3):382–405PubMedPubMedCentralCrossRef
84.
go back to reference Feig C, Jones JO, Kraman M, Wells RJB, Deonarine A, Chan DS et al (2013) Targeting CXCL12 from FAP-expressing carcinoma-associated fibroblasts synergizes with anti–PD-L1 immunotherapy in pancreatic cancer. Proc Natl Acad Sci USA 110(50):20212PubMedCrossRefPubMedCentral Feig C, Jones JO, Kraman M, Wells RJB, Deonarine A, Chan DS et al (2013) Targeting CXCL12 from FAP-expressing carcinoma-associated fibroblasts synergizes with anti–PD-L1 immunotherapy in pancreatic cancer. Proc Natl Acad Sci USA 110(50):20212PubMedCrossRefPubMedCentral
85.
go back to reference Shi M, Yu D, Chen Y, Zhao C, Zhang J, Liu Q et al (2012) Expression of fibroblast activation protein in human pancreatic adenocarcinoma and its clinicopathological significance. World J Gastroenterol 18(8):840–846PubMedPubMedCentralCrossRef Shi M, Yu D, Chen Y, Zhao C, Zhang J, Liu Q et al (2012) Expression of fibroblast activation protein in human pancreatic adenocarcinoma and its clinicopathological significance. World J Gastroenterol 18(8):840–846PubMedPubMedCentralCrossRef
86.
go back to reference Lee H, Mullins SR, Franco-Barraza J, Valianou M, Cukierman E, Cheng JD (2011) FAP-overexpressing fibroblasts produce an extracellular matrix that enhances invasive velocity and directionality of pancreatic cancer cells. BMC Cancer 11:245PubMedPubMedCentralCrossRef Lee H, Mullins SR, Franco-Barraza J, Valianou M, Cukierman E, Cheng JD (2011) FAP-overexpressing fibroblasts produce an extracellular matrix that enhances invasive velocity and directionality of pancreatic cancer cells. BMC Cancer 11:245PubMedPubMedCentralCrossRef
87.
go back to reference Jiang G, Xu W, Du J, Zhang K, Zhang Q, Wang X et al (2016) The application of the fibroblast activation protein α-targeted immunotherapy strategy. Oncotarget 7(22):33472–33482PubMedPubMedCentral Jiang G, Xu W, Du J, Zhang K, Zhang Q, Wang X et al (2016) The application of the fibroblast activation protein α-targeted immunotherapy strategy. Oncotarget 7(22):33472–33482PubMedPubMedCentral
88.
go back to reference Keklikoglou I, Kadioglu E, Bissinger S, Langlois B, Bellotti A, Orend G et al (2018) Periostin limits tumor response to VEGFA inhibition. Cell Rep 22(10):2530–2540PubMedCrossRef Keklikoglou I, Kadioglu E, Bissinger S, Langlois B, Bellotti A, Orend G et al (2018) Periostin limits tumor response to VEGFA inhibition. Cell Rep 22(10):2530–2540PubMedCrossRef
89.
go back to reference Masamune A, Watanabe T, Kikuta K, Shimosegawa T (2009) Roles of pancreatic stellate cells in pancreatic inflammation and fibrosis. Clin Gastroenterol Hepatol 7(11 Suppl):48CrossRef Masamune A, Watanabe T, Kikuta K, Shimosegawa T (2009) Roles of pancreatic stellate cells in pancreatic inflammation and fibrosis. Clin Gastroenterol Hepatol 7(11 Suppl):48CrossRef
90.
go back to reference Mace TA, Ameen Z, Collins A, Wojcik S, Mair M, Young GS et al (2013) Pancreatic cancer-associated stellate cells promote differentiation of myeloid-derived suppressor cells in a STAT3-dependent manner. Cancer Res 73(10):3007–3018PubMedPubMedCentralCrossRef Mace TA, Ameen Z, Collins A, Wojcik S, Mair M, Young GS et al (2013) Pancreatic cancer-associated stellate cells promote differentiation of myeloid-derived suppressor cells in a STAT3-dependent manner. Cancer Res 73(10):3007–3018PubMedPubMedCentralCrossRef
91.
go back to reference Erkan M, Reiser-Erkan C, Michalski CW, Deucker S, Sauliunaite D, Streit S et al (2009) Cancer-stellate cell interactions perpetuate the hypoxia-fibrosis cycle in pancreatic ductal adenocarcinoma. Neoplasia 11(5):497–508PubMedPubMedCentralCrossRef Erkan M, Reiser-Erkan C, Michalski CW, Deucker S, Sauliunaite D, Streit S et al (2009) Cancer-stellate cell interactions perpetuate the hypoxia-fibrosis cycle in pancreatic ductal adenocarcinoma. Neoplasia 11(5):497–508PubMedPubMedCentralCrossRef
92.
go back to reference Spivak-Kroizman TR, Hostetter G, Posner R, Aziz M, Hu C, Demeure MJ et al (2013) Hypoxia triggers hedgehog-mediated tumor-stromal interactions in pancreatic cancer. Cancer Res 73(11):3235–3247PubMedPubMedCentralCrossRef Spivak-Kroizman TR, Hostetter G, Posner R, Aziz M, Hu C, Demeure MJ et al (2013) Hypoxia triggers hedgehog-mediated tumor-stromal interactions in pancreatic cancer. Cancer Res 73(11):3235–3247PubMedPubMedCentralCrossRef
93.
go back to reference Bennewith KL, Huang X, Ham CM, Graves EE, Erler JT, Kambham N et al (2009) The role of tumor cell-derived connective tissue growth factor (CTGF/CCN2) in pancreatic tumor growth. Cancer Res 69(3):775–784PubMedPubMedCentralCrossRef Bennewith KL, Huang X, Ham CM, Graves EE, Erler JT, Kambham N et al (2009) The role of tumor cell-derived connective tissue growth factor (CTGF/CCN2) in pancreatic tumor growth. Cancer Res 69(3):775–784PubMedPubMedCentralCrossRef
94.
go back to reference Masamune A, Kikuta K, Watanabe T, Satoh K, Hirota M, Shimosegawa T (2008) Hypoxia stimulates pancreatic stellate cells to induce fibrosis and angiogenesis in pancreatic cancer. Am J Physiol Gastrointest Liver Physiol 295(4):709CrossRef Masamune A, Kikuta K, Watanabe T, Satoh K, Hirota M, Shimosegawa T (2008) Hypoxia stimulates pancreatic stellate cells to induce fibrosis and angiogenesis in pancreatic cancer. Am J Physiol Gastrointest Liver Physiol 295(4):709CrossRef
95.
go back to reference Moir JAG, Mann J, White SA (2015) The role of pancreatic stellate cells in pancreatic cancer. Surg Oncol 24(3):232–238PubMedCrossRef Moir JAG, Mann J, White SA (2015) The role of pancreatic stellate cells in pancreatic cancer. Surg Oncol 24(3):232–238PubMedCrossRef
96.
go back to reference Nelson BH (2010) CD20 + B cells: the other tumor-infiltrating lymphocytes. J Immunol 185(9):4977–4982PubMedCrossRef Nelson BH (2010) CD20 + B cells: the other tumor-infiltrating lymphocytes. J Immunol 185(9):4977–4982PubMedCrossRef
97.
go back to reference Pylayeva-Gupta Y, Das S, Handler JS, Hajdu CH, Coffre M, Koralov SB et al (2016) IL35-producing b cells promote the development of pancreatic neoplasia. Cancer Discov 6(3):247–255PubMedCrossRef Pylayeva-Gupta Y, Das S, Handler JS, Hajdu CH, Coffre M, Koralov SB et al (2016) IL35-producing b cells promote the development of pancreatic neoplasia. Cancer Discov 6(3):247–255PubMedCrossRef
98.
99.
go back to reference Castino GF, Cortese N, Capretti G, Serio S, Di Caro G, Mineri R et al (2016) Spatial distribution of B cells predicts prognosis in human pancreatic adenocarcinoma. Oncoimmunology 5(4):e1085147PubMedCrossRef Castino GF, Cortese N, Capretti G, Serio S, Di Caro G, Mineri R et al (2016) Spatial distribution of B cells predicts prognosis in human pancreatic adenocarcinoma. Oncoimmunology 5(4):e1085147PubMedCrossRef
100.
go back to reference Koizumi M, Hiasa Y, Kumagi T, Yamanishi H, Azemoto N, Kobata T et al (2013) Increased B cell-activating factor promotes tumor invasion and metastasis in human pancreatic cancer. PLoS ONE 8(8):e71367PubMedPubMedCentralCrossRef Koizumi M, Hiasa Y, Kumagi T, Yamanishi H, Azemoto N, Kobata T et al (2013) Increased B cell-activating factor promotes tumor invasion and metastasis in human pancreatic cancer. PLoS ONE 8(8):e71367PubMedPubMedCentralCrossRef
101.
go back to reference Reis ST, Leite KRM, Piovesan LF, Pontes-Junior J, Viana NI, Abe DK et al (2012) Increased expression of MMP-9 and IL-8 are correlated with poor prognosis of Bladder Cancer. BMC Urol 12:18PubMedPubMedCentralCrossRef Reis ST, Leite KRM, Piovesan LF, Pontes-Junior J, Viana NI, Abe DK et al (2012) Increased expression of MMP-9 and IL-8 are correlated with poor prognosis of Bladder Cancer. BMC Urol 12:18PubMedPubMedCentralCrossRef
102.
go back to reference Tadmor T, Zhang Y, Cho H, Podack ER, Rosenblatt JD (2011) The absence of B lymphocytes reduces the number and function of T-regulatory cells and enhances the anti-tumor response in a murine tumor model. Cancer Immunol Immunother 60(5):609–619PubMedCrossRef Tadmor T, Zhang Y, Cho H, Podack ER, Rosenblatt JD (2011) The absence of B lymphocytes reduces the number and function of T-regulatory cells and enhances the anti-tumor response in a murine tumor model. Cancer Immunol Immunother 60(5):609–619PubMedCrossRef
103.
go back to reference Gunderson AJ, Kaneda MM, Tsujikawa T, Nguyen AV, Affara NI, Ruffell B et al (2016) Bruton Tyrosine Kinase-Dependent Immune Cell Cross-talk Drives Pancreas Cancer. Cancer Discov 6(3):270–285PubMedCrossRef Gunderson AJ, Kaneda MM, Tsujikawa T, Nguyen AV, Affara NI, Ruffell B et al (2016) Bruton Tyrosine Kinase-Dependent Immune Cell Cross-talk Drives Pancreas Cancer. Cancer Discov 6(3):270–285PubMedCrossRef
104.
go back to reference Martin SK, Diamond P, Williams SA, To LB, Peet DJ, Fujii N et al (2010) Hypoxia-inducible factor-2 is a novel regulator of aberrant CXCL12 expression in multiple myeloma plasma cells. Haematologica 95(5):776–784PubMedCrossRef Martin SK, Diamond P, Williams SA, To LB, Peet DJ, Fujii N et al (2010) Hypoxia-inducible factor-2 is a novel regulator of aberrant CXCL12 expression in multiple myeloma plasma cells. Haematologica 95(5):776–784PubMedCrossRef
105.
go back to reference Piovan E, Tosello V, Indraccolo S, Masiero M, Persano L, Esposito G et al (2007) Differential regulation of hypoxia-induced CXCR4 triggering during B-cell development and lymphomagenesis. Cancer Res 67(18):8605–8614PubMedCrossRef Piovan E, Tosello V, Indraccolo S, Masiero M, Persano L, Esposito G et al (2007) Differential regulation of hypoxia-induced CXCR4 triggering during B-cell development and lymphomagenesis. Cancer Res 67(18):8605–8614PubMedCrossRef
106.
go back to reference Lee KE, Spata M, Bayne LJ, Buza EL, Durham AC, Allman D et al (2016) Hif1a deletion reveals pro-neoplastic function of B cells in pancreatic neoplasia. Cancer Discov 6(3):256–269PubMedCrossRef Lee KE, Spata M, Bayne LJ, Buza EL, Durham AC, Allman D et al (2016) Hif1a deletion reveals pro-neoplastic function of B cells in pancreatic neoplasia. Cancer Discov 6(3):256–269PubMedCrossRef
107.
go back to reference Ostrand-Rosenberg S (2010) Myeloid-derived suppressor cells: more mechanisms for inhibiting antitumor immunity. Cancer Immunol Immunother 59(10):1593–1600PubMedPubMedCentralCrossRef Ostrand-Rosenberg S (2010) Myeloid-derived suppressor cells: more mechanisms for inhibiting antitumor immunity. Cancer Immunol Immunother 59(10):1593–1600PubMedPubMedCentralCrossRef
108.
go back to reference Casazza A, Di Conza G, Wenes M, Finisguerra V, Deschoemaeker S, Mazzone M (2014) Tumor stroma: a complexity dictated by the hypoxic tumor microenvironment. Oncogene 33(14):1743–1754PubMedCrossRef Casazza A, Di Conza G, Wenes M, Finisguerra V, Deschoemaeker S, Mazzone M (2014) Tumor stroma: a complexity dictated by the hypoxic tumor microenvironment. Oncogene 33(14):1743–1754PubMedCrossRef
109.
go back to reference Xu Q, Wang Z, Chen X, Duan W, Lei J, Zong L et al (2015) Stromal-derived factor-1α/CXCL12-CXCR4 chemotactic pathway promotes perineural invasion in pancreatic cancer. Oncotarget 6(7):4717–4732PubMedCrossRef Xu Q, Wang Z, Chen X, Duan W, Lei J, Zong L et al (2015) Stromal-derived factor-1α/CXCL12-CXCR4 chemotactic pathway promotes perineural invasion in pancreatic cancer. Oncotarget 6(7):4717–4732PubMedCrossRef
110.
go back to reference Bayne LJ, Beatty GL, Jhala N, Clark CE, Rhim AD, Stanger BZ et al (2012) Tumor-derived granulocyte-macrophage colony-stimulating factor regulates myeloid inflammation and T cell immunity in pancreatic cancer. Cancer Cell 21(6):822–835PubMedPubMedCentralCrossRef Bayne LJ, Beatty GL, Jhala N, Clark CE, Rhim AD, Stanger BZ et al (2012) Tumor-derived granulocyte-macrophage colony-stimulating factor regulates myeloid inflammation and T cell immunity in pancreatic cancer. Cancer Cell 21(6):822–835PubMedPubMedCentralCrossRef
111.
go back to reference Porembka MR, Mitchem JB, Belt BA, Hsieh C, Lee H, Herndon J et al (2012) Pancreatic adenocarcinoma induces bone marrow mobilization of myeloid-derived suppressor cells which promote primary tumor growth. Cancer Immunol Immunother 61(9):1373–1385PubMedPubMedCentralCrossRef Porembka MR, Mitchem JB, Belt BA, Hsieh C, Lee H, Herndon J et al (2012) Pancreatic adenocarcinoma induces bone marrow mobilization of myeloid-derived suppressor cells which promote primary tumor growth. Cancer Immunol Immunother 61(9):1373–1385PubMedPubMedCentralCrossRef
112.
go back to reference Stromnes IM, Brockenbrough JS, Izeradjene K, Carlson MA, Cuevas C, Simmons RM et al (2014) Targeted depletion of an MDSC subset unmasks pancreatic ductal adenocarcinoma to adaptive immunity. Gut 63(11):1769–1781PubMedCrossRef Stromnes IM, Brockenbrough JS, Izeradjene K, Carlson MA, Cuevas C, Simmons RM et al (2014) Targeted depletion of an MDSC subset unmasks pancreatic ductal adenocarcinoma to adaptive immunity. Gut 63(11):1769–1781PubMedCrossRef
114.
go back to reference Sinha P, Clements VK, Bunt SK, Albelda SM, Ostrand-Rosenberg S (2007) Cross-talk between myeloid-derived suppressor cells and macrophages subverts tumor immunity toward a type 2 response. J Immunol 179(2):977–983PubMedCrossRef Sinha P, Clements VK, Bunt SK, Albelda SM, Ostrand-Rosenberg S (2007) Cross-talk between myeloid-derived suppressor cells and macrophages subverts tumor immunity toward a type 2 response. J Immunol 179(2):977–983PubMedCrossRef
115.
go back to reference Yu J, Du W, Yan F, Wang Y, Li H, Cao S et al (2013) Myeloid-derived suppressor cells suppress antitumor immune responses through IDO expression and correlate with lymph node metastasis in patients with breast cancer. J Immunol 190(7):3783–3797PubMedCrossRef Yu J, Du W, Yan F, Wang Y, Li H, Cao S et al (2013) Myeloid-derived suppressor cells suppress antitumor immune responses through IDO expression and correlate with lymph node metastasis in patients with breast cancer. J Immunol 190(7):3783–3797PubMedCrossRef
116.
go back to reference Srivastava MK, Sinha P, Clements VK, Rodriguez P, Ostrand-Rosenberg S (2010) Myeloid-derived suppressor cells inhibit T-cell activation by depleting cystine and cysteine. Cancer Res 70(1):68–77PubMedCrossRef Srivastava MK, Sinha P, Clements VK, Rodriguez P, Ostrand-Rosenberg S (2010) Myeloid-derived suppressor cells inhibit T-cell activation by depleting cystine and cysteine. Cancer Res 70(1):68–77PubMedCrossRef
118.
go back to reference Song J, Lee J, Kim J, Jo S, Kim YJ, Baek JE et al (2016) Pancreatic adenocarcinoma up-regulated factor (PAUF) enhances the accumulation and functional activity of myeloid-derived suppressor cells (MDSCs) in pancreatic cancer. Oncotarget 7(32):51840PubMedPubMedCentral Song J, Lee J, Kim J, Jo S, Kim YJ, Baek JE et al (2016) Pancreatic adenocarcinoma up-regulated factor (PAUF) enhances the accumulation and functional activity of myeloid-derived suppressor cells (MDSCs) in pancreatic cancer. Oncotarget 7(32):51840PubMedPubMedCentral
119.
go back to reference Hanson EM, Clements VK, Sinha P, Ilkovitch D, Ostrand-Rosenberg S (2009) Myeloid-derived suppressor cells down-regulate L-selectin expression on CD4 + and CD8 + T cells. J Immunol 183(2):937–944PubMedCrossRef Hanson EM, Clements VK, Sinha P, Ilkovitch D, Ostrand-Rosenberg S (2009) Myeloid-derived suppressor cells down-regulate L-selectin expression on CD4 + and CD8 + T cells. J Immunol 183(2):937–944PubMedCrossRef
120.
go back to reference Li J, Wang L, Chen X, Li L, Li Y, Ping Y et al (2017) CD39/CD73 upregulation on myeloid-derived suppressor cells via TGF-β-mTOR-HIF-1 signaling in patients with non-small cell lung cancer. Oncoimmunology 6(6):e1320011PubMedPubMedCentralCrossRef Li J, Wang L, Chen X, Li L, Li Y, Ping Y et al (2017) CD39/CD73 upregulation on myeloid-derived suppressor cells via TGF-β-mTOR-HIF-1 signaling in patients with non-small cell lung cancer. Oncoimmunology 6(6):e1320011PubMedPubMedCentralCrossRef
121.
go back to reference Noman MZ, Desantis G, Janji B, Hasmim M, Karray S, Dessen P et al (2014) PD-L1 is a novel direct target of HIF-1α, and its blockade under hypoxia enhanced MDSC-mediated T cell activation. J Exp Med 211(5):781–790PubMedPubMedCentralCrossRef Noman MZ, Desantis G, Janji B, Hasmim M, Karray S, Dessen P et al (2014) PD-L1 is a novel direct target of HIF-1α, and its blockade under hypoxia enhanced MDSC-mediated T cell activation. J Exp Med 211(5):781–790PubMedPubMedCentralCrossRef
122.
go back to reference Chiu DK, Xu IM, Lai RK, Tse AP, Wei LL, Koh H et al (2016) Hypoxia induces myeloid-derived suppressor cell recruitment to hepatocellular carcinoma through chemokine (C-C motif) ligand 26. Hepatology 64(3):797–813PubMedCrossRef Chiu DK, Xu IM, Lai RK, Tse AP, Wei LL, Koh H et al (2016) Hypoxia induces myeloid-derived suppressor cell recruitment to hepatocellular carcinoma through chemokine (C-C motif) ligand 26. Hepatology 64(3):797–813PubMedCrossRef
123.
go back to reference Chiu DK, Tse AP, Xu IM, Cui JD, Lai RK, Li LL et al (2017) Hypoxia inducible factor HIF-1 promotes myeloid-derived suppressor cells accumulation through ENTPD2/CD39L1 in hepatocellular carcinoma. Nature Communications 8:517PubMedPubMedCentralCrossRef Chiu DK, Tse AP, Xu IM, Cui JD, Lai RK, Li LL et al (2017) Hypoxia inducible factor HIF-1 promotes myeloid-derived suppressor cells accumulation through ENTPD2/CD39L1 in hepatocellular carcinoma. Nature Communications 8:517PubMedPubMedCentralCrossRef
124.
go back to reference Corzo CA, Condamine T, Lu L, Cotter MJ, Youn J, Cheng P et al (2010) HIF-1α regulates function and differentiation of myeloid-derived suppressor cells in the tumor microenvironment. J Exp Med 207(11):2439–2453PubMedPubMedCentralCrossRef Corzo CA, Condamine T, Lu L, Cotter MJ, Youn J, Cheng P et al (2010) HIF-1α regulates function and differentiation of myeloid-derived suppressor cells in the tumor microenvironment. J Exp Med 207(11):2439–2453PubMedPubMedCentralCrossRef
125.
go back to reference Cui R, Yue W, Lattime EC, Stein MN, Xu Q, Tan X (2016) Targeting tumor-associated macrophages to combat pancreatic cancer. Oncotarget 7(31):50735–50754PubMedPubMedCentralCrossRef Cui R, Yue W, Lattime EC, Stein MN, Xu Q, Tan X (2016) Targeting tumor-associated macrophages to combat pancreatic cancer. Oncotarget 7(31):50735–50754PubMedPubMedCentralCrossRef
126.
go back to reference Chang Y, Hsu T, Lin H, Chio C, Chiu AW, Chen N et al (2004) Modulation of macrophage differentiation and activation by decoy receptor 3. J Leukoc Biol 75(3):486–494PubMedCrossRef Chang Y, Hsu T, Lin H, Chio C, Chiu AW, Chen N et al (2004) Modulation of macrophage differentiation and activation by decoy receptor 3. J Leukoc Biol 75(3):486–494PubMedCrossRef
128.
go back to reference Franklin RA, Liao W, Sarkar A, Kim MV, Bivona MR, Liu K et al (2014) The cellular and molecular origin of tumor-associated macrophages. Science 344(6186):921–925PubMedPubMedCentralCrossRef Franklin RA, Liao W, Sarkar A, Kim MV, Bivona MR, Liu K et al (2014) The cellular and molecular origin of tumor-associated macrophages. Science 344(6186):921–925PubMedPubMedCentralCrossRef
129.
go back to reference Lao L, Fan S, Song E (2017) Tumor associated macrophages as therapeutic targets for breast cancer. Adv Exp Med Biol 1026:331–370PubMedCrossRef Lao L, Fan S, Song E (2017) Tumor associated macrophages as therapeutic targets for breast cancer. Adv Exp Med Biol 1026:331–370PubMedCrossRef
130.
go back to reference Zhong X, Chen B, Yang Z (2018) The role of tumor-associated macrophages in colorectal carcinoma progression. Cell Physiol Biochem 45(1):356–365PubMedCrossRef Zhong X, Chen B, Yang Z (2018) The role of tumor-associated macrophages in colorectal carcinoma progression. Cell Physiol Biochem 45(1):356–365PubMedCrossRef
131.
go back to reference Krishnan V, Schaar B, Tallapragada S, Dorigo O (2018) Tumor associated macrophages in gynecologic cancers. Gynecol Oncol 149(1):205–213PubMedCrossRef Krishnan V, Schaar B, Tallapragada S, Dorigo O (2018) Tumor associated macrophages in gynecologic cancers. Gynecol Oncol 149(1):205–213PubMedCrossRef
132.
go back to reference Helm O, Held-Feindt J, Grage-Griebenow E, Reiling N, Ungefroren H, Vogel I et al (2014) Tumor-associated macrophages exhibit pro- and anti-inflammatory properties by which they impact on pancreatic tumorigenesis. Int J Cancer 135(4):843–861PubMedCrossRef Helm O, Held-Feindt J, Grage-Griebenow E, Reiling N, Ungefroren H, Vogel I et al (2014) Tumor-associated macrophages exhibit pro- and anti-inflammatory properties by which they impact on pancreatic tumorigenesis. Int J Cancer 135(4):843–861PubMedCrossRef
133.
go back to reference Arnold JN, Magiera L, Kraman M, Fearon DT (2014) Tumoral immune suppression by macrophages expressing fibroblast activation protein-α and heme oxygenase-1. Cancer Immunol Res 2(2):121–126PubMedPubMedCentralCrossRef Arnold JN, Magiera L, Kraman M, Fearon DT (2014) Tumoral immune suppression by macrophages expressing fibroblast activation protein-α and heme oxygenase-1. Cancer Immunol Res 2(2):121–126PubMedPubMedCentralCrossRef
134.
go back to reference Weizman N, Krelin Y, Shabtay-Orbach A, Amit M, Binenbaum Y, Wong RJ et al (2014) Macrophages mediate gemcitabine resistance of pancreatic adenocarcinoma by upregulating cytidine deaminase. Oncogene 33(29):3812–3819PubMedCrossRef Weizman N, Krelin Y, Shabtay-Orbach A, Amit M, Binenbaum Y, Wong RJ et al (2014) Macrophages mediate gemcitabine resistance of pancreatic adenocarcinoma by upregulating cytidine deaminase. Oncogene 33(29):3812–3819PubMedCrossRef
135.
go back to reference Ino Y, Yamazaki-Itoh R, Shimada K, Iwasaki M, Kosuge T, Kanai Y et al (2013) Immune cell infiltration as an indicator of the immune microenvironment of pancreatic cancer. Br J Cancer 108(4):914–923PubMedPubMedCentralCrossRef Ino Y, Yamazaki-Itoh R, Shimada K, Iwasaki M, Kosuge T, Kanai Y et al (2013) Immune cell infiltration as an indicator of the immune microenvironment of pancreatic cancer. Br J Cancer 108(4):914–923PubMedPubMedCentralCrossRef
136.
go back to reference Henze A, Mazzone M. The impact of hypoxia on tumor-associated macrophages. J Clin Invest 2016 Oct 03,;126(10):3672-3679 Henze A, Mazzone M. The impact of hypoxia on tumor-associated macrophages. J Clin Invest 2016 Oct 03,;126(10):3672-3679
137.
go back to reference Casazza A, Laoui D, Wenes M, Rizzolio S, Bassani N, Mambretti M et al (2013) Impeding macrophage entry into hypoxic tumor areas by Sema3A/Nrp1 signaling blockade inhibits angiogenesis and restores antitumor immunity. Cancer Cell 24(6):695–709PubMedCrossRef Casazza A, Laoui D, Wenes M, Rizzolio S, Bassani N, Mambretti M et al (2013) Impeding macrophage entry into hypoxic tumor areas by Sema3A/Nrp1 signaling blockade inhibits angiogenesis and restores antitumor immunity. Cancer Cell 24(6):695–709PubMedCrossRef
138.
go back to reference Zhang J, Cao J, Ma S, Dong R, Meng W, Ying M et al (2014) Tumor hypoxia enhances Non-Small Cell Lung Cancer metastasis by selectively promoting macrophage M2 polarization through the activation of ERK signaling. Oncotarget 5(20):9664–9677PubMedPubMedCentralCrossRef Zhang J, Cao J, Ma S, Dong R, Meng W, Ying M et al (2014) Tumor hypoxia enhances Non-Small Cell Lung Cancer metastasis by selectively promoting macrophage M2 polarization through the activation of ERK signaling. Oncotarget 5(20):9664–9677PubMedPubMedCentralCrossRef
139.
go back to reference Guo X, Xue H, Shao Q, Wang J, Guo X, Chen X et al (2016) Hypoxia promotes glioma-associated macrophage infiltration via periostin and subsequent M2 polarization by upregulating TGF-beta and M-CSFR. Oncotarget 7(49):80521–80542PubMedPubMedCentral Guo X, Xue H, Shao Q, Wang J, Guo X, Chen X et al (2016) Hypoxia promotes glioma-associated macrophage infiltration via periostin and subsequent M2 polarization by upregulating TGF-beta and M-CSFR. Oncotarget 7(49):80521–80542PubMedPubMedCentral
140.
go back to reference Chouaib S, Noman MZ, Kosmatopoulos K, Curran MA (2017) Hypoxic stress: obstacles and opportunities for innovative immunotherapy of cancer. Oncogene 36(4):439PubMedCrossRef Chouaib S, Noman MZ, Kosmatopoulos K, Curran MA (2017) Hypoxic stress: obstacles and opportunities for innovative immunotherapy of cancer. Oncogene 36(4):439PubMedCrossRef
141.
go back to reference Peyssonnaux C, Datta V, Cramer T, Doedens A, Theodorakis EA, Gallo RL et al (2005) HIF-1alpha expression regulates the bactericidal capacity of phagocytes. J Clin Invest 115(7):1806–1815PubMedPubMedCentralCrossRef Peyssonnaux C, Datta V, Cramer T, Doedens A, Theodorakis EA, Gallo RL et al (2005) HIF-1alpha expression regulates the bactericidal capacity of phagocytes. J Clin Invest 115(7):1806–1815PubMedPubMedCentralCrossRef
142.
go back to reference Doedens AL, Stockmann C, Rubinstein MP, Liao D, Zhang N, DeNardo DG et al (2010) Macrophage expression of hypoxia-inducible factor-1 alpha suppresses T-cell function and promotes tumor progression. Cancer Res 70(19):7465–7475PubMedPubMedCentralCrossRef Doedens AL, Stockmann C, Rubinstein MP, Liao D, Zhang N, DeNardo DG et al (2010) Macrophage expression of hypoxia-inducible factor-1 alpha suppresses T-cell function and promotes tumor progression. Cancer Res 70(19):7465–7475PubMedPubMedCentralCrossRef
143.
144.
go back to reference Ye L, Chen W, Bai X, Xu X, Zhang Q, Xia X et al (2016) Hypoxia-Induced Epithelial-to-Mesenchymal Transition in Hepatocellular Carcinoma Induces an Immunosuppressive Tumor Microenvironment to Promote Metastasis. Cancer Res 76(4):818–830PubMedCrossRef Ye L, Chen W, Bai X, Xu X, Zhang Q, Xia X et al (2016) Hypoxia-Induced Epithelial-to-Mesenchymal Transition in Hepatocellular Carcinoma Induces an Immunosuppressive Tumor Microenvironment to Promote Metastasis. Cancer Res 76(4):818–830PubMedCrossRef
145.
go back to reference Barsoum IB, Smallwood CA, Siemens DR, Graham CH (2014) A mechanism of hypoxia-mediated escape from adaptive immunity in cancer cells. Cancer Res 74(3):665–674PubMedCrossRef Barsoum IB, Smallwood CA, Siemens DR, Graham CH (2014) A mechanism of hypoxia-mediated escape from adaptive immunity in cancer cells. Cancer Res 74(3):665–674PubMedCrossRef
146.
go back to reference Fingleton B, Vargo-Gogola T, Crawford HC, Matrisian LM (2001) Matrilysin [MMP-7] expression selects for cells with reduced sensitivity to apoptosis. Neoplasia 3(6):459–468PubMedPubMedCentralCrossRef Fingleton B, Vargo-Gogola T, Crawford HC, Matrisian LM (2001) Matrilysin [MMP-7] expression selects for cells with reduced sensitivity to apoptosis. Neoplasia 3(6):459–468PubMedPubMedCentralCrossRef
147.
go back to reference Fainaru O, Almog N, Yung CW, Nakai K, Montoya-Zavala M, Abdollahi A et al (2010) Tumor growth and angiogenesis are dependent on the presence of immature dendritic cells. FASEB J 24(5):1411–1418PubMedPubMedCentralCrossRef Fainaru O, Almog N, Yung CW, Nakai K, Montoya-Zavala M, Abdollahi A et al (2010) Tumor growth and angiogenesis are dependent on the presence of immature dendritic cells. FASEB J 24(5):1411–1418PubMedPubMedCentralCrossRef
148.
go back to reference Bellone G, Carbone A, Smirne C, Scirelli T, Buffolino A, Novarino A, et al. Cooperative induction of a tolerogenic dendritic cell phenotype by cytokines secreted by pancreatic carcinoma cells. J Immunol 2006 Sep 01,;177(5):3448-3460 Bellone G, Carbone A, Smirne C, Scirelli T, Buffolino A, Novarino A, et al. Cooperative induction of a tolerogenic dendritic cell phenotype by cytokines secreted by pancreatic carcinoma cells. J Immunol 2006 Sep 01,;177(5):3448-3460
149.
go back to reference Gabrilovich D (2004) Mechanisms and functional significance of tumour-induced dendritic-cell defects. Nat Rev Immunol 4(12):941–952PubMedCrossRef Gabrilovich D (2004) Mechanisms and functional significance of tumour-induced dendritic-cell defects. Nat Rev Immunol 4(12):941–952PubMedCrossRef
150.
go back to reference Bharadwaj U, Li M, Zhang R, Chen C, Yao Q (2007) Elevated interleukin-6 and G-CSF in human pancreatic cancer cell conditioned medium suppress dendritic cell differentiation and activation. Cancer Res 67(11):5479–5488PubMedCrossRef Bharadwaj U, Li M, Zhang R, Chen C, Yao Q (2007) Elevated interleukin-6 and G-CSF in human pancreatic cancer cell conditioned medium suppress dendritic cell differentiation and activation. Cancer Res 67(11):5479–5488PubMedCrossRef
151.
go back to reference Alfaro C, Suárez N, Martínez-Forero I, Palazón A, Rouzaut A, Solano S et al (2011) Carcinoma-derived interleukin-8 disorients dendritic cell migration without impairing T-cell stimulation. PLoS ONE 6(3):e17922PubMedPubMedCentralCrossRef Alfaro C, Suárez N, Martínez-Forero I, Palazón A, Rouzaut A, Solano S et al (2011) Carcinoma-derived interleukin-8 disorients dendritic cell migration without impairing T-cell stimulation. PLoS ONE 6(3):e17922PubMedPubMedCentralCrossRef
152.
go back to reference Yamamoto T, Yanagimoto H, Satoi S, Toyokawa H, Yamao J, Kim S et al (2012) Circulating myeloid dendritic cells as prognostic factors in patients with pancreatic cancer who have undergone surgical resection. J Surg Res 173(2):299–308PubMedCrossRef Yamamoto T, Yanagimoto H, Satoi S, Toyokawa H, Yamao J, Kim S et al (2012) Circulating myeloid dendritic cells as prognostic factors in patients with pancreatic cancer who have undergone surgical resection. J Surg Res 173(2):299–308PubMedCrossRef
153.
go back to reference Hirooka S, Yanagimoto H, Satoi S, Yamamoto T, Toyokawa H, Yamaki S et al (2011) The role of circulating dendritic cells in patients with unresectable pancreatic cancer. Anticancer Res 31(11):3827–3834PubMed Hirooka S, Yanagimoto H, Satoi S, Yamamoto T, Toyokawa H, Yamaki S et al (2011) The role of circulating dendritic cells in patients with unresectable pancreatic cancer. Anticancer Res 31(11):3827–3834PubMed
154.
go back to reference Wiedemann GM, Knott MML, Vetter VK, Rapp M, Haubner S, Fesseler J et al (2016) Cancer cell-derived IL-1α induces CCL22 and the recruitment of regulatory T cells. Oncoimmunology 5(9):e1175794PubMedPubMedCentralCrossRef Wiedemann GM, Knott MML, Vetter VK, Rapp M, Haubner S, Fesseler J et al (2016) Cancer cell-derived IL-1α induces CCL22 and the recruitment of regulatory T cells. Oncoimmunology 5(9):e1175794PubMedPubMedCentralCrossRef
155.
go back to reference Ghiringhelli F, Puig PE, Roux S, Parcellier A, Schmitt E, Solary E et al (2005) Tumor cells convert immature myeloid dendritic cells into TGF-beta-secreting cells inducing CD4 + CD25 + regulatory T cell proliferation. J Exp Med 202(7):919–929PubMedPubMedCentralCrossRef Ghiringhelli F, Puig PE, Roux S, Parcellier A, Schmitt E, Solary E et al (2005) Tumor cells convert immature myeloid dendritic cells into TGF-beta-secreting cells inducing CD4 + CD25 + regulatory T cell proliferation. J Exp Med 202(7):919–929PubMedPubMedCentralCrossRef
156.
go back to reference Zhou M, Chen J, Zhou L, Chen W, Ding G, Cao L (2014) Pancreatic cancer derived exosomes regulate the expression of TLR4 in dendritic cells via miR-203. Cell Immunol 292(1–2):65–69PubMedCrossRef Zhou M, Chen J, Zhou L, Chen W, Ding G, Cao L (2014) Pancreatic cancer derived exosomes regulate the expression of TLR4 in dendritic cells via miR-203. Cell Immunol 292(1–2):65–69PubMedCrossRef
157.
go back to reference Kang TH, Kim YS, Kim S, Yang B, Lee J, Lee H et al (2015) Pancreatic adenocarcinoma upregulated factor serves as adjuvant by activating dendritic cells through stimulation of TLR4. Oncotarget 6(29):27751–27762PubMedPubMedCentral Kang TH, Kim YS, Kim S, Yang B, Lee J, Lee H et al (2015) Pancreatic adenocarcinoma upregulated factor serves as adjuvant by activating dendritic cells through stimulation of TLR4. Oncotarget 6(29):27751–27762PubMedPubMedCentral
158.
go back to reference Du J, Wang J, Tan G, Cai Z, Zhang L, Tang B et al (2012) Aberrant elevated microRNA-146a in dendritic cells (DC) induced by human pancreatic cancer cell line BxPC-3-conditioned medium inhibits DC maturation and activation. Med Oncol 29(4):2814–2823PubMedCrossRef Du J, Wang J, Tan G, Cai Z, Zhang L, Tang B et al (2012) Aberrant elevated microRNA-146a in dendritic cells (DC) induced by human pancreatic cancer cell line BxPC-3-conditioned medium inhibits DC maturation and activation. Med Oncol 29(4):2814–2823PubMedCrossRef
159.
go back to reference Jantsch J, Chakravortty D, Turza N, Prechtel AT, Buchholz B, Gerlach RG et al (2008) Hypoxia and hypoxia-inducible factor-1 alpha modulate lipopolysaccharide-induced dendritic cell activation and function. J Immunol 180(7):4697–4705PubMedCrossRef Jantsch J, Chakravortty D, Turza N, Prechtel AT, Buchholz B, Gerlach RG et al (2008) Hypoxia and hypoxia-inducible factor-1 alpha modulate lipopolysaccharide-induced dendritic cell activation and function. J Immunol 180(7):4697–4705PubMedCrossRef
160.
go back to reference Yilmaz A, Ratka J, Rohm I, Pistulli R, Goebel B, Asadi Y et al (2016) Decrease in circulating plasmacytoid dendritic cells during short-term systemic normobaric hypoxia. Eur J Clin Invest 46(2):115–122PubMedCrossRef Yilmaz A, Ratka J, Rohm I, Pistulli R, Goebel B, Asadi Y et al (2016) Decrease in circulating plasmacytoid dendritic cells during short-term systemic normobaric hypoxia. Eur J Clin Invest 46(2):115–122PubMedCrossRef
161.
go back to reference Wobben R, Hüsecken Y, Lodewick C, Gibbert K, Fandrey J, Winning S (2013) Role of hypoxia inducible factor-1α for interferon synthesis in mouse dendritic cells. Biol Chem 394(4):495–505PubMedCrossRef Wobben R, Hüsecken Y, Lodewick C, Gibbert K, Fandrey J, Winning S (2013) Role of hypoxia inducible factor-1α for interferon synthesis in mouse dendritic cells. Biol Chem 394(4):495–505PubMedCrossRef
162.
go back to reference Filippi I, Morena E, Aldinucci C, Carraro F, Sozzani S, Naldini A (2014) Short-term hypoxia enhances the migratory capability of dendritic cell through HIF-1α and PI3K/Akt pathway. J Cell Physiol 229(12):2067–2076PubMedCrossRef Filippi I, Morena E, Aldinucci C, Carraro F, Sozzani S, Naldini A (2014) Short-term hypoxia enhances the migratory capability of dendritic cell through HIF-1α and PI3K/Akt pathway. J Cell Physiol 229(12):2067–2076PubMedCrossRef
163.
go back to reference Ogino T, Onishi H, Suzuki H, Morisaki T, Tanaka M, Katano M (2012) Inclusive estimation of complex antigen presentation functions of monocyte-derived dendritic cells differentiated under normoxia and hypoxia conditions. Cancer Immunol Immunother 61(3):409–424PubMedCrossRef Ogino T, Onishi H, Suzuki H, Morisaki T, Tanaka M, Katano M (2012) Inclusive estimation of complex antigen presentation functions of monocyte-derived dendritic cells differentiated under normoxia and hypoxia conditions. Cancer Immunol Immunother 61(3):409–424PubMedCrossRef
164.
go back to reference Köhler T, Reizis B, Johnson RS, Weighardt H, Förster I (2012) Influence of hypoxia-inducible factor 1α on dendritic cell differentiation and migration. Eur J Immunol 42(5):1226–1236PubMedCrossRefPubMedCentral Köhler T, Reizis B, Johnson RS, Weighardt H, Förster I (2012) Influence of hypoxia-inducible factor 1α on dendritic cell differentiation and migration. Eur J Immunol 42(5):1226–1236PubMedCrossRefPubMedCentral
165.
go back to reference Yang M, Ma C, Liu S, Sun J, Shao Q, Gao W et al (2009) Hypoxia skews dendritic cells to a T helper type 2-stimulating phenotype and promotes tumour cell migration by dendritic cell-derived osteopontin. Immunology 128(1 Suppl):237CrossRef Yang M, Ma C, Liu S, Sun J, Shao Q, Gao W et al (2009) Hypoxia skews dendritic cells to a T helper type 2-stimulating phenotype and promotes tumour cell migration by dendritic cell-derived osteopontin. Immunology 128(1 Suppl):237CrossRef
166.
go back to reference Yang M, Liu Y, Ren G, Shao Q, Gao W, Sun J et al (2015) Increased expression of surface CD44 in hypoxia-DCs skews helper T cells toward a Th2 polarization. Sci Rep 5:13674PubMedPubMedCentralCrossRef Yang M, Liu Y, Ren G, Shao Q, Gao W, Sun J et al (2015) Increased expression of surface CD44 in hypoxia-DCs skews helper T cells toward a Th2 polarization. Sci Rep 5:13674PubMedPubMedCentralCrossRef
167.
go back to reference Yang M, Ma C, Liu S, Shao Q, Gao W, Song B et al (2010) HIF-dependent induction of adenosine receptor A2b skews human dendritic cells to a Th2-stimulating phenotype under hypoxia. Immunol Cell Biol 88(2):165–171PubMedCrossRef Yang M, Ma C, Liu S, Shao Q, Gao W, Song B et al (2010) HIF-dependent induction of adenosine receptor A2b skews human dendritic cells to a Th2-stimulating phenotype under hypoxia. Immunol Cell Biol 88(2):165–171PubMedCrossRef
168.
go back to reference Naldini A, Morena E, Pucci A, Miglietta D, Riboldi E, Sozzani S et al (2012) Hypoxia affects dendritic cell survival: role of the hypoxia-inducible factor-1α and lipopolysaccharide. J Cell Physiol 227(2):587–595PubMedCrossRef Naldini A, Morena E, Pucci A, Miglietta D, Riboldi E, Sozzani S et al (2012) Hypoxia affects dendritic cell survival: role of the hypoxia-inducible factor-1α and lipopolysaccharide. J Cell Physiol 227(2):587–595PubMedCrossRef
169.
go back to reference Amedei A, Niccolai E, Benagiano M, Della Bella C, Cianchi F, Bechi P et al (2013) Ex vivo analysis of pancreatic cancer-infiltrating T lymphocytes reveals that ENO-specific Tregs accumulate in tumor tissue and inhibit Th1/Th17 effector cell functions. Cancer Immunol Immunother 62(7):1249–1260PubMedCrossRef Amedei A, Niccolai E, Benagiano M, Della Bella C, Cianchi F, Bechi P et al (2013) Ex vivo analysis of pancreatic cancer-infiltrating T lymphocytes reveals that ENO-specific Tregs accumulate in tumor tissue and inhibit Th1/Th17 effector cell functions. Cancer Immunol Immunother 62(7):1249–1260PubMedCrossRef
170.
go back to reference Kim H, Cantor H (2014) CD4 T-cell subsets and tumor immunity: the helpful and the not-so-helpful. Cancer Immunol Res 2(2):91–98PubMedCrossRef Kim H, Cantor H (2014) CD4 T-cell subsets and tumor immunity: the helpful and the not-so-helpful. Cancer Immunol Res 2(2):91–98PubMedCrossRef
171.
go back to reference Punt S, Langenhoff JM, Putter H, Fleuren GJ, Gorter A, Jordanova ES (2015) The correlations between IL-17 vs Th17 cells and cancer patient survival: a systematic review. Oncoimmunology 4(2):e984547PubMedPubMedCentralCrossRef Punt S, Langenhoff JM, Putter H, Fleuren GJ, Gorter A, Jordanova ES (2015) The correlations between IL-17 vs Th17 cells and cancer patient survival: a systematic review. Oncoimmunology 4(2):e984547PubMedPubMedCentralCrossRef
172.
go back to reference Liao Y, Wang B, Huang Z, Shi M, Yu X, Zheng L et al (2013) Increased circulating Th17 cells after transarterial chemoembolization correlate with improved survival in stage III hepatocellular carcinoma: a prospective study. PLoS ONE 8(4):e60444PubMedPubMedCentralCrossRef Liao Y, Wang B, Huang Z, Shi M, Yu X, Zheng L et al (2013) Increased circulating Th17 cells after transarterial chemoembolization correlate with improved survival in stage III hepatocellular carcinoma: a prospective study. PLoS ONE 8(4):e60444PubMedPubMedCentralCrossRef
173.
go back to reference Bengsch F, Knoblock DM, Liu A, McAllister F, Beatty GL (2017) CTLA-4/CD80 pathway regulates T cell infiltration into pancreatic cancer. Cancer Immunol Immunother 66(12):1609–1617PubMedPubMedCentralCrossRef Bengsch F, Knoblock DM, Liu A, McAllister F, Beatty GL (2017) CTLA-4/CD80 pathway regulates T cell infiltration into pancreatic cancer. Cancer Immunol Immunother 66(12):1609–1617PubMedPubMedCentralCrossRef
174.
go back to reference Tan MCB, Goedegebuure PS, Belt BA, Flaherty B, Sankpal N, Gillanders WE et al (2009) Disruption of CCR5-dependent homing of regulatory T cells inhibits tumor growth in a murine model of pancreatic cancer. J Immunol 182(3):1746–1755PubMedCrossRef Tan MCB, Goedegebuure PS, Belt BA, Flaherty B, Sankpal N, Gillanders WE et al (2009) Disruption of CCR5-dependent homing of regulatory T cells inhibits tumor growth in a murine model of pancreatic cancer. J Immunol 182(3):1746–1755PubMedCrossRef
175.
go back to reference Grage-Griebenow E, Jerg E, Gorys A, Wicklein D, Wesch D, Freitag-Wolf S et al (2014) L1CAM promotes enrichment of immunosuppressive T cells in human pancreatic cancer correlating with malignant progression. Mol Oncol 8(5):982–997PubMedPubMedCentralCrossRef Grage-Griebenow E, Jerg E, Gorys A, Wicklein D, Wesch D, Freitag-Wolf S et al (2014) L1CAM promotes enrichment of immunosuppressive T cells in human pancreatic cancer correlating with malignant progression. Mol Oncol 8(5):982–997PubMedPubMedCentralCrossRef
176.
go back to reference Rech AJ, Mick R, Martin S, Recio A, Aqui NA, Powell DJ et al (2012) CD25 blockade depletes and selectively reprograms regulatory T cells in concert with immunotherapy in cancer patients. Sci Transl Med 4(134):134ra62PubMedPubMedCentralCrossRef Rech AJ, Mick R, Martin S, Recio A, Aqui NA, Powell DJ et al (2012) CD25 blockade depletes and selectively reprograms regulatory T cells in concert with immunotherapy in cancer patients. Sci Transl Med 4(134):134ra62PubMedPubMedCentralCrossRef
177.
go back to reference Gnanaprakasam JNR, Sherman JW, Wang R (2017) MYC and HIF in shaping immune response and immune metabolism. Cytokine Growth Factor Rev 35:63–70PubMedCrossRef Gnanaprakasam JNR, Sherman JW, Wang R (2017) MYC and HIF in shaping immune response and immune metabolism. Cytokine Growth Factor Rev 35:63–70PubMedCrossRef
178.
go back to reference Hsu T, Lai M (2018) Hypoxia-inducible factor 1α plays a predominantly negative role in regulatory T cell functions. J Leukoc Biol 104(5):911–918PubMedCrossRef Hsu T, Lai M (2018) Hypoxia-inducible factor 1α plays a predominantly negative role in regulatory T cell functions. J Leukoc Biol 104(5):911–918PubMedCrossRef
179.
go back to reference Clambey ET, McNamee EN, Westrich JA, Glover LE, Campbell EL, Jedlicka P et al (2012) Hypoxia-inducible factor-1 alpha-dependent induction of FoxP3 drives regulatory T-cell abundance and function during inflammatory hypoxia of the mucosa. Proc Natl Acad Sci USA 109(41):2784CrossRef Clambey ET, McNamee EN, Westrich JA, Glover LE, Campbell EL, Jedlicka P et al (2012) Hypoxia-inducible factor-1 alpha-dependent induction of FoxP3 drives regulatory T-cell abundance and function during inflammatory hypoxia of the mucosa. Proc Natl Acad Sci USA 109(41):2784CrossRef
180.
181.
go back to reference Facciabene A, Peng X, Hagemann IS, Balint K, Barchetti A, Wang L et al (2011) Tumour hypoxia promotes tolerance and angiogenesis via CCL28 and T(reg) cells. Nature 475(7355):226–230PubMedCrossRef Facciabene A, Peng X, Hagemann IS, Balint K, Barchetti A, Wang L et al (2011) Tumour hypoxia promotes tolerance and angiogenesis via CCL28 and T(reg) cells. Nature 475(7355):226–230PubMedCrossRef
182.
go back to reference Bakshi RK, Cox MA, Zajac AJ. Cytotoxic T Lymphocytes. Encyclopedia of Medical Immunology: Springer: New York; 2014. p. 332–2 Bakshi RK, Cox MA, Zajac AJ. Cytotoxic T Lymphocytes. Encyclopedia of Medical Immunology: Springer: New York; 2014. p. 332–2
183.
go back to reference Hoyer S, Prommersberger S, Pfeiffer IA, Schuler-Thurner B, Schuler G, Dörrie J et al (2014) Concurrent interaction of DCs with CD4(+) and CD8(+) T cells improves secondary CTL expansion: it takes three to tango. Eur J Immunol 44(12):3543–3559PubMedCrossRef Hoyer S, Prommersberger S, Pfeiffer IA, Schuler-Thurner B, Schuler G, Dörrie J et al (2014) Concurrent interaction of DCs with CD4(+) and CD8(+) T cells improves secondary CTL expansion: it takes three to tango. Eur J Immunol 44(12):3543–3559PubMedCrossRef
184.
go back to reference Oberg H, Peipp M, Kellner C, Sebens S, Krause S, Petrick D et al (2014) Novel bispecific antibodies increase γδ T-cell cytotoxicity against pancreatic cancer cells. Cancer Res 74(5):1349–1360PubMedCrossRef Oberg H, Peipp M, Kellner C, Sebens S, Krause S, Petrick D et al (2014) Novel bispecific antibodies increase γδ T-cell cytotoxicity against pancreatic cancer cells. Cancer Res 74(5):1349–1360PubMedCrossRef
185.
go back to reference Palazón A, Martínez-Forero I, Teijeira A, Morales-Kastresana A, Alfaro C, Sanmamed MF et al (2012) The HIF-1α hypoxia response in tumor-infiltrating T lymphocytes induces functional CD137 (4-1BB) for immunotherapy. Cancer Discov 2(7):608–623PubMedCrossRef Palazón A, Martínez-Forero I, Teijeira A, Morales-Kastresana A, Alfaro C, Sanmamed MF et al (2012) The HIF-1α hypoxia response in tumor-infiltrating T lymphocytes induces functional CD137 (4-1BB) for immunotherapy. Cancer Discov 2(7):608–623PubMedCrossRef
186.
go back to reference Caldwell CC, Kojima H, Lukashev D, Armstrong J, Farber M, Apasov SG et al (2001) Differential effects of physiologically relevant hypoxic conditions on T lymphocyte development and effector functions. J Immunol 167(11):6140–6149PubMedCrossRef Caldwell CC, Kojima H, Lukashev D, Armstrong J, Farber M, Apasov SG et al (2001) Differential effects of physiologically relevant hypoxic conditions on T lymphocyte development and effector functions. J Immunol 167(11):6140–6149PubMedCrossRef
187.
go back to reference Doedens AL, Phan AT, Stradner MH, Fujimoto JK, Nguyen JV, Yang E et al (2013) Hypoxia-inducible factors enhance the effector responses of CD8(+) T cells to persistent antigen. Nat Immunol 14(11):1173–1182PubMedPubMedCentralCrossRef Doedens AL, Phan AT, Stradner MH, Fujimoto JK, Nguyen JV, Yang E et al (2013) Hypoxia-inducible factors enhance the effector responses of CD8(+) T cells to persistent antigen. Nat Immunol 14(11):1173–1182PubMedPubMedCentralCrossRef
188.
go back to reference Hildeman DA, Mitchell T, Teague TK, Henson P, Day BJ, Kappler J et al (1999) Reactive oxygen species regulate activation-induced T cell apoptosis. Immunity 10(6):735–744PubMedCrossRef Hildeman DA, Mitchell T, Teague TK, Henson P, Day BJ, Kappler J et al (1999) Reactive oxygen species regulate activation-induced T cell apoptosis. Immunity 10(6):735–744PubMedCrossRef
189.
go back to reference Takeichi T, Mocevicius P, Deduchovas O, Salnikova O, Castro-Santa E, Büchler MW et al (2012) αL β2 integrin is indispensable for CD8 + T-cell recruitment in experimental pancreatic and hepatocellular cancer. Int J Cancer 130(9):2067–2076PubMedCrossRef Takeichi T, Mocevicius P, Deduchovas O, Salnikova O, Castro-Santa E, Büchler MW et al (2012) αL β2 integrin is indispensable for CD8 + T-cell recruitment in experimental pancreatic and hepatocellular cancer. Int J Cancer 130(9):2067–2076PubMedCrossRef
190.
go back to reference Nagaraj S, Gupta K, Pisarev V, Kinarsky L, Sherman S, Kang L et al (2007) Altered recognition of antigen is a mechanism of CD8 + T cell tolerance in cancer. Nat Med 13(7):828–835PubMedPubMedCentralCrossRef Nagaraj S, Gupta K, Pisarev V, Kinarsky L, Sherman S, Kang L et al (2007) Altered recognition of antigen is a mechanism of CD8 + T cell tolerance in cancer. Nat Med 13(7):828–835PubMedPubMedCentralCrossRef
191.
go back to reference Nicoli F, Paul S, Appay V (2018) Harnessing the induction of CD8 + T-Cell responses through metabolic regulation by pathogen-recognition-receptor triggering in antigen presenting cells. Front Immunol 9:2372PubMedPubMedCentralCrossRef Nicoli F, Paul S, Appay V (2018) Harnessing the induction of CD8 + T-Cell responses through metabolic regulation by pathogen-recognition-receptor triggering in antigen presenting cells. Front Immunol 9:2372PubMedPubMedCentralCrossRef
192.
go back to reference Nicoli F, Papagno L, Frere JJ, Cabral-Piccin MP, Clave E, Gostick E et al (2018) Naïve CD8 + T-Cells engage a versatile metabolic program upon activation in humans and differ energetically from memory CD8 + T-cells. Front Immunol 9:2736PubMedPubMedCentralCrossRef Nicoli F, Papagno L, Frere JJ, Cabral-Piccin MP, Clave E, Gostick E et al (2018) Naïve CD8 + T-Cells engage a versatile metabolic program upon activation in humans and differ energetically from memory CD8 + T-cells. Front Immunol 9:2736PubMedPubMedCentralCrossRef
193.
go back to reference Zhang Y, Kurupati R, Liu L, Zhou XY, Zhang G, Hudaihed A et al (2017) Enhancing CD8 + T Cell Fatty Acid Catabolism within a Metabolically Challenging Tumor Microenvironment Increases the Efficacy of Melanoma Immunotherapy. Cancer Cell 32(3):391CrossRef Zhang Y, Kurupati R, Liu L, Zhou XY, Zhang G, Hudaihed A et al (2017) Enhancing CD8 + T Cell Fatty Acid Catabolism within a Metabolically Challenging Tumor Microenvironment Increases the Efficacy of Melanoma Immunotherapy. Cancer Cell 32(3):391CrossRef
194.
go back to reference Gou Q, Gong X, Jin J, Shi J, Hou Y (2017) Peroxisome proliferator-activated receptors (PPARs) are potential drug targets for cancer therapy. Oncotarget 8(36):60704–60709PubMedPubMedCentralCrossRef Gou Q, Gong X, Jin J, Shi J, Hou Y (2017) Peroxisome proliferator-activated receptors (PPARs) are potential drug targets for cancer therapy. Oncotarget 8(36):60704–60709PubMedPubMedCentralCrossRef
195.
go back to reference Ribas A, Hamid O, Daud A, Hodi FS, Wolchok JD, Kefford R et al (2016) Association of pembrolizumab with tumor response and survival among patients with advanced melanoma. JAMA 315(15):1600–1609PubMedCrossRef Ribas A, Hamid O, Daud A, Hodi FS, Wolchok JD, Kefford R et al (2016) Association of pembrolizumab with tumor response and survival among patients with advanced melanoma. JAMA 315(15):1600–1609PubMedCrossRef
196.
go back to reference Shroff GS, de Groot PM, Papadimitrakopoulou VA, Truong MT, Carter BW (2018) Targeted therapy and immunotherapy in the treatment of non-small cell lung cancer. Radiol Clin North Am 56(3):485–495PubMedCrossRef Shroff GS, de Groot PM, Papadimitrakopoulou VA, Truong MT, Carter BW (2018) Targeted therapy and immunotherapy in the treatment of non-small cell lung cancer. Radiol Clin North Am 56(3):485–495PubMedCrossRef
197.
go back to reference Bauer C, Kühnemuth B, Duewell P, Ormanns S, Gress T, Schnurr M (2016) Prevailing over T cell exhaustion: New developments in the immunotherapy of pancreatic cancer. Cancer Lett 381(1):259–268PubMedCrossRef Bauer C, Kühnemuth B, Duewell P, Ormanns S, Gress T, Schnurr M (2016) Prevailing over T cell exhaustion: New developments in the immunotherapy of pancreatic cancer. Cancer Lett 381(1):259–268PubMedCrossRef
198.
go back to reference Kotteas E, Saif MW, Syrigos K (2016) Immunotherapy for pancreatic cancer. J Cancer Res Clin Oncol 142(8):1795–1805PubMedCrossRef Kotteas E, Saif MW, Syrigos K (2016) Immunotherapy for pancreatic cancer. J Cancer Res Clin Oncol 142(8):1795–1805PubMedCrossRef
199.
go back to reference Kunk PR, Bauer TW, Slingluff CL, Rahma OE (2016) From bench to bedside a comprehensive review of pancreatic cancer immunotherapy. J Immunother Cancer 4:14PubMedPubMedCentralCrossRef Kunk PR, Bauer TW, Slingluff CL, Rahma OE (2016) From bench to bedside a comprehensive review of pancreatic cancer immunotherapy. J Immunother Cancer 4:14PubMedPubMedCentralCrossRef
200.
go back to reference Foley K, Kim V, Jaffee E, Zheng L (2016) Current progress in immunotherapy for pancreatic cancer. Cancer Lett 381(1):244–251PubMedCrossRef Foley K, Kim V, Jaffee E, Zheng L (2016) Current progress in immunotherapy for pancreatic cancer. Cancer Lett 381(1):244–251PubMedCrossRef
201.
go back to reference Zheng L (2017) PD-L1 expression in pancreatic cancer. J Natl Cancer Inst. 109:6CrossRef Zheng L (2017) PD-L1 expression in pancreatic cancer. J Natl Cancer Inst. 109:6CrossRef
202.
203.
go back to reference Atkuri KR, Herzenberg LA, Niemi A, Cowan T, Herzenberg LA (2007) Importance of culturing primary lymphocytes at physiological oxygen levels. Proc Natl Acad Sci USA 104(11):4547–4552PubMedCrossRefPubMedCentral Atkuri KR, Herzenberg LA, Niemi A, Cowan T, Herzenberg LA (2007) Importance of culturing primary lymphocytes at physiological oxygen levels. Proc Natl Acad Sci USA 104(11):4547–4552PubMedCrossRefPubMedCentral
204.
go back to reference Mestas J, Hughes CCW (2004) Of mice and not men: differences between mouse and human immunology. J Immunol 172(5):2731–2738CrossRefPubMed Mestas J, Hughes CCW (2004) Of mice and not men: differences between mouse and human immunology. J Immunol 172(5):2731–2738CrossRefPubMed
205.
go back to reference Tao L, Reese TA (2017) Making Mouse Models That Reflect Human Immune Responses. Trends Immunol. 38(3):181–193PubMedCrossRef Tao L, Reese TA (2017) Making Mouse Models That Reflect Human Immune Responses. Trends Immunol. 38(3):181–193PubMedCrossRef
206.
go back to reference Beura LK, Hamilton SE, Bi K, Schenkel JM, Odumade OA, Casey KA et al (2016) Recapitulating adult human immune traits in laboratory mice by normalizing environment. Nature 532(7600):512PubMedPubMedCentralCrossRef Beura LK, Hamilton SE, Bi K, Schenkel JM, Odumade OA, Casey KA et al (2016) Recapitulating adult human immune traits in laboratory mice by normalizing environment. Nature 532(7600):512PubMedPubMedCentralCrossRef
207.
go back to reference Boj SF, Hwang C, Baker LA, Chio IIC, Engle DD, Corbo V et al (2015) Organoid models of human and mouse ductal pancreatic cancer. Cell 160(1–2):324–338PubMedCrossRef Boj SF, Hwang C, Baker LA, Chio IIC, Engle DD, Corbo V et al (2015) Organoid models of human and mouse ductal pancreatic cancer. Cell 160(1–2):324–338PubMedCrossRef
208.
go back to reference Tsai S, McOlash L, Palen K, Johnson B, Duris C, Yang Q et al (2018) Development of primary human pancreatic cancer organoids, matched stromal and immune cells and 3D tumor microenvironment models. BMC Cancer 18(1):335PubMedPubMedCentralCrossRef Tsai S, McOlash L, Palen K, Johnson B, Duris C, Yang Q et al (2018) Development of primary human pancreatic cancer organoids, matched stromal and immune cells and 3D tumor microenvironment models. BMC Cancer 18(1):335PubMedPubMedCentralCrossRef
209.
go back to reference Shimojo Y, Akimoto M, Hisanaga T, Tanaka T, Tajima Y, Honma Y et al (2013) Attenuation of reactive oxygen species by antioxidants suppresses hypoxia-induced epithelial-mesenchymal transition and metastasis of pancreatic cancer cells. Clin Exp Metastasis 30(2):143–154PubMedCrossRef Shimojo Y, Akimoto M, Hisanaga T, Tanaka T, Tajima Y, Honma Y et al (2013) Attenuation of reactive oxygen species by antioxidants suppresses hypoxia-induced epithelial-mesenchymal transition and metastasis of pancreatic cancer cells. Clin Exp Metastasis 30(2):143–154PubMedCrossRef
210.
go back to reference Kizaka-Kondoh S, Itasaka S, Zeng L, Tanaka S, Zhao T, Takahashi Y et al (2009) Selective killing of hypoxia-inducible factor-1-active cells improves survival in a mouse model of invasive and metastatic pancreatic cancer. Clin Cancer Res 15(10):3433–3441PubMedCrossRef Kizaka-Kondoh S, Itasaka S, Zeng L, Tanaka S, Zhao T, Takahashi Y et al (2009) Selective killing of hypoxia-inducible factor-1-active cells improves survival in a mouse model of invasive and metastatic pancreatic cancer. Clin Cancer Res 15(10):3433–3441PubMedCrossRef
211.
go back to reference Hajj C, Russell J, Hart CP, Goodman KA, Lowery MA, Haimovitz-Friedman A et al (2017) A combination of radiation and the hypoxia-activated prodrug evofosfamide (TH-302) is efficacious against a human orthotopic pancreatic tumor model. Transl Oncol 10(5):760–765PubMedPubMedCentralCrossRef Hajj C, Russell J, Hart CP, Goodman KA, Lowery MA, Haimovitz-Friedman A et al (2017) A combination of radiation and the hypoxia-activated prodrug evofosfamide (TH-302) is efficacious against a human orthotopic pancreatic tumor model. Transl Oncol 10(5):760–765PubMedPubMedCentralCrossRef
212.
go back to reference Salem A, Asselin M, Reymen B, Jackson A, Lambin P, West CML et al (2018) Targeting hypoxia to improve non-small cell lung cancer outcome. J Natl Cancer Inst 110:1CrossRef Salem A, Asselin M, Reymen B, Jackson A, Lambin P, West CML et al (2018) Targeting hypoxia to improve non-small cell lung cancer outcome. J Natl Cancer Inst 110:1CrossRef
213.
go back to reference Belalcazar A, Shaib WL, Farren MR, Zhang C, Chen Z, Yang L et al (2017) Inhibiting heat shock protein 90 and the ubiquitin-proteasome pathway impairs metabolic homeostasis and leads to cell death in human pancreatic cancer cells. Cancer 123(24):4924–4933PubMedCrossRef Belalcazar A, Shaib WL, Farren MR, Zhang C, Chen Z, Yang L et al (2017) Inhibiting heat shock protein 90 and the ubiquitin-proteasome pathway impairs metabolic homeostasis and leads to cell death in human pancreatic cancer cells. Cancer 123(24):4924–4933PubMedCrossRef
214.
go back to reference Bobrov E, Skobeleva N, Restifo D, Beglyarova N, Cai KQ, Handorf E et al (2017) Targeted delivery of chemotherapy using HSP90 inhibitor drug conjugates is highly active against pancreatic cancer models. Oncotarget 8(3):4399–4409PubMedCrossRef Bobrov E, Skobeleva N, Restifo D, Beglyarova N, Cai KQ, Handorf E et al (2017) Targeted delivery of chemotherapy using HSP90 inhibitor drug conjugates is highly active against pancreatic cancer models. Oncotarget 8(3):4399–4409PubMedCrossRef
215.
go back to reference Wigerup C, Påhlman S, Bexell D (2016) Therapeutic targeting of hypoxia and hypoxia-inducible factors in cancer. Pharmacol Ther 08(164):152–169CrossRef Wigerup C, Påhlman S, Bexell D (2016) Therapeutic targeting of hypoxia and hypoxia-inducible factors in cancer. Pharmacol Ther 08(164):152–169CrossRef
216.
go back to reference Li Y, Patel SP, Roszik J, Qin Y (2018) Hypoxia-driven immunosuppressive metabolites in the tumor microenvironment: new approaches for combinational immunotherapy. Front Immunol 9:1591PubMedPubMedCentralCrossRef Li Y, Patel SP, Roszik J, Qin Y (2018) Hypoxia-driven immunosuppressive metabolites in the tumor microenvironment: new approaches for combinational immunotherapy. Front Immunol 9:1591PubMedPubMedCentralCrossRef
217.
go back to reference Mosquera C, Maglic D, Zervos EE (2016) Molecular targeted therapy for pancreatic adenocarcinoma: a review of completed and ongoing late phase clinical trials. Cancer Genet 209(12):567–581PubMedCrossRef Mosquera C, Maglic D, Zervos EE (2016) Molecular targeted therapy for pancreatic adenocarcinoma: a review of completed and ongoing late phase clinical trials. Cancer Genet 209(12):567–581PubMedCrossRef
218.
go back to reference De Jesus-Acosta A, Laheru D, Maitra A, Arcaroli J, Rudek MA, Dasari A et al (2014) A phase II study of the gamma secretase inhibitor RO4929097 in patients with previously treated metastatic pancreatic adenocarcinoma. Invest New Drugs 32(4):739–745PubMedPubMedCentralCrossRef De Jesus-Acosta A, Laheru D, Maitra A, Arcaroli J, Rudek MA, Dasari A et al (2014) A phase II study of the gamma secretase inhibitor RO4929097 in patients with previously treated metastatic pancreatic adenocarcinoma. Invest New Drugs 32(4):739–745PubMedPubMedCentralCrossRef
219.
go back to reference O’Neil BH, Scott AJ, Ma WW, Cohen SJ, Leichman L, Aisner DL et al (2015) A phase II/III randomized study to compare the efficacy and safety of rigosertib plus gemcitabine versus gemcitabine alone in patients with previously untreated metastatic pancreatic cancer. Ann Oncol 26(9):1923–1929PubMedPubMedCentralCrossRef O’Neil BH, Scott AJ, Ma WW, Cohen SJ, Leichman L, Aisner DL et al (2015) A phase II/III randomized study to compare the efficacy and safety of rigosertib plus gemcitabine versus gemcitabine alone in patients with previously untreated metastatic pancreatic cancer. Ann Oncol 26(9):1923–1929PubMedPubMedCentralCrossRef
220.
go back to reference Ma WW, Messersmith WA, Dy GK, Weekes CD, Whitworth A, Ren C et al (2012) Phase I study of Rigosertib, an inhibitor of the phosphatidylinositol 3-kinase and Polo-like kinase 1 pathways, combined with gemcitabine in patients with solid tumors and pancreatic cancer. Clin Cancer Res 18(7):2048–2055PubMedCrossRef Ma WW, Messersmith WA, Dy GK, Weekes CD, Whitworth A, Ren C et al (2012) Phase I study of Rigosertib, an inhibitor of the phosphatidylinositol 3-kinase and Polo-like kinase 1 pathways, combined with gemcitabine in patients with solid tumors and pancreatic cancer. Clin Cancer Res 18(7):2048–2055PubMedCrossRef
221.
go back to reference Kim EJ, Sahai V, Abel EV, Griffith KA, Greenson JK, Takebe N et al (2014) Pilot clinical trial of hedgehog pathway inhibitor GDC-0449 (vismodegib) in combination with gemcitabine in patients with metastatic pancreatic adenocarcinoma. Clin Cancer Res 20(23):5937–5945PubMedPubMedCentralCrossRef Kim EJ, Sahai V, Abel EV, Griffith KA, Greenson JK, Takebe N et al (2014) Pilot clinical trial of hedgehog pathway inhibitor GDC-0449 (vismodegib) in combination with gemcitabine in patients with metastatic pancreatic adenocarcinoma. Clin Cancer Res 20(23):5937–5945PubMedPubMedCentralCrossRef
222.
go back to reference Ko AH, LoConte N, Tempero MA, Walker EJ, Kate Kelley R, Lewis S et al (2016) A phase i study of FOLFIRINOX Plus IPI-926, a hedgehog pathway inhibitor, for advanced pancreatic adenocarcinoma. Pancreas 45(3):370–375PubMedPubMedCentralCrossRef Ko AH, LoConte N, Tempero MA, Walker EJ, Kate Kelley R, Lewis S et al (2016) A phase i study of FOLFIRINOX Plus IPI-926, a hedgehog pathway inhibitor, for advanced pancreatic adenocarcinoma. Pancreas 45(3):370–375PubMedPubMedCentralCrossRef
223.
go back to reference Vitellius C, Fizanne L, Menager-Tabourel E, Nader J, Baize N, Laly M et al (2018) The combination of everolimus and zoledronic acid increase the efficacy of gemcitabine in a mouse model of pancreatic adenocarcinoma. Oncotarget 9(46):28069–28082PubMedPubMedCentralCrossRef Vitellius C, Fizanne L, Menager-Tabourel E, Nader J, Baize N, Laly M et al (2018) The combination of everolimus and zoledronic acid increase the efficacy of gemcitabine in a mouse model of pancreatic adenocarcinoma. Oncotarget 9(46):28069–28082PubMedPubMedCentralCrossRef
224.
go back to reference Sanford DE, Porembka MR, Panni RZ, Mitchem JB, Belt BA, Plambeck-Suess SM et al (2013) A study of zoledronic acid as neo-adjuvant, perioperative therapy in patients with resectable pancreatic ductal adenocarcinoma. J Cancer Ther 4(3):797–803PubMedPubMedCentralCrossRef Sanford DE, Porembka MR, Panni RZ, Mitchem JB, Belt BA, Plambeck-Suess SM et al (2013) A study of zoledronic acid as neo-adjuvant, perioperative therapy in patients with resectable pancreatic ductal adenocarcinoma. J Cancer Ther 4(3):797–803PubMedPubMedCentralCrossRef
225.
go back to reference Mace TA, Shakya R, Pitarresi JR, Swanson B, McQuinn CW, Loftus S et al (2018) IL-6 and PD-L1 antibody blockade combination therapy reduces tumor progression in murine models of pancreatic cancer. Gut 67(2):320PubMedCrossRef Mace TA, Shakya R, Pitarresi JR, Swanson B, McQuinn CW, Loftus S et al (2018) IL-6 and PD-L1 antibody blockade combination therapy reduces tumor progression in murine models of pancreatic cancer. Gut 67(2):320PubMedCrossRef
226.
go back to reference Goumas FA, Holmer R, Egberts J, Gontarewicz A, Heneweer C, Geisen U et al (2015) Inhibition of IL-6 signaling significantly reduces primary tumor growth and recurrencies in orthotopic xenograft models of pancreatic cancer. International Journal of Cancer 137(5):1035–1046PubMedCrossRef Goumas FA, Holmer R, Egberts J, Gontarewicz A, Heneweer C, Geisen U et al (2015) Inhibition of IL-6 signaling significantly reduces primary tumor growth and recurrencies in orthotopic xenograft models of pancreatic cancer. International Journal of Cancer 137(5):1035–1046PubMedCrossRef
227.
go back to reference Pu N, Zhao G, Gao S, Cui Y, Xu Y, Lv Y et al (2018) Neutralizing TGF-β promotes anti-tumor immunity of dendritic cells against pancreatic cancer by regulating T lymphocytes. Central-European Journal of Immunology 43(2):123PubMedPubMedCentralCrossRef Pu N, Zhao G, Gao S, Cui Y, Xu Y, Lv Y et al (2018) Neutralizing TGF-β promotes anti-tumor immunity of dendritic cells against pancreatic cancer by regulating T lymphocytes. Central-European Journal of Immunology 43(2):123PubMedPubMedCentralCrossRef
228.
go back to reference Soares KC, Rucki AA, Kim V, Foley K, Solt S, Wolfgang CL et al (2015) TGF-β blockade depletes T regulatory cells from metastatic pancreatic tumors in a vaccine dependent manner. Oncotarget 6(40):43005PubMedPubMedCentralCrossRef Soares KC, Rucki AA, Kim V, Foley K, Solt S, Wolfgang CL et al (2015) TGF-β blockade depletes T regulatory cells from metastatic pancreatic tumors in a vaccine dependent manner. Oncotarget 6(40):43005PubMedPubMedCentralCrossRef
229.
go back to reference Palsson-McDermott EM, Dyck L, Zasłona Z, Menon D, McGettrick AF, Mills KHG et al (2017) Pyruvate kinase M2 is required for the expression of the immune checkpoint PD-L1 in immune cells and tumors. Front Immunol 8:1300PubMedPubMedCentralCrossRef Palsson-McDermott EM, Dyck L, Zasłona Z, Menon D, McGettrick AF, Mills KHG et al (2017) Pyruvate kinase M2 is required for the expression of the immune checkpoint PD-L1 in immune cells and tumors. Front Immunol 8:1300PubMedPubMedCentralCrossRef
230.
go back to reference Tan MCB, Goedegebuure PS, Belt BA, Flaherty B, Sankpal N, Gillanders WE et al (2009) Disruption of CCR5-dependent homing of regulatory T cells inhibits tumor growth in a murine model of pancreatic cancer. J Immunol 182(3):1746–1755PubMedCrossRef Tan MCB, Goedegebuure PS, Belt BA, Flaherty B, Sankpal N, Gillanders WE et al (2009) Disruption of CCR5-dependent homing of regulatory T cells inhibits tumor growth in a murine model of pancreatic cancer. J Immunol 182(3):1746–1755PubMedCrossRef
Metadata
Title
Hypoxia as a barrier to immunotherapy in pancreatic adenocarcinoma
Authors
S. K. Daniel
K. M. Sullivan
K. P. Labadie
V. G. Pillarisetty
Publication date
01-12-2019
Publisher
Springer Berlin Heidelberg
Published in
Clinical and Translational Medicine / Issue 1/2019
Electronic ISSN: 2001-1326
DOI
https://doi.org/10.1186/s40169-019-0226-9

Other articles of this Issue 1/2019

Clinical and Translational Medicine 1/2019 Go to the issue