Skip to main content
Top
Published in: Cancer Cell International 1/2013

Open Access 01-12-2013 | Primary research

Role of the Hypoxia-inducible factor-1 alpha induced autophagy in the conversion of non-stem pancreatic cancer cells into CD133+ pancreatic cancer stem-like cells

Authors: Haitao Zhu, Dongqing Wang, Yanfang Liu, Zhaoliang Su, Lirong Zhang, Fangfang Chen, Yuepeng Zhou, Yingying Wu, Ming Yu, Zhijian Zhang, Genbao Shao

Published in: Cancer Cell International | Issue 1/2013

Login to get access

Abstract

The initiation and progression of various solid tumors, including pancreatic carcinoma, are driven by a population of cells with stem cell properties, namely cancer stem cells (CSCs). Like their normal counterparts, CSCs are also believed to rely on their own microenvironment termed niches to sustain the population. Hypoxia-inducible factor-1α (HIF-1α) is a major actor in the cell survival response to hypoxia. Recently, several researchers proposed that non-stem cancer cells can convert to stem-like cells to maintain equilibrium. The present study focuses on whether non-stem pancreatic cancer cells can convert to stem-like cells and the role of HIF-1α and autophagy in modulating this conversation. The non-stem pancreatic cancer cells and pancreatic cancer stem-like cells were separated by magnetic sorting column. Intermittent hypoxia enhanced stem-like properties of non-stem pancreatic cancer cells and stimulated the levels of HIF-1α, LC3-II and Beclin. Enhanced autophagy was associated with the elevated level of HIF-1α. The conversation of non-stem pancreatic cancer cells into pancreatic cancer stem-like cells was induced by HIF-1α and autophagy. This novel finding may indicate the specific role of HIF-1α and autophagy in promoting the dynamic equilibrium between CSCs and non-CSCs. Also, it emphasizes the importance of developing therapeutic strategies targeting cancer stem cells as well as the microenvironmental influence on the tumor.
Appendix
Available only for authorised users
Literature
1.
go back to reference Siegel R, Naishadham D, Jemal A: Cancer statistics, 2012. CA Cancer J Clin. 2012, 62 (1): 10-29. 10.3322/caac.20138.CrossRefPubMed Siegel R, Naishadham D, Jemal A: Cancer statistics, 2012. CA Cancer J Clin. 2012, 62 (1): 10-29. 10.3322/caac.20138.CrossRefPubMed
2.
go back to reference Lowery MA, O’Reilly EM: Pancreatic adenocarcinoma: new approaches to a challenging malignancy. Oncology (Williston Park, NY). 2010, 24 (14): 1339-1342. Lowery MA, O’Reilly EM: Pancreatic adenocarcinoma: new approaches to a challenging malignancy. Oncology (Williston Park, NY). 2010, 24 (14): 1339-1342.
3.
go back to reference Belli C, Cereda S, Anand S, Reni M: Neoadjuvant therapy in resectable pancreatic cancer: a critical review. Cancer Treat Rev. 2013, 39 (5): 518-524. 10.1016/j.ctrv.2012.09.008.CrossRefPubMed Belli C, Cereda S, Anand S, Reni M: Neoadjuvant therapy in resectable pancreatic cancer: a critical review. Cancer Treat Rev. 2013, 39 (5): 518-524. 10.1016/j.ctrv.2012.09.008.CrossRefPubMed
4.
go back to reference Li C, Lee CJ, Simeone DM: Identification of human pancreatic cancer stem cells. Methods Mol Biol (Clifton, NJ. 2009, 568: 161-173. 10.1007/978-1-59745-280-9_10.CrossRef Li C, Lee CJ, Simeone DM: Identification of human pancreatic cancer stem cells. Methods Mol Biol (Clifton, NJ. 2009, 568: 161-173. 10.1007/978-1-59745-280-9_10.CrossRef
5.
go back to reference Chan KS, Volkmer JP, Weissman I: Cancer stem cells in bladder cancer: a revisited and evolving concept. Curr Opin Urol. 2010, 20 (5): 393-397. 10.1097/MOU.0b013e32833cc9df.PubMedCentralCrossRefPubMed Chan KS, Volkmer JP, Weissman I: Cancer stem cells in bladder cancer: a revisited and evolving concept. Curr Opin Urol. 2010, 20 (5): 393-397. 10.1097/MOU.0b013e32833cc9df.PubMedCentralCrossRefPubMed
6.
go back to reference Reynolds BA, Vescovi AL: Brain cancer stem cells: think twice before going flat. Cell Stem Cell. 2009, 5 (5): 466-467. 10.1016/j.stem.2009.10.017. author reply 468–469CrossRefPubMed Reynolds BA, Vescovi AL: Brain cancer stem cells: think twice before going flat. Cell Stem Cell. 2009, 5 (5): 466-467. 10.1016/j.stem.2009.10.017. author reply 468–469CrossRefPubMed
7.
go back to reference Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF: Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci U S A. 2003, 100 (7): 3983-3988. 10.1073/pnas.0530291100.PubMedCentralCrossRefPubMed Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF: Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci U S A. 2003, 100 (7): 3983-3988. 10.1073/pnas.0530291100.PubMedCentralCrossRefPubMed
8.
go back to reference Singh SK, Hawkins C, Clarke ID, Squire JA, Bayani J, Hide T, Henkelman RM, Cusimano MD, Dirks PB: Identification of human brain tumour initiating cells. Nature. 2004, 432 (7015): 396-401. 10.1038/nature03128.CrossRefPubMed Singh SK, Hawkins C, Clarke ID, Squire JA, Bayani J, Hide T, Henkelman RM, Cusimano MD, Dirks PB: Identification of human brain tumour initiating cells. Nature. 2004, 432 (7015): 396-401. 10.1038/nature03128.CrossRefPubMed
9.
go back to reference Boman BM, Wicha MS: Cancer stem cells: a step toward the cure. J Clin Oncol. 2008, 26 (17): 2795-2799. 10.1200/JCO.2008.17.7436.CrossRefPubMed Boman BM, Wicha MS: Cancer stem cells: a step toward the cure. J Clin Oncol. 2008, 26 (17): 2795-2799. 10.1200/JCO.2008.17.7436.CrossRefPubMed
10.
go back to reference Clarke MF, Dick JE, Dirks PB, Eaves CJ, Jamieson CH, Jones DL, Visvader J, Weissman IL, Wahl GM: Cancer stem cells–perspectives on current status and future directions: AACR Workshop on cancer stem cells. Cancer Res. 2006, 66 (19): 9339-9344. 10.1158/0008-5472.CAN-06-3126.CrossRefPubMed Clarke MF, Dick JE, Dirks PB, Eaves CJ, Jamieson CH, Jones DL, Visvader J, Weissman IL, Wahl GM: Cancer stem cells–perspectives on current status and future directions: AACR Workshop on cancer stem cells. Cancer Res. 2006, 66 (19): 9339-9344. 10.1158/0008-5472.CAN-06-3126.CrossRefPubMed
11.
go back to reference Burness ML, Sipkins DA: The stem cell niche in health and malignancy. Semin Cancer Biol. 2010, 20 (2): 107-115. 10.1016/j.semcancer.2010.05.006.CrossRefPubMed Burness ML, Sipkins DA: The stem cell niche in health and malignancy. Semin Cancer Biol. 2010, 20 (2): 107-115. 10.1016/j.semcancer.2010.05.006.CrossRefPubMed
12.
go back to reference Filatova A, Acker T, Garvalov BK: The cancer stem cell niche(s): the crosstalk between glioma stem cells and their microenvironment. Biochim Biophys Acta. 2013, 1830 (2): 2496-2508. 10.1016/j.bbagen.2012.10.008.CrossRefPubMed Filatova A, Acker T, Garvalov BK: The cancer stem cell niche(s): the crosstalk between glioma stem cells and their microenvironment. Biochim Biophys Acta. 2013, 1830 (2): 2496-2508. 10.1016/j.bbagen.2012.10.008.CrossRefPubMed
13.
go back to reference Calabrese C, Poppleton H, Kocak M, Hogg TL, Fuller C, Hamner B, Oh EY, Gaber MW, Finklestein D, Allen M: A perivascular niche for brain tumor stem cells. Cancer Cell. 2007, 11 (1): 69-82. 10.1016/j.ccr.2006.11.020.CrossRefPubMed Calabrese C, Poppleton H, Kocak M, Hogg TL, Fuller C, Hamner B, Oh EY, Gaber MW, Finklestein D, Allen M: A perivascular niche for brain tumor stem cells. Cancer Cell. 2007, 11 (1): 69-82. 10.1016/j.ccr.2006.11.020.CrossRefPubMed
14.
go back to reference Iliopoulos D, Hirsch HA, Wang G, Struhl K: Inducible formation of breast cancer stem cells and their dynamic equilibrium with non-stem cancer cells via IL6 secretion. Proc Natl Acad Sci U S A. 2011, 108 (4): 1397-1402. 10.1073/pnas.1018898108.PubMedCentralCrossRefPubMed Iliopoulos D, Hirsch HA, Wang G, Struhl K: Inducible formation of breast cancer stem cells and their dynamic equilibrium with non-stem cancer cells via IL6 secretion. Proc Natl Acad Sci U S A. 2011, 108 (4): 1397-1402. 10.1073/pnas.1018898108.PubMedCentralCrossRefPubMed
15.
go back to reference Hjelmeland AB, Wu Q, Heddleston JM, Choudhary GS, MacSwords J, Lathia JD, McLendon R, Lindner D, Sloan A, Rich JN: Acidic stress promotes a glioma stem cell phenotype. Cell Death Differ. 2011, 18 (5): 829-840. 10.1038/cdd.2010.150.PubMedCentralCrossRefPubMed Hjelmeland AB, Wu Q, Heddleston JM, Choudhary GS, MacSwords J, Lathia JD, McLendon R, Lindner D, Sloan A, Rich JN: Acidic stress promotes a glioma stem cell phenotype. Cell Death Differ. 2011, 18 (5): 829-840. 10.1038/cdd.2010.150.PubMedCentralCrossRefPubMed
16.
go back to reference Mathieu J, Zhang Z, Zhou W, Wang AJ, Heddleston JM, Pinna CM, Hubaud A, Stadler B, Choi M, Bar M: HIF induces human embryonic stem cell markers in cancer cells. Cancer Res. 2011, 71 (13): 4640-4652. 10.1158/0008-5472.CAN-10-3320.PubMedCentralCrossRefPubMed Mathieu J, Zhang Z, Zhou W, Wang AJ, Heddleston JM, Pinna CM, Hubaud A, Stadler B, Choi M, Bar M: HIF induces human embryonic stem cell markers in cancer cells. Cancer Res. 2011, 71 (13): 4640-4652. 10.1158/0008-5472.CAN-10-3320.PubMedCentralCrossRefPubMed
17.
go back to reference Gopalan A, Yu W, Sanders BG, Kline K: Eliminating drug resistant breast cancer stem-like cells with combination of simvastatin and gamma-tocotrienol. Cancer Lett. 2013, 328 (2): 285-296. 10.1016/j.canlet.2012.10.003.CrossRefPubMed Gopalan A, Yu W, Sanders BG, Kline K: Eliminating drug resistant breast cancer stem-like cells with combination of simvastatin and gamma-tocotrienol. Cancer Lett. 2013, 328 (2): 285-296. 10.1016/j.canlet.2012.10.003.CrossRefPubMed
18.
go back to reference Xu L: Cancer stem cell in the progression and therapy of pancreatic cancer. Front Biosci (Landmark edition). 2013, 18: 795-802. 10.2741/4143.CrossRef Xu L: Cancer stem cell in the progression and therapy of pancreatic cancer. Front Biosci (Landmark edition). 2013, 18: 795-802. 10.2741/4143.CrossRef
19.
go back to reference Ribatti D: Cancer stem cells and tumor angiogenesis. Cancer Lett. 2012, 321 (1): 13-17. 10.1016/j.canlet.2012.02.024.CrossRefPubMed Ribatti D: Cancer stem cells and tumor angiogenesis. Cancer Lett. 2012, 321 (1): 13-17. 10.1016/j.canlet.2012.02.024.CrossRefPubMed
20.
go back to reference Hermann PC, Huber SL, Herrler T, Aicher A, Ellwart JW, Guba M, Bruns CJ, Heeschen C: Distinct populations of cancer stem cells determine tumor growth and metastatic activity in human pancreatic cancer. Cell Stem Cell. 2007, 1 (3): 313-323. 10.1016/j.stem.2007.06.002.CrossRefPubMed Hermann PC, Huber SL, Herrler T, Aicher A, Ellwart JW, Guba M, Bruns CJ, Heeschen C: Distinct populations of cancer stem cells determine tumor growth and metastatic activity in human pancreatic cancer. Cell Stem Cell. 2007, 1 (3): 313-323. 10.1016/j.stem.2007.06.002.CrossRefPubMed
21.
go back to reference Kingsley LA, Fournier PG, Chirgwin JM, Guise TA: Molecular biology of bone metastasis. Mol Cancer Ther. 2007, 6 (10): 2609-2617. 10.1158/1535-7163.MCT-07-0234.CrossRefPubMed Kingsley LA, Fournier PG, Chirgwin JM, Guise TA: Molecular biology of bone metastasis. Mol Cancer Ther. 2007, 6 (10): 2609-2617. 10.1158/1535-7163.MCT-07-0234.CrossRefPubMed
22.
go back to reference Denny WA: Hypoxia-activated prodrugs in cancer therapy: progress to the clinic. Future Oncol. 2010, 6 (3): 419-428. 10.2217/fon.10.1.CrossRefPubMed Denny WA: Hypoxia-activated prodrugs in cancer therapy: progress to the clinic. Future Oncol. 2010, 6 (3): 419-428. 10.2217/fon.10.1.CrossRefPubMed
23.
go back to reference Koong AC, Mehta VK, Le QT, Fisher GA, Terris DJ, Brown JM, Bastidas AJ, Vierra M: Pancreatic tumors show high levels of hypoxia. Int J Radiat Oncol Biol Phys. 2000, 48 (4): 919-922. 10.1016/S0360-3016(00)00803-8.CrossRefPubMed Koong AC, Mehta VK, Le QT, Fisher GA, Terris DJ, Brown JM, Bastidas AJ, Vierra M: Pancreatic tumors show high levels of hypoxia. Int J Radiat Oncol Biol Phys. 2000, 48 (4): 919-922. 10.1016/S0360-3016(00)00803-8.CrossRefPubMed
24.
go back to reference Soeda A, Park M, Lee D, Mintz A, Androutsellis-Theotokis A, McKay RD, Engh J, Iwama T, Kunisada T, Kassam AB: Hypoxia promotes expansion of the CD133-positive glioma stem cells through activation of HIF-1αlpha. Oncogene. 2009, 28 (45): 3949-3959. 10.1038/onc.2009.252.CrossRefPubMed Soeda A, Park M, Lee D, Mintz A, Androutsellis-Theotokis A, McKay RD, Engh J, Iwama T, Kunisada T, Kassam AB: Hypoxia promotes expansion of the CD133-positive glioma stem cells through activation of HIF-1αlpha. Oncogene. 2009, 28 (45): 3949-3959. 10.1038/onc.2009.252.CrossRefPubMed
25.
go back to reference Hashimoto O, Shimizu K, Semba S, Chiba S, Ku Y, Yokozaki H, Hori Y: Hypoxia induces tumor aggressiveness and the expansion of CD133-positive cells in a hypoxia-inducible factor-1alpha-dependent manner in pancreatic cancer cells. Pathobiology. 2011, 78 (4): 181-192. 10.1159/000325538.CrossRefPubMed Hashimoto O, Shimizu K, Semba S, Chiba S, Ku Y, Yokozaki H, Hori Y: Hypoxia induces tumor aggressiveness and the expansion of CD133-positive cells in a hypoxia-inducible factor-1alpha-dependent manner in pancreatic cancer cells. Pathobiology. 2011, 78 (4): 181-192. 10.1159/000325538.CrossRefPubMed
26.
go back to reference Kopp HG, Avecilla ST, Hooper AT, Rafii S: The bone marrow vascular niche: home of HSC differentiation and mobilization. Physiology (Bethesda). 2005, 20: 349-356. 10.1152/physiol.00025.2005.CrossRef Kopp HG, Avecilla ST, Hooper AT, Rafii S: The bone marrow vascular niche: home of HSC differentiation and mobilization. Physiology (Bethesda). 2005, 20: 349-356. 10.1152/physiol.00025.2005.CrossRef
27.
go back to reference Butler JM, Kobayashi H, Rafii S: Instructive role of the vascular niche in promoting tumour growth and tissue repair by angiocrine factors. Nat Rev Cancer. 2010, 10 (2): 138-146. 10.1038/nrc2791.PubMedCentralCrossRefPubMed Butler JM, Kobayashi H, Rafii S: Instructive role of the vascular niche in promoting tumour growth and tissue repair by angiocrine factors. Nat Rev Cancer. 2010, 10 (2): 138-146. 10.1038/nrc2791.PubMedCentralCrossRefPubMed
28.
go back to reference Liang D, Ma Y, Liu J, Trope CG, Holm R, Nesland JM, Suo Z: The hypoxic microenvironment upgrades stem-like properties of ovarian cancer cells. BMC Cancer. 2012, 12: 201-10.1186/1471-2407-12-201.PubMedCentralCrossRefPubMed Liang D, Ma Y, Liu J, Trope CG, Holm R, Nesland JM, Suo Z: The hypoxic microenvironment upgrades stem-like properties of ovarian cancer cells. BMC Cancer. 2012, 12: 201-10.1186/1471-2407-12-201.PubMedCentralCrossRefPubMed
29.
go back to reference Higgins LH, Withers HG, Garbens A, Love HD, Magnoni L, Hayward SW, Moyes CD: Hypoxia and the metabolic phenotype of prostate cancer cells. Biochim Biophys Acta. 2009, 1787 (12): 1433-1443. 10.1016/j.bbabio.2009.06.003.CrossRefPubMed Higgins LH, Withers HG, Garbens A, Love HD, Magnoni L, Hayward SW, Moyes CD: Hypoxia and the metabolic phenotype of prostate cancer cells. Biochim Biophys Acta. 2009, 1787 (12): 1433-1443. 10.1016/j.bbabio.2009.06.003.CrossRefPubMed
30.
go back to reference Keith B, Johnson RS, Simon MC: HIF1alpha and HIF2alpha: sibling rivalry in hypoxic tumour growth and progression. Nat Rev Cancer. 2011, 12 (1): 9-22.PubMedCentralPubMed Keith B, Johnson RS, Simon MC: HIF1alpha and HIF2alpha: sibling rivalry in hypoxic tumour growth and progression. Nat Rev Cancer. 2011, 12 (1): 9-22.PubMedCentralPubMed
33.
go back to reference Mizushima N, Levine B, Cuervo AM, Klionsky DJ: Autophagy fights disease through cellular self-digestion. Nature. 2008, 451 (7182): 1069-1075. 10.1038/nature06639.PubMedCentralCrossRefPubMed Mizushima N, Levine B, Cuervo AM, Klionsky DJ: Autophagy fights disease through cellular self-digestion. Nature. 2008, 451 (7182): 1069-1075. 10.1038/nature06639.PubMedCentralCrossRefPubMed
34.
go back to reference Chaachouay H, Ohneseit P, Toulany M, Kehlbach R, Multhoff G, Rodemann HP: Autophagy contributes to resistance of tumor cells to ionizing radiation. Radiother Oncol. 2011, 99 (3): 287-292. 10.1016/j.radonc.2011.06.002.CrossRefPubMed Chaachouay H, Ohneseit P, Toulany M, Kehlbach R, Multhoff G, Rodemann HP: Autophagy contributes to resistance of tumor cells to ionizing radiation. Radiother Oncol. 2011, 99 (3): 287-292. 10.1016/j.radonc.2011.06.002.CrossRefPubMed
35.
go back to reference Li L, Chen Y, Gibson SB: Starvation-induced autophagy is regulated by mitochondrial reactive oxygen species leading to AMPK activation. Cell Signal. 2013, 25 (1): 50-65. 10.1016/j.cellsig.2012.09.020.CrossRefPubMed Li L, Chen Y, Gibson SB: Starvation-induced autophagy is regulated by mitochondrial reactive oxygen species leading to AMPK activation. Cell Signal. 2013, 25 (1): 50-65. 10.1016/j.cellsig.2012.09.020.CrossRefPubMed
Metadata
Title
Role of the Hypoxia-inducible factor-1 alpha induced autophagy in the conversion of non-stem pancreatic cancer cells into CD133+ pancreatic cancer stem-like cells
Authors
Haitao Zhu
Dongqing Wang
Yanfang Liu
Zhaoliang Su
Lirong Zhang
Fangfang Chen
Yuepeng Zhou
Yingying Wu
Ming Yu
Zhijian Zhang
Genbao Shao
Publication date
01-12-2013
Publisher
BioMed Central
Published in
Cancer Cell International / Issue 1/2013
Electronic ISSN: 1475-2867
DOI
https://doi.org/10.1186/1475-2867-13-119

Other articles of this Issue 1/2013

Cancer Cell International 1/2013 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine